
A bio-motivated vision system and artificial neural network
for autonomous UAV obstacle avoidance

Máté Pethő
Department of Physiology

and Neurobiology
Eötvös Loránd University

Budapest, Hungary
mate.petho@ttk.elte.hu

Ádám Nagy
Faculty of Information

Technology and Bionics
Pázmány Péter Catholic University

Budapest, Hungary
nagy.adam@itk.ppke.hu

Tamás Zsedrovits
Faculty of Information

Technology and Bionics
Pázmány Péter Catholic University

Budapest, Hungary
zsedrovits.tamas@itk.ppke.hu

Abstract—Unmanned aerial vehicles (UAVs) becoming more and more
common. They show excellent potential for multiple types of autonomous
work, although they must achieve these tasks safely. For flight-safety,
it must be assured that the UAV will avoid collision with any objects
in its flight path during autonomous operations. Computer vision and
artificial neural networks have shown to be effective in many applications.
However, biological vision systems and the brain areas responsible for
visual processing may hold solutions capable of acquiring information
effectively. We are proposing a novel system, which performs visual cue
extraction with algorithms based on the structure and functionality of
the retina and the visual cortex of the mammalian visual system, and
a convolutional neural network processing data to detect a predefined
obstacle using the onboard camera of the UAV. We also examined the
effect of preprocessing on calculation time and recognition effectiveness.

Index Terms—UAV, bio-motivated, convolutional neural networks,
computer vision, obstacle avoidance

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are becoming more and more
common, and they show excellent potential in many fields, such as
aerial imaging, inspection tasks, and other remote sensing applica-
tions [1]. The market of UAVs might grow to US$ 51.86 billion
by 2025 from US$ 11.45 billion in 2016, which shows their great
economic potential as well [2]. Autonomous UAVs could achieve
self-sufficient task completion, but to do so, they would need precise
and fast obstacle-avoidance algorithms, so they could operate without
endangering themselves or their surroundings.

Many previous works implemented biologically motivated solu-
tions for various problems considering tasks for UAVs [3], [4]. An
excellent example of that is the work of Nitin et. al. They used the
strategy of bees to move a small UAV through a previously unknown
gap on a wall using its camera and on-board processing capabilities.
The UAV moved in a ”zig-zag” fashion in front of the gap. Data
was acquired by optical flow processing, and a deep-learning-based
algorithm achieved gap detection. After these processes, the UAV
was able to maneuver through the gap with high velocity [3].

The mammalian vision system is one of the most precise sensor-
system, which makes animals capable of navigating during complex
tasks in various environments (for example, hunting or fleeing from

This research has been partially supported by the European Union, co-
financed by the European Social Fund through the grant EFOP-3.6.3-VEKOP-
16-2017-00002. This work has received funding from Pázmány Péter Catholic
University KAP RD and equipment grants (KAP18-51005-1.1-ITK, KAP18-
53019-3.6-ITK, and KAP18-53019-3.6-ITK). This research has been partially
funded by the Hungarian National Research, Development and Innovation
Office Postdoctoral Researcher funding PD 128699. This reseatch was par-
tially supported by the ÚNKP-20-3 New National Excellence Program of
the Ministry for Innovation and Technology from the source of the National
Research, Development and Innovation Fund.

a predator). The first stop of visual processing is the retina, which is
a multi-layered sensor system.

The retina is capable of converting photons into action potential
coded information, which is the method of information flow through-
out the nervous system. From the photoreceptors, rods are susceptible
to luminance, while the three different cone types (L-, M-, S-cones)
are receptive to red, green, and blue wavelengths of the incoming
light, respectively [5]. The retinal ganglion cells operate with con-
centric receptive fields with varying sizes. The receptive fields can
be divided into ON and OFF regions; the interplay of these regions
extract visual cues for further processing [5]. Information flows in
parallel pathways from the retina towards the brain on the optic nerve,
containing information from contrast [6], movement direction , edge
information [7], and others. Thus, information reaching the primary
visual cortex (V1) already contains multiple types of information. In
the primary visual cortex, detailed edge-information is acquired from
the field of vision by the cortical columns [8]. Further processing
(color processing, motion- and depth perception, cognitive mapping)
is achieved in the higher-order visual cortices (V2, V3, V4, and
others) [9].

Artificial neural networks are suited for classification problems,
such as obstacle recognition in the flight path. Complex networks
can process multiple information modalities, thus increasing the
probability of giving the right answer for a problem. To that end,
we can increase the number of hidden layers slightly, but the best
solution is to build a hierarchical network. These modular artificial
neural networks have strongly separated architectures. Each network
will compute its domain [10]. Applications of deep convolutional
networks in computer vision are becoming more and more prevalent
[11]. Convolutional networks are powerful tools for classification and
recognition problems, as they can be taught by fewer images than a
conventional neural network. A good example of that is the U-net
by Ronneberger et al. This network was created to solve biomedical
segmentation applications [12] efficiently, we used it as a base for
our network.

In this paper, a biologically-motivated vision system is proposed,
which mimicks the processes of the retina and visual cortex of
mammals to acquire visual cues (contrast and edge information)
and also contains a neural network based on U-Net [12] to process
the created data. Examination of the effect of image preprocessing
on the learning effectiveness of the neural network was performed
subsequently. Tests were also conducted to examine the proposed
system’s applicability for real-time processing and autonomous flight
operation with various data sets, modalities, and scaling factors.

II. PROPOSED SYSTEM

To achieve obstacle recognition and avoidance, three main tasks
must be performed: 1) visual cue extraction, 2) obstacle recognition
after learning, and 3) navigation based on the recognition. To model
the processes of biological systems in the feature extraction, algo-
rithms were implemented modeling the functions and structure of the
retina and primary visual cortex. To achieve learning and autonomous
obstacle detection, a data set was created and annotated marking a
pre-defined obstacle, which was used to train a neural network.

A. Bio-motivated image preprocessing

Existing computer vision algorithms, as well as biological visual
systems, extract visual cues such as contrast, edge, and movement
information. In the proposed implementation, two main feature types
(contrast and edge information) were extracted using algorithms
modeling the processes in the retina and the primary visual cortex
of mammals (example outputs are in Fig. 1). The images were also
down-scaled to filter it and enhance processing speed.

Contrast can provide information about more significant differ-
ences in the input image. The basis of our contrast detecting algorithm
is a two-dimensional Gaussian function:

Φ(x, y) =
1

2πσ2
e
−(1

2πσ2
(x2+y2)) (1)

where σdenotes the width of the bell-shaped surface and is the only
free variable.

The difference of Gaussians (DoG) function models the signal
processing of retinal ganglion cells [13]. Retinal ganglion cells have
a central and surrounding receptive field. The interaction of these
two regions provides information on contrast, movement, and other
features, even before the information reaches higher-level processing
brain regions (such as the primary visual cortex) [5]. As in the retina,
multiple color channel comparison were performed to gain the con-
trast information, such as red-green and yellow-blue discrimination,
using the following equations:

RGinput =
R+G√

2

Y Binput =
R+G− 2B√

6

(2)

where R is red, G is green, B is blue color channels of the input
picture.

Blue color channel and grayscale information were also processed
using the DoG function, as in the case of blue midget cells and
the rod pathway in the retina [5]. The process of calculating the
intensity based on the input of the three cones was performed by
averaging all three color channels. To imitate the process, the created
DoG function was convolved on the preprocessed images (channel
selection, discrimination).

Edge information is also an essential visual cue in the case of
obstacle detection. To acquire this modality, Gabor functions were
used as follows:

gc(x, y) := cosωxx+ ωyye
− x2+y2

2σ2

gs(x, y) := sinωxx+ ωyye
− x2+y2

2σ2

(3)

where σrepresents the width of the receptive field, and it was set
to be 5, 7, 9, 14, or 20, respectively, to represent the size-dependent
sensitivity of ganglion cells in the primary visual cortex. ωx/ωy gives
the preferred orientation of the receptive field, which was chosen
to be {−45, 0, 45, 90} thus covering the principal directions. Gabor
function was implemented on the output of the three-cone intensity

Fig. 1: Examples of the output images after processing: the six
different contrast images [from up to down and left to right: rod image
processing (grayscale image), amacrine image processing (grayscale
image), blue cone image processing (blue color channel-based),
red-green discrimination (red and green channel-based), yellow-blue
discrimination (red, green and blue channel-based) and all cone
discrimination (mean of all color channels)] and two examples from
the 20 separate images containing edge-information.

process, which used the average of all the color channels convolved
with the DoG kernel. The resulting output resembles the information
gained in the primary visual cortex, where cortical columns gather
information from edges with a different direction separately [8]. An
example of the various preprocessed images is shown in Fig. 1.

As a result of the previously described processes, the system can
generate a maximum of 26 outputs (6 containing contrast information,
20 containing edge-information). From these modalities, multiple
variations were used for training to see the effect of preprocessing on
obstacle detection. The main tests were conducted using 12 modalities
from which 6 contained contrast information, while 6 contained edge
information as a preliminary test showed this to be the best setup.

The images were also downscaled as it may enhance the detection
of more abundant features, and it may also greatly decrease the
calculation time as the original calculation time would make real-time
processing practically impossible. This process also shows similarities
to the mammalian visual system, where information is channeled
toward the brain on a decreasing number of parallel channels, while
this number dramatically increases after reaching the central nervous
system, which can be crudely modeled by the neural network.

B. Obstacle recognition using neural network

The next goal was to teach the UAV to avoid a predefined obstacle
autonomously (display panel, an example in Fig. 3). The effect on the
learning efficiency and calculation speed of multiple preprocessing
methods were examined, such as the previously presented biologically
motivated visual processing algorithms and downscaling.

A previously proposed network structure called U-net [12] was
used the basis of the neural network. This convolutional neural net-
work was created to solve segmentation tasks on biomedical images.
U-net contains a contracting (down-sampling) and an expansive part.
In the contracting part, 3x3 convolutions are applied, ending in the
rectified linear unit (ReLU). It is finished in a 2x2 max pooling
operation. The expanding part contains feature map upsampling
followed by 2x2 convolution and two 3x3 convolutions. It ends in a
final convolution to get the desired output shape. All levels from the

Fig. 2: The structure of the network built to train with pre-processed images. In the case of training without pre-processing the 3 dimensions
of the input is 3. Network structure is based on U-net [12]. The dimensions of the layers are denoted on the figure. Blue columns denote
the convolution between layers (with its dimension), while red arrows show the concatenation between layers.

Fig. 3: Example of an image annotated using LabelMe. Display
panels were marked separately.

down-sampling part are cropped and concatenated to its equivalent
on the expanding part. The detailed layer structure is shown in Fig.
2.

The neural network was built using Tensorflow [14]. New raw data
was created and annotated for training and testing purposes. To this
end, on-flight videos were captured using a Tello Edu UAV [15]. The
recordings were created at two separate sessions. Thus luminance is
slightly different in the test area. These videos were later segmented
into frames. LabelMe [16] was used to annotate the display panels
on the images (Fig. 3). As the strength of U-net lies in the fact that it
needs fewer images than other convolutional networks, we annotated
a moderate number of images (1534).

To examine the effect of the data set itself on the training, 4
separate training and test sets were created from the 1534 images,
from which one training set was constructed using images from only
one recording (training set 1/test set 1), two was established randomly
from all the annotated images (training set 2/test set 2, training set
3/test set 3), while one training set was constructed manually to make
it as diverse as possible using all the available images (training set
4/test set 4). All training set contained 800 images. The remaining
of the 1534 images were used as a test set.

The network was trained using various setups: 1) 3000 iterations
with unscaled, preprocessed data, 2) 3000 iterations with unscaled,
original data, 3) 3000 iterations with 10x downscaled, preprocessed
data, 4) 5000 iterations with 10x downscaled, preprocessed data, 5)
10000 iterations with 10x downscaled, preprocessed data, 6) 3000
iterations with 10x downscaled, original data. From these, setup 3-6
were tested extensively, as downscaling was deemed necessary for
real-time application. The learning rate was set to be 0.001.

Fig. 4: Examples for the prediction made by the trained neural
networks in the case of original unscaled images. Both had smaller
efficiency than the downscaled version, pre-processing enhanced its
efficiency.

Fig. 5: Example for path search during flight. Green dot denotes
pathway, which is considered free.

C. Navigation based on the neural network model output

To demonstrate the feasibility of the different obstacle detection
variants tests were conducted using a very simple situation. Hence, for
the navigation greedy algorithm was used with a simplified version
of visual servoing to control the drone. This strategy is not suitable
in most real world applications, just served as a basic test case.

As a result of the prediction of the U-net, a map is created where
the class of all pixels is calculated. In these segmented frames, pixels
that belong to the obstacle are given as logical 1, and pixels belong
to the free path are given as logical 0. The task is to find the way
through the free path.

First of all the centroids and area of the patches representing the
free path are calculated. A greedy algorithm was used to select the
way to follow based on the patch area. It means that the one which
is chosen to be followed is always the one with the biggest area. As
an example, Fig. 5 shows the output of the prediction and centroids

of the two patches. The one with the green dot had the larger area,
so that was followed by the aircraft.

The desired behaviour of the system was to move the centroid
of this patch to the middle of the image. A constant velocity in
the forward direction was applied that is a constant pitch was set.
The altitude and yaw angle was also kept constant. The controlled
variable was the roll angle of the quadrotor, based on the distance
of the centroid from the middle pixel, in the x axis of the image. It
means that the quadcopter is flying with a constant velocity forward
and it moves left or right based on the location of the centroid in the
given frame.

III. TESTING DATA

After multiple models were trained using the four separate training
sets, they were tested using the test sets. The network was generally
capable of learning to recognize the display panels. To evaluate
the models, the number of false positive and negative pixels were
calculated first. From these metrics, the false positive and negative
percentages were determined to provide the rate of error. Precision
and recall were also calculated, which show the fraction of relevant
instances among the retrieved instances and the fraction of the total
amount of relevant instances that were retrieved, respectively. The
precision is calculated as follows:

P =
Tp

Tp + Fp
(4)

where Tp is the number of true positive pixels, and Fp is the number
of false positive pixels. The recall is calculated as follows:

R =
Tp

Tp + Fn
(5)

where Fn is the number of false negative pixels.
Another important factor is processing time which was also mea-

sured. The measurements were run on a laptop PC consist of an
Intel© Core™ i5-8300H processor, an NVIDIA© GeForce GTX 1050
Ti 4GB, 32GB DDR4 @2666MHz, and 256GB SSD.

The measured statistical values for the whole test set are presented
in the form of M±SD, where M is the mean value and SD is the
standard deviation.

A. Trained model performance without downscaling

In the case of the models trained without downscaling, we only
created two models for preprocessing and without preprocessing.
Without downscaling, calculation time would be too long to use the
system for real-time obstacle recognition. In the case of preprocess-
ing, 3.98±2.96% of the pixels were false positive, while 1.20±0.61%
of the pixels were false negative. Precision was 69.30±29.54%, and
recall was 94.11±5.70%. In the case of training without preprocess-
ing, 9.40±9.33% of the pixels were false positive, while 3.27±2.70%
of the pixels were false negative. Precision was 50.15±33.65%, and
the recall was 82.03±13.98% (Tab. I).

B. Trained model performance with downscaling

Most models were created using 10x downscaling. Tab. I summa-
rizes the mean precision and recall values from each test. Fig. 7 and
8 show the percentage of false positive and negative pixels and the
precision and recall of the trained models.

Our results show that preprocessing and downscaling both in-
creased efficiency. When images were used without further prepro-
cessing (model 1), an average of 2.22±1.20% false positive and
0.35±0.12% of false negative pixels were achieved on the test set.
Average precision was 85.08±7.26%, while recall was 98.10±0.35%

Fig. 6: Examples for the prediction made by the trained neural
networks in the case of downscaled images. The first two row shows
examples for a model trained after pre-processing the images, while
the lower two rows shows examples for a model trained without
further preprocessing.

between all data sets. Also, the output prediction contains less noise,
at is can be seen in Fig. 6.

The training with 3000 iterations on preprocessed images (model
2) resulted in an average of 2.19±0.72% false positive and an
average of 0.74±0.49% false negative pixels through all test sets.
The average precision was 82.72±6.35%, while the average recall
was 95.81±3.22%. The training with 5000 iterations on preprocessed
images (model 3) resulted in 1.71±0.40% false positive pixels and
0.70±0.55% false negative pixels. Average precision, in this case,
was 88.00±4.86%, while recall was 96.09±4.85%. Finally, in case of
the training on preprocessed images with 10000 iterations (model 4),
tests produced 1.62±0.79% false positive pixels and 0.61±0.47% false
negative pixels. Average precision was 87.60±4.41%, while recall was
96.70±2.78% in this case.

The best models were acquired using training set 4 during training,
in which case the training set was constructed manually. In this
case, model 1 resulted in an average of 1.07±0.05% false positive
and 0.19±0.09% false positive pixels. The average precision was
87.95±7.57%, while the average recall was 98.43±0.53%. Model 2
resulted in 1.62±0.60% false positive and 0.30±0.11% false negative
pixels based on testing. The average precision was 87.69±7.56%, and
the average recall was 97.53±0.48% in this case. In the case of model
3, 1.32±0.23% of the pixels were false positive, and 0.20±0.08%
percent of the pixels were false negative. Precision was 94.05±1.16%,
and the recall was 98.84±0.17%. In the case of model 4 1.30±0.26%
of the pixels were false positive, 0.13±0.05% of the pixels were false
negative. The average precision was 89.47±6.53%, while the average
recall was 98.84±0.17%.

Our overall best model was created from one of the random training
sets, with downscaling, preprocessing, and 10000 iterations during
training. In the case of the model, 0.75±1.18% of the pixels were
false positive, while 0.77±2.24% of the pixels were false negative
on the test images. Precision was 97.66±5.02%, and recall was
97.18±9.74%.

However, it must be considered that, in some cases, the solution of
the model was better than the provided one. For example, in the case
of some images, papers were pinned on the display panels. While
the model could solve that, it is not part of the display panel, for

training set 1 training set 2 training set 3 training set 4

model 1
precision 80.31± 10.39% 78.12± 7.68% 93.95± 1.82% 87.95± 7.57%
recall 97.61± 1.78% 98.15± 0.58% 98.22± 0.73% 98.43± 0.53%

model 2
precision 81.05± 5.63% 74.44± 6.39% 87.69± 12.78% 87.70± 7.56%
recall 90.99± 3.22% 97.21± 0.79% 97.52± 0.75% 97.53± 0.48%

model 3
precision 86.02± 3.44% 82.65± 10.15% 89.30± 3.54% 94.05± 1.16%
recall 91.52± 2.58% 96.95± 0.75% 97.85± 0.65% 98.06± 0.69%

model 4
precision 82.39± 1.11% 85.95± 5.20% 92.56± 4.32% 89.47± 6.53%
recall 92.62± 2.85% 97.67± 0.52% 97.70± 0.45% 98.83± 0.17%

TABLE I: Summary of the precision and recall values for the individual tests on the scaled images. Model 1 depicts the model resulting
from the training with downscaled images without further preprocessing (3000 iterations), while method 2-4 depict the model resulting from
the training sessions with preprocessing (3000, 5000 and 10000 iterations, respectively) on each test sets. Training set 1 was constructed
using images from only one recording, the training set 2 and 3 were established randomly from all the annotated images, while training set
4 was constructed manually to make it as diverse as possible using all the available images.

Fig. 7: Scatter plot of the false positive and negative pixel percent-
ages. The X-axis denotes the false positive percentage, while the
y-axis denotes the false negative percentage. Test sets are denoted by
color code, and test types are denoted by shape.

Fig. 8: Scatter plot of precision and recall. The X-axis denotes the
precision, while the y-axis denotes the recall. Test sets are denoted
by color code, and test types are denoted by shape.

convenience, it was part of the obstacle class annotated in LabelMe
(Fig. 3). Although these index-numbers are significant to determine
efficiency before experimental testing, based on these data, the best
models could be tested during autonomous flight.

C. Calculation time of the processes

Calculation time was also determined for the different processes to
examine the possibility of real-time application. Two intervals were
calculated: 1) calculation time of the preprocessing, 2) calculation
time of the neural network.

In the case of the images without downscaling, calculation times
were too large for real-time application, as preprocessing took
3523.1±28.3 ms, while the calculation time of the neural network
was 306.1±7.9 ms, resulting in an average of 3831.1±20.4 ms run
time for one iteration. With downscaling, this could be decreased
significantly.

With the downscaled images preprocessing occurred in an average
of 65.7±5.9 ms, while the calculation time of the neural network
was 7.7±0.2 ms. The mean total calculation time is 73.5±5.9 ms,

Fig. 9: Test track consisting of three display panels. The UAV had
to avoid the front one, then pass through the two remaining panels.

which means that the system is capable of operating at 13.62 Hz
even with preprocessing executed. Without preprocessing, execution
time before the neural networks shows a mean calculation time of
36.7±2.6 ms. This results in a mean total calculation time of 44.5±2.9
ms, which means that the system is capable of operating at 22.47 Hz.
Thus, although preprocessing prolongs calculation time, it is still in
an interval which is sufficient for real-time application.

D. Experimental results

Finally, tests were conducted to examine the applicability of the
proposed system. To that end, a test track was created consisting
of three display panels. Some of the best networks were chosen to
provide input for a Tello UAV to navigate through the track. Fig.
9 shows the test track and the desired pathway of the UAV. To
communicate with the Tello drone the tello driver node [17] was
used in ROS Melodic Morenia [18] on a laptop PC consists of an
Intel© Core™ i7-8750HQ, an NVIDIA™ GeForce© GTX 1050 Ti 4
GB GDDR5, 8GB DDR4 @2666MHz, and 256GB SSD running
Ubuntu 18.04. The video stream was processed on the laptop and
the commands were sent back to the drone based on the calculated
centroid of the free pathway, as it is described in Sec. II-C.

Four downscaled models were tested (from which one was trained
using only the image as input, while three was trained after further
preprocessing). All models contained enough information so that the
UAV could pass through the track during testing.

IV. DISCUSSION

The tests from the different models shows that 1) the consistency of
the training set largely ameliorate efficiency, 2) downscaling in itself
enhanced effectiveness in case of recognition problems, where large
structure have to be classified, and similar structure are present in
the background (wooden wall), 3) the other proposed preprocessing

methods may also enhance effectiveness, but the effect is smaller in
the case of downscaling than in the case of original image size.

As we could see (Fig. 4), the non-scaled model – although it can
identify the panels – has a much larger percent of false positive
pixels, which in turn decreases precision by a large margin. The
recall was still good, as false negative pixels were still few. In
this case, preprocessing was necessary, as a model trained with
preprocessed images resulted in much better recognition. Non-pre
processed images could not distinguish between the display panel
and similar structures, and it resulted in the lowest precision as well
as recall from all the models (50% and 82%, respectively).

Downscaling increased precision significantly, and as calculation
time made a real-time application possible in only the case of
downscaled models, we examined those further. As was anticipated,
the effectiveness of the trained model depended highly on the com-
position of the training image set. Having images from two different
days (training set 2, and training set 3) with different illumination
improved efficiency in itself. If, instead of randomly assigned images,
the training set was manually constructed (training set 4), the overall
efficiency of all trained models become even better. Although, the
best overall model originated from a randomized training set.

The proposed preprocessing methods were intended to increase
the number of modalities for the neural network. In the case of the
original image size, their effect was more prominent. In the case of
the downscaled images, the effect of preprocessing was less prevalent.
Although, as calculation time was sufficient even with preprocessing,
it is worthwhile to use those methods as well. Increasing the iteration
time through training also improved efficiency. Although, 10000
iterations not always improved efficiency even further, which suggests
that around that iteration number overfitting may appear.

Based on the results, to achieve the fastest calculation time
possible, it is better to use the original image as input after only
downscaling. Although, as we could see, calculation time with
preprocessing is around 73.5 ms, which makes it possible to have a
data processing speed of 13.62 Hz. Based on the experimental results,
it is sufficient to navigate the UAV autonomously, using moderate
flight speed. Limitations would appear only if the flight speed would
be increased, but a more sophisticated navigation system may counter
those limitations.

Although the system was capable of navigating through the test
track, its limitations must be considered as well. The moderate num-
ber of test images makes it more susceptible to current conditions.
Changes in illumination may influence effectiveness, although a more
significant number of images or augmentation of gain may counter
this problem. Also, this relatively small number of images would
make it hard for the system to operate in an environment, which is
very different from the one where the videos were recorded. Although
display panels could be identified in such an environment, more false
positive obstacles could appear.

Future work may include increasing the number of images in the
training and test sets obstacle types, in which case preprocessing may
become more critical as small features may have to be recognized.
Also, navigation can be improved as well, to have a more sophisti-
cated response system for the processed images.

V. CONCLUSION

In this study, a system was created which is capable of recognizing
and avoiding a predefined obstacle. The study shows the effect of
preprocessing (feature extraction and downscaling) of the images
using biologically motivated approaches on the learning capability.
An annotated dataset was created, which can be used for autonomous

obstacle recognition and avoidance training in the future. Based on
our results, the created models shows good efficiency in recognizing
obstacles, as the best model achieved a precision of 97.66±5.02%
and a recall of 97.18±9.74%. This data further shows the potential in
biologically motivated algorithms. Further classification in the dataset
may lead to more complex task completions in the future (recognition
of walls, ceiling, and other objects).

REFERENCES

[1] K. Máthé and L. Buşoniu, “Vision and Control for UAVs: A Survey
of General Methods and of Inexpensive Platforms for Infrastructure
Inspection,” Sensors, vol. 15, no. 7, pp. 14 887–14 916, 6 2015.

[2] The Insight Partners, “Unmanned Aerial Vehicle (UAV) Market to 2025 -
Global Analysis and Forecasts by Component by Type and Application,”
Tech. Rep., 2018.

[3] N. J. Sanket, C. D. Singh, K. Ganguly, C. Fermuller, and Y. Aloimonos,
“GapFlyt: Active Vision Based Minimalist Structure-Less Gap Detection
For Quadrotor Flight,” IEEE Robotics and Automation Letters, vol. 3,
no. 4, pp. 2799–2806, 10 2018.

[4] J. R. Stowers, “Biologically Inspired Visual Control of Flying Robots,”
Ph.D. dissertation, University of Canterbury, 2012.

[5] H. Wässle, “Parallel processing in the mammalian retina,” Nature
Reviews Neuroscience, vol. 5, no. 10, pp. 747–757, 10 2004.

[6] C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal
ganglion cells of the cat.” The Journal of physiology, vol. 187, no. 3,
pp. 517–52, 12 1966.

[7] T. A. Münch, R. A. da Silveira, S. Siegert, T. J. Viney, G. B. Awatramani,
and B. Roska, “Approach sensitivity in the retina processed by a
multifunctional neural circuit,” Nature Neuroscience, vol. 12, no. 10,
pp. 1308–1316, 10 2009.

[8] T. S. Lee, D. Mumford, R. Romero, and V. A. Lamme, “The role of the
primary visual cortex in higher level vision,” Vision Research, vol. 38,
no. 15-16, pp. 2429–2454, 8 1998.

[9] K. Grill-Spector and R. Malach, “The human visual cortex,” Annual
Review of Neuroscience, vol. 27, no. 1, pp. 649–677, 7 2004.

[10] E. J. W. Boers, H. Kuiper, B. L. M. Happel, and I. G. Sprinkhuizen-
Kuyper, “Biological Metaphors In Designing Modular Artificial Neural
Networks,” in ICANN ’93. Springer London, 1993, pp. 780–780.

[11] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep Learning for Computer Vision: A Brief Review,” Computational
Intelligence and Neuroscience, vol. 2018, pp. 1–13, 2018.

[12] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” 5 2015, pp. 234–241.

[13] R. A. Young, “The Gaussian derivative model for spatial vision: I.
Retinal mechanisms,” Spatial Vision, vol. 2, no. 4, pp. 273–293, 1987.

[14] M. Abadi, “TensorFlow: learning functions at scale,” in Proceedings
of the 21st ACM SIGPLAN International Conference on Functional
Programming - ICFP 2016. ACM Press, 2016, pp. 1–1.

[15] “Tello Official Website-Shenzhen Ryze Technology Co.,Ltd.” [Online].
Available: https://www.ryzerobotics.com/tello-edu

[16] K. Wada, “GitHub - wkentaro/labelme: Image Polygonal Annotation
with Python (polygon, rectangle, circle, line, point and image-level flag
annotation).”

[17] “tello driver - ROS Wiki.” [Online]. Available: https://wiki.ros.org/
tello driver

[18] “melodic - ROS Wiki.” [Online]. Available: http://wiki.ros.org/melodic

