
Measurements of a Real-time Transit Feed Service

Architecture for Mobile Participatory Sensing

Róbert Szabó∗†, Károly Farkas∗‡ and Bernát Wiandt‡

∗Inter-University Centre for Telecommunications and Informatics, Debrecen, Hungary
†HSNLab, Dept. of Telecommunications and Media Informatics,

‡Dept. of Networked Systems and Services,

Budapest University of Technology and Economics, Budapest, Hungary

Email: szabo.robert@etik.hu, farkask@hit.bme.hu, bwiandt@hit.bme.hu

Abstract—We spend a substantial part of our time with
traveling, in crowded cities usually taking public transportation.
It is important, making travel planning easier, to have accurate
information about vehicle arrival times at the stops. Most of
the public transport operators make their timetables freely
available either on the web or in some special format, like
GTFS (General Transit Feed Specification). However, they contain
static information only, not reflecting the actual traffic conditions.
Mobile participatory sensing can help extend the basic service
with real-time updates letting the crowd collect the required data.
With this respect we believe that such participatory sensing based
application must offer a day zero service following incremental
service extension. In this paper, we discuss how to realize real-time
refinements to static GTFS data based on mobile participatory
sensing. We show how this service can be implemented by
an XMPP (Extensible Messaging and Presence Protocol) based
mobile participatory sensing architecture and we evaluate its
performance.

Keywords—Participatory sensing, Public transport, GTFS, Pub-
lish/subscribe, XMPP

I. INTRODUCTION

Traveling is an everyday activity for most of us. Using
public transportation is an environmentally sound way of
traveling. To reduce unnecessary waiting times accurate esti-
mates of vehicle arrivals are to be provided to the passengers.
Fortunately, most transit operators of big cities make their
timetables freely available in the form of General Transit Feed
Specification (GTFS) [1]. However, this solution contains only
static information, which does not reflect up-to-date traffic
conditions.

Exploiting the emerging paradigm of mobile crowdsens-
ing [2], or often called participatory sensing, the crowd of
people collects the necessary data, such as delays or traffic
jams, to make live updates available for real-time community
services. For sensing, the built-in and ubiquitous sensors of
the passengers’ mobile phones can be used. Every traveler can
contribute useable information. Thus, travelers standing at a
stop can send data with regard to each arriving and departing
bus/tram/train. While passengers in travel are expected to
collect periodic position and stop arrival/departure information
relevant to a given vehicle only.

However, using crowdsensing faces substantial challenges.
The primary challenge is the motivation of travelers to be
involved in gathering the necessary information. Our approach

is a day zero service, which means some basic functions
offered to its users from the day the service is launched,
and improved functions are added as data is gathered by the
crowd. We believe, that this approach may provide appropriate
incentives to the users.

Thus, in this paper, as the follow-up of our former work
[3], [4], we investigate and discuss an application scenario,
where the day zero service is a static transit feed which
is incrementally improved with live updates as data is col-
lected from passengers. We present the implementation of
this scenario using an Extensible Messaging and Presence
Protocol (XMPP) [5] based service architecture. Moreover,
we investigate the performance of our service setup. Our
measurement results show that even two-three year old com-
modity hardware is able to cope with the generated traffic
load. With a GTFS emulator and the proposed setup we can
combine static and real-time service updates in an easy way
and introduce incremental service improvements by the aid of
mobile crowdsensing.

The rest of the paper is structured as follows. In Sec. II
we review related work. We introduce our design in Sec. III.
We present some preliminary measurement results in Sec. IV.
Finally, we summarize the paper in Sec. V.

II. RELATED WORK

In this section, we review first crowdsensing based public
transport tracking applications. Then we discuss the GTFS
format of public transport information. Finally, we describe
XMPP shortly.

Our approach has the most similarities with recent ideas on
tracking public transport vehicles. The authors in [6] propose
a bus arrival time prediction solution based on collecting
sensor data by bus passengers. The proposed system uses
movement statuses, audio recordings and mobile celltower
signals to identify the bus and its actual position. The authors
in [7] propose a method for public transport tracking based on
accelerometer and GPS data collected on the users’ mobile.
EasyTracker [8] provides an inexpensive solution for real-
time public transport tracking and mapping based on GPS
sensor data collected by smart phones in public transport
vehicles. It also offers arrival time prediction. The focus of
these approaches is on data collection, since our focus is on
provisioning services updated in real-time based on crowd
collected data.

978-1-4799-0543-0/13/$31.00 ©2013 IEEE

GTFS [1] is used to represent public transport data for vari-
ous operators around the globe. The GTFS database consists of
comma delimited text files which describe the following GTFS
feed elements. Agency: who provides the transit data; Routes:
a route groups trips as a single service offered to passengers;
Stops: individual locations where vehicles pick up or drop
passengers; Stop times: vehicle arrival and departure times
from the viewpoint of an individual stop; Calendar: weekly
schedule of the service; and Trip: a sequence of two or more
stops for each route that occurs at a specific time. In order for
us to offer a competitive service even without participatory
users we will also use static GTFS data as a basic service,
which is provided from day zero of the application’s launch.

XMPP [5] is an open technology for real-time communi-
cation using XML (Extensible Markup Language) [9] message
format. XMPP allows sending of small information pieces
from one entity to another in quasi real-time. It has several
extensions, like multi-party messaging [10] or notification
service [11]. This latter realizes a publish/subscribe (pubsub)
communication model [12], where publications sent to a node
are automatically multicast to the subscribers of that node.
Furthermore, collection nodes [11] can be used to easily
manage subscriptions through aggregate notifications. XMPP
is well established and widely used in instant messaging
services, like Google Talk [13] or Facebook Chat [14]. We have
also chosen XMPP and the publish/subscribe communication
model as the core building elements of our transit service
architecture.

III. XMPP-BASED LIVE TRANSIT FEED DESIGN

In [4], we proposed a generic open architecture based on
the XMPP protocol for mobile crowdsensing. We reuse and
adapt that architecture in our real-time transit feed service
design.

A. Requirements

Beyond the basic requirements we discussed in [4], such
as extensible information model; decoupling between pro-
ducers and consumers; unifying open architecture, the key
success factor for crowdsensing applications is their ability
to attract contributors. We think, that these applications must
offer minimum similar services from their launch as those
available already on the market to attract contribution. Hence,
combining static GTFS and real-time crowd-sensed data offer
immediate service and the quality of experience improves as
the contribution level from the crowd increases. In this work,
we investigate and discuss an application scenario where static
GTFS data is combined with mobile crowdsensing.

B. Model

In order to limit the communication overhead for mobile
users, we mapped the GTFS database into an XMPP node
structure, which would enable fine grained selection of elemen-
tary feeds of possible interest by the users. Fig. 1 shows the
pubsub nodes for content filtering in a transit feed. The transit
information is structured into two views for the users, like
route based and stop based. The route based view corresponds
to the scenario, when the user would like to receive information
related to specific trips (vehicles), while the stop based view

corresponds to the scenario, when the user is interested in
forthcoming arrivals at given stops (locations). The Trip nodes
of the structure will receive live event updates, while other
nodes would only contain references to relevant trip nodes.

Fig. 1. Node Structure of our GTFS Feed Model

As an example (see the bracketed labels in Fig. 1
and Fig. 2), a node with ID “BKK-Routes-3040-in-
A87757824” contains live updates to Trip=A87757824, in-
bound, Route=3040 of Agency=BKK. On the other hand,
information related to Route 3040 (like full name, short name,
head-signs, stops, etc.) is found as persistent content in “BKK-
Routes-3040”, while all currently active trips to inbound
direction are found in “BKK-Routes-3040-in” node. Similarly,
“BKK-Stops-F01086” node contains static information related
to the stop in its headline (e.g., name, GPS coordinates, etc.)
and the list of routes this stop belongs to. The route node,
however, contains one entry per trip with the trip’s ID as
defined above.

C. Architecture

Fig. 2. Architecture for Live Transit Feed Service

Additional to a standard XMPP server, our architecture
consists of a GTFS Emulator, analytic module(s) and a mobile
client application (see Fig. 2). The latter one is based on
a standard XMPP stack (e.g., ASmack [15]) which offers a
user interface to navigate through the GTFS contents semi
automatically and enables live feedback/data from the user.
Event publication and feedback/data reception can be handled
either by the same or by separate XMPP servers (the latter case
is shown in Fig. 2). The GTFS Emulator must be in place to
send transit information based on the static GTFS Database in
the absence of user feeds. Thus, the GTFS Emulator provides

the day zero service in our scenario. On the other hand, the
analytic module is responsible for the business logic offered
by the service.

For our current performance analysis, we assume, that
clients will navigate through the pubsub node structure shown
in Fig. 1 and receive events accordingly. Moreover, we assume
a pass-through analytic module, which passes through the user
live feed directly to the corresponding content node.

IV. EVALUATION

A. Tools

In all of our measurements we used some basic tools to
load and measure the characteristics of an imaginary crowd
transit service based on XMPP servers. In our setup, we used
a GTFS emulator plus active and passive users.

GTFS Emulator: We developed a standalone GTFS emula-
tor, which sends GTFS stop events into the XMPP server from
a time stamped, ordered event list generated directly from a
GTFS database. We mapped the static schedule of the agency
to the crowd service with the emulator.

Passive Users: We set the load of our XMPP server by
changing the number of passive user subscriptions to different
pubsub nodes.

Active Users: Active users publish measurement messages
to the XMPP nodes they are subscribed to, at every 100 msec.
They measure the elapsed time between publishing and re-
ceiving their messages. We define the service round-trip-time
(RTT) as the elapsed time measured by such active users. The
RTT is a quality of service (QoS) parameter of the system, as
it describes the time it takes for a live update to get to the
subscribers.

B. XMPP Server

We used the Erlang Jabber/XMPP daemon (ejabberd) [16]
as our XMPP server. We run the server on an AMD Athlon
K9 Dual Core Processor 5050e hardware at 2600MHz with
2Gbyte RAM and 3.8.0-19 Linux kernel.

Our measurement setup consists of a single server ar-
chitecture (see Fig. 3), where only one ejabberd server was
used to carry the load. We measured the RTT for symmetric
multiprocessing (SMP) disabled and enabled in the ejabberd
server.

Fig. 3. Measurement Scenario

C. Methodology

We used active users to measure service RTT (see above).
We were interested how a commodity XMPP server can handle
the task of serving various number of users under the GTFS
emulator’s load.

We picked a busy hour (7am to 8am, weekday) from
the GTFS database of Budapest’s transit operator (BKK) as
source to the emulator. In the event trace, 96.6% of the events
belonged to bursts (GTFS databases show this characteristic as
most of the arrivals are scheduled at solid minutes) with the
rest spread evenly between these bursts. More specifically, the
trace contained 60 bursts of approximately 1,000 stop arrival
events per minute. Due to the back-to-back bursts of the stop
events, we increased the playback speed of the emulator with
a factor of three, without affecting the characteristics of the
trace, resulting in a burst inter arrival time of 20 sec.

In order to avoid initial transients, we left out the first
5 bursts of each measurement and collected statistics for
the remaining 55 bursts. We used Student’s t-distribution to
estimate a 95% confidence interval for the sampled mean of
RTT. The active measurement clients sent probe messages at
every 100 msec. The passive clients subscribed to all trip
content channels (e.g., 10 passive users generated a load of
3 × 10 × 1, 000 = 30, 000 events to send out per minute for
the XMPP server).

Additionally, active users sent 600 measurement messages
per minute, which were also sent to all subscribers. Therefore
3600 messages/minute load corresponds to a single active user
in the system.

In our measurement setup, we made sure that none of the
active or passive users, nor the emulator be the bottleneck, but
only the ejabberd server after certain load. For this reason, we
used multiple machines for generating active and passive loads
and GTFS events.

D. Results

We established basic estimates on how much load a not
too new commodity hardware equipment can handle. Fig. 4
shows results for both SMP on and off states.

Along the x axes we show the time offset, when the active
measurement message was sent to the XMPP server. The time
offset is synchronized to the start of the corresponding burst of
the GTFS emulator. Because of the three times playback speed
of the emulator, bursts are started with a 20 sec inter-arrival
time. If the time offset plus the experienced delay went over
20 sec, then the server could not cope with the offered load.

We used memory databases in the ejabberd server and did
not store any pubsub messages persistently. The plots show
95% confidence intervals measured over 55 bursts. Fig. 4a
shows, that our server, without multiprocessing, could carry
over 100,000 messages per minute. With enabling multipro-
cessing on our dual core hardware, the server was able to
cope with even a doubled load (see Fig. 4b). However, the
higher load regions resulted in higher variance in the measured
delay. It must also be noted that above 200,000 messages per
seconds, the system becomes unstable, as the delays overlap
across bursts.

This means – assuming that a single passive (subscriber
but not publisher) user is interested in no more than 10 trips
at any time, and that live updates are limited by the service
logic to a maximum of one update per trip per minute – that
one can launch an XMPP-based static plus live transit feed
service with a commodity dual-core 2.6GHz PC with 2Gbyte
RAM for 20,000 simultaneously on-line passive users.

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20

R
T
T
 [

s
e
c
]

O set from start of burst [sec]

3600 messages/minute
39600 messages/minute
75600 messages/minute

111600 messages/minute

(a) SMP OFF

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20

D
e
la

y
 [

s
e
c
]

O set from start of burst [sec]

3600 messages/minute
39600 messages/minute
75600 messages/minute

111600 messages/minute
147600 messages/minute
183600 messages/minute
219600 messages/minute
255600 messages/minute

(b) SMP ON

Fig. 4. RTT Measurements with 95% Confidence Interval

V. SUMMARY

We investigated, how an incremental real-time transit feed
service based on crowdsensing could be realized over com-
modity of the shell hardware PCs (COTS-PCs), standard
protocols (XMPP), open source servers (ejabberd) and publicly
available de-facto standard GTFS databases. We measured a
single server setup to estimate baseline performance figures.
We developed and used a GTFS emulator to estimate the
load of the day zero service. In order to load the system,
we attached subscribers to the transit feed service. We used
active publishers (like participatory users) to measure the delay
characteristic of the server. We have shown that a dual-core
AMD Opteron 2.6 GHz PC with 2 Gbyte RAM can serve at
best 200,000 transit feed messages per minute which can be
mapped to about 20,000 on-line users.

Our future plan is to measure the performance of our
system in case of using a cluster of XMPP servers.

ACKNOWLEDGMENT

The publication was supported by the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project. The project has been sup-
ported by the European Union, co-financed by the European
Social Fund. This work has been partially supported by the
KIC ICTLabs under the activity 13064 CityCrowdSource of
the action line Digital Cities. Károly Farkas has been partially
supported by the Hungarian Academy of Sciences through the
Bolyai János Research Fellowship.

REFERENCES

[1] Google Inc., “General Transit Feed Specification Reference.” [Online].
Available: https://developers.google.com/transit/gtfs/reference/

[2] R. Ganti, F. Ye, and H. Lei, “Mobile Crowdsensing: Current State and
Future Challenges,” IEEE Communications Magazine, pp. 32–39, Nov.
2011.

[3] R. L. Szabo and K. Farkas, “Publish/Subscribe Communication for
Crowd-sourcing Based Smart City Applications,” in Proceedings of the

2nd International Conference of Informatics and Management Sciences

(ICTIC 2013), K. Matiasko, A. Lieskovsky, and M. Mokrys, Eds., Mar.
2013, pp. 314–319.

[4] ——, “A Publish-Subscribe Scheme Based Open Architecture for
Crowd-sourcing,” in Lecture Notes in Computer Science 8115: Pro-

ceedings of 19th EUNICE Workshop on Advances in Communication

Networking (EUNICE 2013). Springer, Aug. 2013, pp. 287–291.

[5] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” RFC 6120 (Proposed Standard), Internet Engineering Task Force,
Mar. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6120.txt

[6] P. Zhou, Y. Zheng, and M. Li, “How Long to Wait?: Predicting
Bus Arrival Time with Mobile Phone based Participatory Sensing,” in
Proceedings of the Tenth International Conference on Mobile Systems,

Applications, and Services (MobiSys 2012), Jun. 2012.

[7] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
Transit Tracking Using Smart-phones,” in Proceedings of the 8th ACM

Conference on Embedded Networked Sensor Systems (SenSys 2010),
Nov. 2010, pp. 85–98.

[8] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson, “EasyTracker:
Automatic Transit Tracking, Mapping, and Arrival Time Prediction
Using Smartphones,” in Proceedings of the 9th ACM Conference on

Embedded Networked Sensor Systems (SenSys 2011), Nov. 2011, pp.
1–14.

[9] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (XML) 1.0 (fifth edition),” W3C, W3C
Recommendation REC-xml-20081126, Nov. 2008. [Online]. Available:
http://www.w3.org/TR/2008/REC-xml-20081126/

[10] P. Saint-Andre, “XEP-0045: multi-user chat,” XMPP Standards
Foundation, Standards Track XEP-0045, Feb. 2012. [Online]. Available:
http://xmpp.org/extensions/xep-0045.html

[11] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
subscribe,” XMPP Standards Foundation, Draft Standard XEP-0060,
Jul. 2010. [Online]. Available: http://xmpp.org/extensions/xep-0060.
html

[12] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003.

[13] Google Inc., “Google Talk for Developers: Open Communications,”
Mar. 2013, last updated May 15, 2013. [Online]. Available:
https://developers.google.com/talk/open communications/

[14] Facebook Inc., “Facebook Chat API,” 2013. [Online]. Available:
http://developers.facebook.com/docs/chat/

[15] aSmack Contributors, “aSmack API.” [Online]. Available: https:
//github.com/Flowdalic/asmack/

[16] ejabberd Community, “ejabberd – Distributed Fault-tolerant
Jabber/XMPP Server in Erlang,” Aug. 2013. [Online]. Available:
http://www.ejabberd.im/

