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abstract
In this paper, we simulate the operation of a spading machine on three soil types; easy to work, medium to 
work and heavy, using a previously validated SimuLink model of an MSS-1.40M spading machine. We deter-
mine the forces during spading. We explore the physical and mechanical properties of the soil that play a 
role in the spading process. By simulation of the spading process with the MSS-1.40M spading machine, we 
determine the torque on the drive shaft and the required mechanical work on the three soil types.
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1. introduction 
The physical and mechanical properties of the 

soil influence the energy consumption and the 
energy required by the tillage machine, at the 
same time the work of the tillage machine chang-
es depending on the physical and mechanical 
properties of the tilled soil.

During tillage the soil is rotated, loosened, 
crushed, mixed, compacted and surface-formed. 
The tillage work can be classified into basic work 
and seedbed preparation. 

Basic tillage work is a rotation operation, the 
deepest soil work. This process is most energy in-
tensive. 

The basic tillage work in greenhouses is carried 
out with the spading machine [1], [2]. The spad-
ing machine mimics the work of the spade; turns, 
shreds, loosens and mixes the soil.

The spading machine is an active tillage ma-
chine. Its implements are spades, which, in addi-
tion to towing, are also driven by the tractor's PTO 
shaft. Because of this, it has a high specific energy 
requirement yet less traction requirement. The 

area performance of PTO-driven tillage machines 
is not advantageous, but they produce better re-
sults in fuel consumption and soil shredding [3].

Determining the energy demand of soil tillage at 
the frontier of energy and agricultural sciences is 
always timely [4], [5]. 

Soil is a complex, open dynamic system that re-
sults from the interaction of soil-forming factors 
and tillage. The soil affects the machines, but the 
machines also affect the soil [6].  this paper we 
examine the energy required of spading on dif-
ferent soil types. The energy required for digging 
is determined by simulation for three soil types.

A simulation is a study in which the process is 
studied using a computer model. Scientific mod-
elling is playing an increasingly important role in 
the study of the tillage process and in the scientif-
ic approach to the tillage process [7].

2. Work and method
For our study we use a real spading machine 

model, the MSS-1,40M, and a previously validated 
SimuLink simulation [8]. 

ttps://doi.org/10.33895/mtk-2022.16.09
https://doi.org/10.33894/mtk-2022.16.09


Pásztor J., Tolvaly-Roșca F., Forgó Z. – Műszaki Tudományos Közlemények 16. (2022)48

We explore the physical, mechanical properties 
of the soil that play a role in the spading process. 
Based on the literature [8], we determine their 
values for soils that are easy to cultivate, moder-
ately cultivable and difficult to cultivate [8].

Following that, we simulate the spading process 
on the three soil types.

The values of the moments and the required me-
chanical work during the spading process on the 
studied soils are determined.

2.1. the mSS-1,40m spading machine model
The assembly model was built using Autodesk 

Inventor software based on the actual dimen-
sions of the MSS-1.40M spading machine [8].

The simplified assembly model (figure 1) shows 
the spades, the arms of the spades, the frame of 
the machine, the parts of the drive shaft, and the 
two sliders involved in adjusting the working 
depth.

The trajectory of the tip of the digging edge can 
be determined by motion simulation (figure 2). 

The trajectory provides an opportunity to illus-
trate the movement of the spade in the soil and to 
study the work of the spade.

The four stages of the spading work (figure 2) 
[9]:

 – the spade penetrates the soil and cuts the soil 
chip, A-B;
 – the spade separates the soil chip from the soil, 

B-C;
 – the spade raises the soil chip, C-D;
 – the spade moves to a new position while the 

raised soil strikes the cover plate, D-A.
With the trajectory, the forces manifested on the 

spade can be identified (figure 3) [8]:
 – on part A-B, bit force: Fb;
 – in section B-C shear force: Fs;
 – on section C-D inertia force: Fi.

The following formulas were used to calculate 
the acting forces [8], [10]:

Fb = 2k1 A1 [sin β/2 + μ cos β/2]+2μk2 A2  [N], (1)

Fs = s l τ = s l (c + σ tan φ)  [N],  (2)

Fi = V ρ as  [N],  (3),

where: 
A1  is the active surface of the spade edges [m2]; 
A2  is the surface of one of the sides of the spade, 

in contact with the soil [m2]; 
β  is the lip angle of the spade [°]; 
μ  is the friction between the soil and the 

spade; 
φ   is the internal friction angle of the soil [°]; 

k1, k2  are the specific resistance to soil defor-
mation [N/m2]; 

c   is the cohesion of soil [N/m2]; 
σ  is the surface pressure [N/m2]; 
τ   shear tension [N/m2]; 
s   is the spading step [m]; 
l    is the working length of the spading edge [m]; 
V  is the volume of the lifted soil chip [m3]; 
ρ  is the soil volumetric weight [kg/m3]; 
as  is the displaced soil acceleration [m/s2].

figure 1. MSS-1,40M spading machine assembly mo-
del.

figure 2. The trajectory of the apex of a spade edge.

figure 3. The forces on the spade.



Pásztor J., Tolvaly-Roșca F., Forgó Z. . – Műszaki Tudományos Közlemények 16. (2022) 49

2.2. physical and mechanical soil character-
istics influencing spading 

The physical and mechanical characteristics of 
the soil, which play a role in the spading process, 
can be identified from equations (1÷3):

Fb = f (μ, φ, k1(φ), k2 (φ))  (4)

Fs = f (φ,c,σ,τ),   (5)

Fi = f (ρ). (6)

The dynamics of spading are affected by: 
μ the coefficient of friction between soil and 

steel; 
φ the internal friction angle of the soil; 
k1, k2  the specific resistance to soil deformation; 
c  the cohesion;
σ  the surface pressure; 
τ  the shear strength; 
ρ  the soil volumetric weight.

The physical and mechanical characteristics of 
the soil depends on the type of soil. The soil types 
we examined:

 – easy to work, sandy loam;
 – medium machinable, loam;
 – clay loam, that is more difficult to machine.

The values of the physical and mechanical char-
acteristics used in the literature to characterize 
soil types can be found in table 1. [11].

Note: The easy-to-use, measurable soil charac-
teristic is ρ, the soil volumetric weight.  The soil 
volumetric weight is the mass of soil in its natu-
ral structural state per unit volume. Unit: kg/dm3,  
kg/m3, t/m3. We accept this as the main feature.

No different data were found in the literature 
for the value of surface pressure σ for soil types. 

2.3. Simulation of the required mechanical 
work for spading

The required mechanical work for spading was 
determined using the Simulink simulation. A Mat-
lab ® Simscape ™ model of a spade is shown in 
figure 4. [8].

The simulation was performed for the following 
parameters: 

vm = 0,35m/s advancing speed; 
ω = 17,7 rpm drive shaft spindle speed; 
s = 0,124 m spading step; 
a = 0,3 m maximum working depth, using soil 

characteristics corresponding to the three soil 
types (table 1).

The spading torque requirements for the three 
soil types were determined. The torque evolution 
is shown in figure 5.  

The spading of loamy clay, the difficult to work 
soil, has a higher torque requirement.

The simulation was used to determine the val-
ues of the mechanical work to be spaded on the 
six spades during one revolution of the drive 
shaft. The data are shown in table 2.

The data in the table are shown in figure 6.  

table 1. Values of soil characteristics used in the 
simulation

Soil type μ
φ 
[°]

k1 
[N/m2]

k2 
[N/m2]

c 
[N/m2]

σ 
[N/m2]

ρ 
[kg/m3]

Sandy 
loam 0,54 29 11,14∙105 23943,31 800 20000 1300

Loam 0,61 32 10,96∙105 24362,71 1000 20000 1500

Clay 
loam 0,64 38 10,57∙105 25353,17 1500 20000 1600

figure 4. A Matlab ® Simscape ™ model of a spade.
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The required mechanical work varies during 
the spading of different soil types (figure 6).  The 
spading of loamy clay soils is more energy inten-
sive.

The correlation coefficient value R2 = 0.9833 in 
the graph shows a very strong correlation be-
tween the soil volumetric weight and the energy 
requirement for spading.

The equation of the regression line shown in 
figure 6 makes possible to determine the energy 
requirement for spading with the MSS-1.40M as a 
function of soil volumetric weight:

L = 0,12 ρ − 8,92  [J/rev].  (7)

3. conclusions
The built model describes a working trajectory 

identical with the others found in the literature, 
so it can be considered suitable for numerical 
studies.

The required spading energy, determined using 
our previous SimuLink model, can be used in the 
development of cultivation technology and the 
further calculations of technological cost. 

We would also like to apply the presented meth-
od to a physical and mechanical soil characteris-
tic that can be determined in the open field. Thus, 
the energy requirement for the cultivability of a 
given soil could be estimated on the basis of open 
field soil characteristic measurements.
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