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Abstract. We consider the following augmentation problem: Given a rigid graph G = (V,E),3
find a minimum cardinality edge set F such that the graph G′ = (V,E ∪ F ) is globally rigid. We4
provide a min-max theorem and a polynomial-time algorithm for this problem for several types of5
rigidity, such as rigidity in the plane or on the cylinder. Rigidity is often characterized by some6
sparsity properties of the underlying graph and global rigidity is characterized by redundant rigidity7
(where the graph remains rigid after deleting an arbitrary edge) and 2- or 3-vertex-connectivity.8
Hence, to solve the above-mentioned problem, we define and solve polynomially a combinatorial9
optimization problem family based on these sparsity and connectivity properties. This family also10
includes the problem of augmenting a k-tree-connected graph to a highly k-tree-connected and 2-11
connected graph. Moreover, as an interesting consequence, we give an optimal solution to the12
so-called global rigidity pinning problem, where we aim to find a minimum cardinality vertex set X13
for a rigid graph G = (V,E), such that the graph G + KX is globally rigid in R2 where KX denotes14
the complete graph on the vertex set X.15
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1. Introduction. In this paper we consider a graph augmentation problem that18

fits to a branch of connectivity augmentations where edge-connectivity and vertex-19

connectivity should be augmented simultaneously [8, 17]. For example, our result20

provides a polynomial algorithm for the following problem: Given a k-tree con-21

nected graph G = (V,E) (that is, G contains k edge disjoint spanning trees), find22

a minimum set of edges F such that the graph G′ = (V,E ∪ F ) is highly k-tree-23

connected (that is, G′ − e still contains k edge disjoint spanning trees for each24

e ∈ E ∪ F ) and 2-connected. Nonetheless, the problem gains much of its importance25

due to its connection to Rigidity Theory, that we introduce now.26

A d-dimensional (bar-joint) framework is a pair (G, p), where G = (V,E) is27

a graph and p : V → Rd is a map of the vertices to some given subset of the d-28

dimensional Euclidean space. We call (G, p) a realization of G. Two realizations of29

G, say (G, p) and (G, q) are equivalent if ||p(u) − p(v)|| = ||q(u) − q(v)|| for every30

uv ∈ E. Two realizations are congruent, if ||p(u) − p(v)|| = ||q(u) − q(v)|| holds for31

every vertex pair u, v ∈ V , or in other words, when (G, p) is isometric to (G, q). We say32

that the framework (G, p) is globally rigid in Rd, if each of its equivalent realizations33

is also congruent, that is, the edge lengths of the framework uniquely determine its34

realization up to the isometries of Rd. The framework (G, p) is rigid when the above35

condition only holds for realizations q : V → Rd for which ||p(v)− q(v)|| < ε for some36

ε > 0. This concept of global rigidity plays an important role in rigidity theory and37

network localization problems [4, 5, 20].38

For example, given some sensors in the plane with known distances between some39
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2 CS. KIRÁLY ANDRÁS MIHÁLYKÓ

of them, one may consider the following question. At least how many sensor-locations40

do we need to measure exactly to be able to reconstruct the exact location of each sen-41

sor? This is the so-called global rigidity pinning (or anchoring) problem. Sometimes42

measuring the exact sensor-locations is too expensive or even impossible. Instead, one43

may ask at least how many new distances need to be measured so that the distances44

uniquely determine the positions of the sensors (up to isometry). This problem is45

called the global rigidity augmentation problem. (We note that reconstructing the46

position of the sensors is a challenging task, even if they are uniquely determined by47

the framework, see [2, 25, 34]. In this paper we do not address this problem.)48

Determining whether a given bar-joint framework is rigid (or globally rigid, re-49

spectively) is NP-hard even in the plane (or on the line, respectively) [1, 33]. The50

analysis gets more tractable, if we consider generic frameworks where the set of51

coordinates of the points is algebraically independent over the rationals [3, 15]. We52

call a graph G rigid (or globally rigid, respectively) in Rd if each (or equivalently,53

some) of its generic realizations in Rd is rigid (or globally rigid, respectively). The54

characterization of rigid and globally rigid graphs is known for d = 1, 2 [19, 28, 32]55

and is a major open problem of rigidity theory for d ≥ 3.56

There are some other types of frameworks for which both rigidity and global rigid-57

ity are characterized as a property of their underlying graphs (with some genericity58

assumptions), for example for body-bar frameworks [6, 36, 38], for body-hinge and59

body-bar-hinge frameworks [18, 24, 37, 39, 41], and for bar-joint frameworks which60

are restricted to lie (and move) on some given surface in R3 such as a sphere [7, 40]61

or a cylinder [21, 31].62

In this paper, we consider the following meta-problem related to the above-63

mentioned versions of rigidity and global rigidity.64

Problem 1. Given a graph G = (V,E), find an edge set F of minimum cardi-65

nality on the same vertex set, such that G + F = (V,E ∪ F ) is ‘globally rigid’.66

As we noted in the beginning, to solve the problem for ‘rigid’ inputs, we give67

a common combinatorial generalization of this problem for all the above-mentioned68

types of rigidity in Section 2. The common point is that (k, `)-sparse graphs are used69

for the characterization of rigidity, while redundant rigidity (where G−e remains rigid70

after the deletion of an arbitrary edge) and 2- or 3-vertex-connectivity is usually used71

for the characterization of global rigidity. The problem of augmenting rigid graphs to72

redundantly rigid was considered in [14, 27], while vertex-connectivity augmentation73

problems have a quite extensive literature (see [9, 16, 22] for related results and [13]74

for a survey) of which we only need some basic ones due to the special conditions of75

our problem.76

2. Preliminaries. In this section we collect the basic definitions and results77

that we shall use, including the formal definition of the combinatorial problem family78

solved in this paper, and its connection to the problem presented in the introduction.79

For a detailed introduction to combinatorial rigidity theory, the reader is referred to80

[23]. Although our goal is to solve a graph augmentation problem, we will need to use81

hypergraphs (see Section 3) hence some definitions will be for hypergraphs instead of82

graphs.83

Given a hypergraph H = (V, E), let dH(v) denote the number of hyperedges that84

contain v ∈ V and let dH(X,Y ) denote the number of hyperedges that are induced85

by X ∪ Y but not induced by neither X nor Y for X,Y ⊆ V . The neighbor set of86

X ⊂ V is NH(X):= {v ∈ V −X : ∃x ∈ X and e ∈ E such that v, x ∈ e}.87
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GLOBALLY RIGID AUGMENTATION OF RIGID GRAPHS 3

For two integers k and ` for which 0 < k and ` < 2k hold, a hypergraphH = (V, E)88

is called (k, `)-sparse if iH(X) ≤ k|X|−` holds for all X ⊆ V with k|X|−` ≥ 0, where89

iH(X) denotes the number of edges induced by X in H. A hypergraph H = (V, E)90

is called (k, `)-tight if it is sparse and |E| = k|V | − `. Due to its usage in rigidity91

theory, which we present in Section 2.1, we call a hypergraph (k, `)-rigid if it contains92

a spanning (k, `)-tight subhypergraph and has no loop (that is, no hyperedge which93

is a singleton) if k < `. (For example, the (1, 1)-sparse graphs are the forests, the94

(1, 1)-tight graphs are the trees, and the (1, 1)-rigid graphs are the connected graphs.)95

(k, `)-tight hypergraphs have some well known properties. For example, any96

subhypergraph of a (k, `)-sparse hypergraph is always (k, `)-sparse and any (k, `)-97

tight subhypergraph of a (k, `)-sparse hypergraph is an induced subhypergraph. If98

H1 = (V1, E1) and H2 = (V2, E2) both are tight subhypergraphs of a (k, `)-sparse99

hypergraph H, then H1 ∩ H2 = (V1 ∩ V2, E1 ∩ E2) is an induced subhypergraph of H100

(by the submodularity of iH).101

The hyperedge sets of the (k, `)-tight subhypergraphs of a hypergraph H corre-102

spond to the independent sets of the so-called (k, `)-sparsity matroid (or count103

matroid) of H (see [12, Section 13.5], [30] and [42, Appendix A]). (This matroid104

family generalizes the graphic matroid as the graphic matroid on the edge set of a105

graph G is isomorphic to the (1, 1)-sparsity matroid of G.) The spanning (k, `)-tight106

subhypergraphs form a basis of this matroid, while a hypergraph which forms a cir-107

cuit in this matroid is called a (k, `)-M-circuit. In particular, if H is (k, `)-tight108

and e = ij is a new (graph) edge, then G + e has a unique (k, `)-M-circuit, denoted109

by CH(ij) or CH(e). This circuit contains e. (V (CH(e)), E(CH(e))− e) forms a (k, `)-110

tight subhypergraph of H, that we call TH(e) or TH(ij). (Note that this definition111

may also be extended to the case where we add a new hyperedge to a (k, `)-tight112

hypergraph, however, in this paper we only consider additional graph edges.) For the113

sake of convenience, we do not distinguish a hypergraph from its edge set, that is,114

TH(e) = E(CH(e)) − e. When the hypergraph H is clear from the context, we shall115

omit the subscript H from TH(e). The next lemma is folklore and follows easily from116

basic matroid properties.117

Lemma 2.1. Let H = (V, E) be a (k, `)-tight graph and let e = ij be an edge for118

some i, j ∈ V . If H′ is a (k, `)-tight subhypergraph of H with {i, j} ⊆ V (H′), then119

TH(ij) is a subhypergraph of H′. Thus TH(ij) is equal to the intersection of all tight120

subhypergraphs Th of H with {i, j} ⊆ V (Th).121

A hyperedge e of a rigid hypergraph H is called (k, `)-redundant if H − e is122

(k, `)-rigid. A hypergraph is (k, `)-redundant if all of its hyperedges are redundant.123

(For example, the (1, 1)-redundant graphs are the 2-edge-connected graphs.)124

There are some differences in the properties of (k, `)-rigid hypergraphs depending125

on the relation of k and `, as the following two results show. To simplify the pre-126

sentation of our results, let ck,`:= max
{⌈

`
k

⌉
, 0
}

, that is, ck,` is zero if ` ≤ 0, one if127

0 < ` ≤ k, and two if k < ` < 2k. With standard submodular techniques one can128

prove the following (see [23, 27]).129

Lemma 2.2. Let H = (V, E) be a (k, `)-sparse hypergraph on at least three vertices,130

and let H1 = (V1, E1) and H2 = (V2, E2) be (k, `)-tight subhypergraphs of H. If131

|V1 ∩ V2| ≥ ck,`, then H1 ∪H2 is a (k, `)-tight subhypergraph of H.132

A graph G = (V,E) is called k-connected if |V | > k and G −X is connected133

for any vertex set X ⊂ V of cardinality at most k − 1. For the sake of convenience,134

a graph which is not necessarily connected will be called 0-connected in this paper.135
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4 CS. KIRÁLY ANDRÁS MIHÁLYKÓ

Connectivity has several connections to rigidity. An often used folklore result is the136

following.137

Proposition 2.3. If G = (V,E) is a (k, `)-rigid graph for which |V | ≥ 3, then G138

is ck,`-connected.139

Based on Proposition 2.3, one may ask the following problem as an extension of140

the problem which was considered in [27] (see Section 2.2 for more details on this141

problem).142

Problem 2. Given a (k, `)-rigid graph G = (V,E) with |V | > 3, find a graph143

H = (V, F ) with a minimum cardinality edge set F , such that G ∪H = (V,E ∪ F ) is144

(k, `)-redundant and (ck,` + 1)-connected.145

In this paper, we give a min-max theorem and a polynomial algorithm for Problem146

2 for all integer pairs of (k, `) where max(0, `) ≤ k and also for 0 < k < ` ≤ 3
2k with147

the extra assumption that the input is a simple graph (that is, it contains no parallel148

edges and no loops). In all cases, the output edge set F can be provided in such a149

way that F ∩E = ∅ if such an augmentation is possible (that is, if the complete graph150

on V is (k, `)-redundant).151

2.1. Connection to rigidity theory. In this subsection we show how Problem152

2 is connected to the problems from rigidity theory presented in Problem 1. We start153

with the characterization of rigidity and global rigidity of graphs in R2 and on the unit154

sphere S2 ⊂ R3 given by Pollaczeck-Geiringer [32], Laman [28], Jackson and Jordán155

[19], Whiteley [40], and Connelly and Whiteley [7].156

Theorem 2.4 ([28, 32, 40]). The following three statements are equivalent for a157

graph G. (i) G is rigid in R2, (ii) G is rigid on S2 ⊂ R3, (iii) G is (2, 3)-rigid.158

Note that parallel edges give no extra condition to a bar-joint framework hence159

in the characterization of global rigidity we may assume that G is simple.160

Theorem 2.5 ([7, 19]). The following three statements are equivalent for a sim-161

ple graph G on at least three vertices. (i) G is globally rigid in R2, (ii) G is globally162

rigid on S2 ⊂ R3, (iii) G is (2, 3)-redundant and 3-connected.163

Theorems 2.4 and 2.5 imply that the solution of Problem 2 – with the extra164

condition that both the input and the output graph should be simple – solves the165

global rigidity augmentation problem in R2 and on S2 ⊂ R3 on rigid inputs.166

The rigidity and global rigidity of graphs on a cylinder C2 ⊂ R3 has been char-167

acterized by Nixon, Owen and Power [31] and Jackson and Nixon [21]. In this case168

the characterization uses simple (2, 2)-rigid (and (2, 2)-redundant) graphs. Note that169

without the simplicity condition a (2, 2)-tight graph may have parallel edges (which170

is meaningless from a rigidity point of view).171

Theorem 2.6 ([31]). A simple graph is rigid on the cylinder C ⊂ R3 if and only172

if it is (2, 2)-rigid.173

Theorem 2.7 ([21]). A simple graph is globally rigid on the cylinder C ⊂ R3 if174

and only if it is (2, 2)-redundant and 2-connected.175

Theorems 2.6 and 2.7 imply that the solution of Problem 2 – with the extra176

condition that we may only use non-graph edges for the augmentation – solves the177

global rigidity augmentation problem on the cylinder C ⊂ R3 on rigid inputs.178

Finally we note that the generic rigidity (and generic global rigidity, respec-179

tively) of body-bar and body-hinge frameworks in Rd have been characterized by180
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(
(
d+1
2

)
,
(
d+1
2

)
)-rigidity (and (

(
d+1
2

)
,
(
d+1
2

)
)-redundancy, respectively) of a correspond-181

ing graph in [18, 24, 37, 39, 41]. Hence in these cases the global rigidity augmentation182

problem can be solved optimally in polynomial time by the results of [27] that we183

summarize in the following section.184

2.2. Augmentation to a (k, `)-redundant hypergraph. Let us now inves-185

tigate the problem of augmenting a (k, `)-tight hypergraph H = (V, E) to a (k, `)-186

redundant hypergraph by a minimum number of graph edges. This problem was187

considered and solved previously in [27]. In this subsection we list some notions and188

results from [27] that we shall use in this paper.189

If we add the edges e1, . . . , ek toH, we make some hyperedges ofH redundant. Let190

us denote the set of these hyperedges by RH(e1, . . . , ek). Note that RH(e1) = TH(e1).191

The following statement generalizes this simple fact.192

Lemma 2.8 ([27]). Let H = (V, E) be a tight hypergraph. Then RH(e1, . . . , ek) =193

TH(e1) ∪ · · · ∪ TH(ek) for arbitrary edges e1, . . . , ek.194

Given a tight hypergraph H = (V, E), a set C ( V is called (k, `)-co-tight195

if V − C induces a tight subhypergraph. This is equivalent to the following: C is196

(k, `)-co-tight in H if k|V − C| ≥ ` and |ÊH(C)| = k|C| where ÊH(C) denotes197

the set of hyperedges of H for which at least one of its vertices is in C. Notice,198

that |ÊH(X)| = iH(X) + dH(X,V − X) and |E| = |ÊH(X)| + iH(V − X) holds for199

every X ⊆ V . Hence |ÊH(X)| ≥ k|X| for every X ( V where |X| ≤ |V | − ck,` by200

|E| = k|V | − ` and the sparsity of H − X. By Lemma 2.1, the following property201

follows easily:202

Proposition 2.9 ([27]). Let C be a (k, `)-co-tight set of a (k, `)-tight hypergraph203

H. If {u, v} ∩ C = ∅, then T (uv) ∩ ÊH(C) = ∅.204

Let us abbreviate the name of minimal (k, `)-co-tight sets by (k, `)-MCT sets205

and let C∗H denote the family of all (k, `)-MCT sets of H. We shall use the following206

results.207

Lemma 2.10 ([27]). Let C1 and C2 be two intersecting (k, `)-MCT sets of a208

(k, `)-tight hypergraph H = (V, E). Then |C1 ∪ C2| ≥ |V | − 1, moreover C1 ∪ C2 = V209

if k ≥ `.210

Lemma 2.11 ([27]). Let H be a (k, `)-tight hypergraph. The members of C∗H are211

pairwise disjoint or there are two vertices v, w ∈ V such that {v, w} ∩ C 6= ∅ for all212

C ∈ C∗H.213

Lemma 2.12 ([27, Lemma 5.4]). Let H = (V, E) be a (k, `)-tight hypergraph and214

let P ⊂ V be a set which intersects each member of C∗H. Suppose that H′ = (V ′, E ′)215

is a (k, `)-tight subhypergraph of H such that P ⊂ V ′. Then H′ = H.216

Lemmas 2.11 and 2.12 imply that if there are at least two intersecting (k, `)-MCT217

sets, then there exists an edge e such that TH(e) = H. If we consider the other case,218

then the (k, `)-MCT sets are disjoint. This motivates us to investigate the disjoint219

(k, `)-MCT sets. The following lemma slightly extends the statement of [27, Lemma220

5.6].221

Lemma 2.13. Let H = (V, E) be a (k, `)-tight hypergraph and let C,K be two222

disjoint (k, `)-MCT sets of H. If k|V − (C ∪K)| ≥ `, then ÊH(C) ∩ ÊH(K) = ∅.223

Proof. By counting the hyperedges induced by V − (C ∪K), we get that

iH(V − (C ∪K)) ≤ k|V − (C ∪K)| − ` = k|V | − |ÊH(C)| − |ÊH(K)| − `
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6 CS. KIRÁLY ANDRÁS MIHÁLYKÓ

where the first inequality comes from the sparsity of H and the property k|V − (C ∪224

K)| ≥ `, while the equalities hold because C and K are disjoint (k, `)-MCT sets.225

Counting the same hyperedges with their complements implies

iH(V − (C ∪K)) = |E| − |ÊH(C) ∪ ÊH(K)| ≥ k|V | − `− |ÊH(C)| − |ÊH(K)|.

Thus equality must hold throughout. This is only possible if ÊH(C) ∩ ÊH(K) = ∅.226

Lemma 2.14 ([27, Lemma 5.7]). Let H = (V, E) be a (k, `)-tight hypergraph on227

at least 4 vertices. Let A be a (k, `)-MCT set, u ∈ A and v ∈ V − (A∪NH(A)). Then228

A ∪NH(A) ⊂ V (TH(uv)).229

Theorem 2.15 ([27]). Let H = (V, E) be a (k, `)-tight hypergraph on at least230

k2 + 3 vertices. If there exists any (k, `)-co-tight set in H, then231

min{|F | : H = (V, F ) is a graph for which H ∪H is (k, `)-redundant}232

= max

{⌈
|C|
2

⌉
: C is a family of disjoint (k, `)-co-tight sets

}
.233

Otherwise, H+ uv is (k, `)-redundant for every pair u, v ∈ V .234

2.3. Connectivity augmentation. By Proposition 2.3, every (k, `)-tight graph235

G is ck,`-connected and thus we augment a ck,`-connected graph to a (ck,` + 1)-236

connected graph where ck,` is 0, 1 or 2. There exist several methods to deal with237

these particular problems, even linear time algorithms [9, 16]. However, we also need238

to augment G to a (k, `)-redundant graph hence we follow simpler ideas from [9, 22].239

Let G = (V,E) be a c-connected graph. Let us call a set X ⊂ V of cardinality c a240

min-cut of G, if G−X is not connected. For a min-cut X of G, let bcX(G) denote the241

number of components of G−X. Let bc(G) denote the maximum value of bcX(G) over242

all min-cuts X of G if there exist any, and let bc(G) := 1 otherwise. Clearly, any edge243

set F that augments G to a (c+1)-connected graph needs to induce a connected graph244

on the components of G−X for every min-cut X. Thus |F | ≥ bc(G)−1. A set P ( V245

is called a (c+ 1)-fragment of a c-connected graph G which is not (c+ 1)-connected246

if NG(P ) is a min-cut of G and P induces a connected subgraph of G. Let us denote247

the maximum number of pairwise disjoint (c+ 1)-fragments by tc(G). Increasing the248

connectivity of a c-connected graph G which is not (c + 1)-connected is equivalent249

to increasing the number of neighbors of each (c + 1)-fragment of G. Hence, for any250

edge set F that augments G to a (c+ 1)-connected graph, |V (F )| ≥ tc(G) must hold.251

These with Proposition 2.3 imply the following statement.252

Lemma 2.16. Given a (k, `)-rigid graph G. The minimum number of edges that253

augment G to a (ck,` + 1)-connected graph is at least max
{
bck,`(G)− 1,

⌈
tck,` (G)

2

⌉}
.254

Let us call an inclusion-wise minimal (c + 1)-fragment a (c + 1)-end. As every255

(c + 1)-fragment contains at least one (c + 1)-end, tc(G) is equal to the number of256

pairwise disjoint (c + 1)-ends. It is easy to see that, for c = 1, the (c + 1)-ends are257

pairwise disjoint. As we will see in the following lemma, this statement is also true258

for c = 2, even though in this case the structure is slightly more difficult as there259

are two types of min-cuts. A min-cut {u, v} of a 2- but not 3-connected connected260

graph G is called a weak min-cut if it separates another min-cut {u′, v′} of G, that261

is, u′ and v′ are in different connected components of G − {u, v}. Note that in this262

case the min-cut {u′, v′} is also weak and b2G({u, v}) = b2G({u′, v′}) = 2. If a min-cut263

is not weak then it is called a strong min-cut. (For example, in a cycle of length264
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four, the two neighbors of a vertex form a weak min-cut as the complement of this265

two element set form also a min-cut. On the other hand, if we add a diagonal to the266

cycle, the resulting graph has only one min-cut, the two endpoints of of the diagonal267

edge.) When (k, `) = (2, 3), the structure of G is much simpler by the following result268

of Jackson and Jordán [19].269

Lemma 2.17 ([19]). Let G be a (2, 3)-rigid graph. Then G contains no weak270

min-cuts.271

Lemma 2.17 immediately implies the following statement when (k, `) = (2, 3).272

However, it holds for general pairs of k and `, too.273

Lemma 2.18. Let G be a ck,`-connected graph. Then the (ck,` + 1)-ends of G are274

pairwise disjoint.275

Proof. If G is (ck,` + 1)-connected, the statement holds obviously. Also, if k ≥ `276

thus ck,` ≤ 1, then the (ck,` + 1)-ends of G are clearly pairwise disjoint.277

Now suppose that k < ` hence ck,` = 2. Let C1 and C2 be two intersecting 3-ends278

and let N(C1) = {u1, v1} and N(C2) = {u2, v2} be the two (weak) min-cuts defining279

C1 and C2. We may suppose that u1 ∈ C2 and u2 ∈ C1. If we consider N(C1 ∩ C2)280

we can conclude that N(C1 ∩ C2) = {u1, u2} that contradicts the minimality of the281

3-ends C1 and C2.282

3. The (k, `)-M-component hypergraph. In our main theorem we shall com-283

bine the results presented in the previous two subsections. However, it was shown in284

[27] that the problem of augmenting a (k, `)-rigid graph to a (k, `)-redundant graph285

with the minimum number of edges is NP-hard. In this section, we show how this is-286

sue can be bypassed by using an auxiliary (k, `)-tight hypergraph which is constructed287

by using an extra property of (c(k,`) + 1)-connected (k, `)-redundant graphs, namely,288

their (k, `)-M-connectivity.289

First, we list some basic definitions concerning the sparsity matroid. We refer to290

[23, 42] for more details. As we have noted before, the edge sets of spanning (k, `)-291

tight subgraphs of a graph G correspond to the bases of the (k, `)-sparsity matroid of292

G. It is well-known, that an equivalence relation can be defined on the ground set S293

of an arbitrary matroidM (by using the circuit axioms of a matroid), as follows. Two294

elements x, y ∈ S are equivalent if there exists a circuit C of M such that x, y ∈ C.295

The equivalence classes of this matroid are called components ofM. The components296

of the 2-dimensional rigidity matroid of G are often called the M-components of G297

(see e.g. in [19]). By extending this notion to other sparsity matroids, we will call298

a component of the (k, `)-sparsity matroid of G a (k, `)-M-component. Note that299

if an edge e of G is not redundant, then {e} is a (k, `)-M-component of G and it is300

called a trivial (k, `)-M-component of G. (See Fig. 1 (later) for an illustration of non-301

trivial (2, 3)-M-components in a (2, 3)-rigid graph.) Let us also show the following302

easy properties of the (k, `)-M-components.303

Observation 1. Let G be a (k, `)-rigid graph and C a (k, `)-M-component of G.304

Then C is an induced subgraph of G.305

Proof. Suppose that i, j ∈ V (C). Then there exists a circuit C ′ ⊆ C for which306

i, j ∈ V (C ′). However, this means that there exists a (k, `)-tight subgraph T ⊂ C ′307

for which i, j ∈ V (T ) and hence TC′(ij) ⊂ C ′ by Lemma 2.2. If ij is an edge of G,308

then TT (ij) + ij is a circuit that intersects C ′, thus the equivalence relation on the309

matroid circuits shows that ij ∈ C.310
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Lemma 3.1. Let G = (V,E) be a (k, `)-rigid graph and let G∗ = (V,E∗) be an311

arbitrary (k, `)-tight spanning subgraph of G. Then every trivial (k, `)-M-component312

is contained in E∗, and, for any non-trivial (k, `)-M-component C of G, iG∗(V (C)) =313

k|V (C)| − `.314

Proof. If C is a trivial (k, `)-M-component of G, then C consists of a single non-315

redundant edge e of G. Thus e must also be an edge of G∗ since G∗ is (k, `)-rigid316

while G− e is not (k, `)-rigid.317

Suppose now that C is non-trivial. Let B = E∗ ∩ C that is iG∗(V (C)) = |B|.318

Now B must be a base of C in the (k, `)-sparsity matroid since otherwise we may319

add edges from C to G∗ by maintaining its sparsity (as the edges in C are only320

contained in (k, `)-circuits of G consisting of the edges of C by the definition of a321

(k, `)-M-component). This shows that |B| = k|V (C)| − `.322

If G has only one (k, `)-M-component, then it is called (k, `)-M-connected.323

Note that each non-trivial (k, `)-M-component is (k, `)-M-connected. It is obvious324

that the (k, `)-M-connectivity of a graph implies that it is (k, `)-redundant (see [19]325

for (k, `) = (2, 3)). The converse implication is not always true. However, for our326

purpose, the following extension of a result from Jackson and Jordán [19] is enough.327

Lemma 3.2. Let k be a positive integer and ` be an integer such that ` ≤ 3
2k and328

let G be a (ck,` + 1)-connected and (k, `)-redundant graph. If k < `, then suppose also329

that G has no two vertices which are connected by more than 2k − ` edges. Then G330

is (k, `)-M-connected.331

Proof. Suppose that G is not (k, `)-M-connected and let H1, . . . ,Hq be its (k, `)-332

M-components. Notice that |Hi| 6= 1 for i = 1, . . . q, because G is (k, `)-redundant. Let333

Xi = V (Hi)−
⋃

j 6=i V (Hj) denote the set of vertices that do not belong to any (k, `)-334

M-component other than Hi. Let Yi = V (Hi)−Xi. Clearly |V | =
q∑

i=1

|Xi|+ |
q⋃

i=1

Yi|335

and
q∑

i=1

|Yi| ≥ 2|
q⋃

i=1

Yi| hence |V | ≤
q∑

i=1

|Xi| + 1
2

q∑
i=1

|Yi|. Moreover, notice that by336

the (ck,` + 1)-connectivity of G |Yi| ≥ ck,` + 1. (More precisely we can only claim337

that |Yi| ≥ ck,` + 1 when |V (Hi)| ≥ ck,` + 1, however, this is obvious if ck,` ≤ 1 and338

follows from our assumption on the the number of parallel edges in G if k < ` and339

thus ck,` = 2.)340

Let us now choose a (k, `)-tight subgraph G∗ = (V,E∗) of G. Let Bi = Hi ∩ E∗341

for i = 1, . . . , q. Note that
q⋃

i=1

Bi = E∗ . Hence, by using the above inequalities and342

Lemma 3.1, we get k|V | − ` = |
q⋃

i=1

Bi| =
q∑

i=1

|Bi| =
q∑

i=1

k|V (Hi)| − ` = k
q∑

i=1

|Xi| +343

k
q∑

i=1

|Yi| − q` = k(
q∑

i=1

|Xi| + 1
2

q∑
i=1

|Yi|) + k
2

q∑
i=1

|Yi| − q` ≥ k|V | + k
2

q∑
i=1

|Yi| − q` ≥344

k|V | + k(ck,`+1)q
2 − q`. If 0 < ` ≤ k, then the previous inequality gives k|V | − ` ≥345

k|V | + q 2
2k − q` > k|V | − `, a contradiction. If k < ` ≤ 3

2k, then it gives k|V | − ` ≥346

k|V |+ q 3
2k − q` > k|V | − `, also a contradiction.347

Notice that, for example, if G is simple, then G has no two vertices which are348

connected by more than 2k − ` edges.349

For a (k, `)-rigid graph G = (V,E), let HG = (V, E) be a hypergraph, called the350

(k, `)-M-component hypergraph of G, such that E consists of the non-redundant351

edges of E and k|V (C)| − ` parallel copies of the hyperedge formed on V (C) for352
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each non-trivial (k, `)-M-component C of G. (For example, the (1, 1)-M-component353

hypergraph of G contains |X|−1 parallel copies of the hyperedge on the vertex set X354

for each 2-connected component X of G.) The (2, 3)-M-component hypergraph was355

defined previously by Fekete and Jordán [11].356

Lemma 3.3. Let G = (V,E) be a (k, `)-rigid graph, let G∗ = (V,E∗) be a spanning357

(k, `)-tight subgraph of G, and let HG be the (k, `)-M-component hypergraph of G.358

Then iHG
(X) ≤ iG∗(X) holds for each X ⊆ V . Furthermore, equality holds exactly359

when X induces either all or none of the edges of each (k, `)-M-component of G.360

Proof. Let E′ denote the set of non-redundant edges of G and H1, . . . ,Ht denote361

the non-trivial (k, `)-M-components of G.362

Note that |G∗ ∩ Hi| = k|V (Hi)| − ` = iHG
(V (Hi)) holds for every i = 1, . . . , t363

by Lemma 3.1. Notice that, for each e ∈ E′, e ∈ E∗ and e ∈ HG must also hold.364

Recall that the (k, `)-M-components partition the edge set of G and the non-trivial365

ones are induced subgraphs by Observation 1. Observe also that, for X ⊆ V and366

i ∈ {1, . . . , t}, either X∩V (Hi) induces no hyperedge inHG or V (Hi) ⊆ X. Hence, we367

have iG∗(X) = iE′(X)+
t∑

i=1

iG∗(X∩V (Hi)) ≥ iE′(X)+
t∑

i=1

iHG
(X∩V (Hi)) = iHG

(X)368

for each X ⊆ V where equality holds exactly when for all i = 1, . . . , t either X∩V (Hi)369

induces no edge in G∗ or V (Hi) ⊆ X.370

Lemma 3.3 has the following corollary.371

Observation 2. If G is a (k, `)-rigid graph, then the (k, `)-M-component hyper-372

graph HG of G is a (k, `)-tight hypergraph. Furthermore, if X induces a (k, `)-tight373

subhypergraph of HG, then G[X] is a (k, `)-rigid subgraph of G.374

The following lemma may be understood as the converse of Lemma 3.1.375

Lemma 3.4. Let H = (V, E) be a (k, `)-tight hypergraph. Suppose, for a hyperedge376

e ∈ E, that e has exactly k|V (e)| − ` parallel copies in E. Let H′ be the hypergraph we377

get by deleting all the k|V (e)|−` parallel copies of e from E and inserting an arbitrary378

(k, `)-tight spanning subgraph on V (e). Then H′ is also (k, `)-tight.379

Proof. As the number of (hyper)edges does not change we only need to show380

the (k, `)-sparsity of H′. For the sake of contradiction suppose that H′ is not (k, `)-381

sparse. Let Y denote the vertex set of a circuit in H′. By the (k, `)-sparsity of382

H, |V (e) ∩ Y | ≥ 2. Hence Lemma 2.2 may be used on the (k, `)-tight subgraph of383

H′ induced by V (e) and on Y minus one edge which is not induced by V (e). This384

shows that V (e)∪Y induces a (k, `)-rigid subgraph in H′ that is not (k, `)-tight which385

contradicts iH(V (e) ∪ Y ) = iH′(V (e) ∪ Y ).386

The key observation which will imply that the global rigidity augmentation prob-387

lem is polynomially solvable for all rigid inputs (contrary to the case if we want to388

augment G to a (k, `)-redundant graph, see in [27]) is the following.389

Lemma 3.5. Let G = (V,E) be a (k, `)-rigid graph, let HG = (V, E) be the (k, `)-390

M-component hypergraph of G, and let F be an edge set on V .391

(i) If G + F is (k, `)-M-connected, then HG + F is (k, `)-redundant.392

(ii) If HG + F is (k, `)-redundant, then G + F is (k, `)-redundant.393

Proof. (i) As HG is a (k, `)-tight hypergraph by Observation 2, each f ∈ F is394

redundant in HG + F . Let us take now a hyperedge e′ ∈ E . Let e ∈ E be any edge395

from the (k, `)-M-component corresponding to e′. As G+F is (k, `)-M-connected, for396

any f ∈ F , there exists an M -circuit C of G + F such that e, f ∈ C. Let us choose397
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a (k, `)-tight spanning subgraph G∗ = (V,E∗) of G such that C − f ⊂ E∗. Clearly,398

e ∈ TG∗(f). Now iHG
(X) ≤ iG∗(X) for all X ⊆ V (TG∗(f)) holds by Lemma 3.3, which399

results that V (TG∗(f)) ⊆ V (THG
(f)) by Lemma 2.1. This shows that e′ ∈ THG

(f)400

implying that e′ is redundant in HG + F .401

(ii) As G is a (k, `)-rigid graph, each f ∈ F is redundant in G+F . It is also obvious402

that every edge that is contained by a non-trivial (k, `)-M-component is redundant.403

Now let us consider an edge e that is not redundant in G. That is, e ∈ E ∩ E . Now,404

as HG is (k, `)-tight and HG + F is (k, `)-redundant, there is an f ∈ F , such that405

e ∈ THG
(f) thus HG − e + f is (k, `)-tight. Now by using Lemma 3.4 sequentially on406

the non-trivial hyperedges starting with HG − e + f we can get a (k, `)-tight graph407

G∗, as the conditions of Lemma 3.4 are met after every step we made. In every step408

an arbitrary (k, `)-tight subgraph can be inserted, hence we may insert the one from409

G provided by Lemma 3.1. Thus G∗ ⊂ G, G∗ is (k, `)-tight and e 6∈ G∗. This shows410

that e is (k, `)-redundant in G.411

Note that Lemma 3.2 implies that if F is a feasible solution of Problem 2 for a412

(k, `)-rigid graph G (and G + F is simple when k < ` ≤ 3
2k), then G + F is (k, `)-413

M-connected. Now, Lemma 3.5 implies that HG + F is (k, `)-redundant. On the414

other hand, if HG + F is (k, `)-redundant, then G + F is also (k, `)-redundant by415

Lemma 3.5. Hence, to solve Problem 2, it is enough to find a minimal edge set F416

for which G + F is (ck,` + 1)-connected and HG + F is (k, `)-redundant. As HG is417

(k, `)-tight by Observation 2, the results on (k, `)-redundant augmentations can be418

applied this way. (Note that, when we seek for a (k, `)-redundant augmentation of419

a (k, `)-rigid graph, the (k, `)-M-connectivity of G + F is not guaranteed. It was420

shown in [27] that the problem of finding a minimum cardinality edge set that makes421

a (k, `)-rigid (hyper)graph (k, `)-redundant is NP-hard whenever ` > k.)422

4. The min-max theorem. In this section we shall merge the results on the423

problem of augmenting a (k, `)-tight hypergraph to a (k, `)-redundant hypergraph and424

on the (ck,` + 1)-connectivity augmentation problem to a new min-max theorem for425

Problem 2 by mixing the statements of Theorem 2.15 and Lemma 2.16, as follows.426

Theorem 4.1. Let k > 0 and ` be two integers such that ` ≤ 3
2k. Let G = (V,E)427

be a (k, `)-rigid graph on at least k2 + 3 vertices. Suppose also that G is simple if428

k < `. Let HG = (V, E) be the M-component hypergraph of G. If G is (ck,` + 1)-429

connected, (k, `)-tight and there is no (k, `)-co-tight set in HG, then any new edge430

makes G (k, `)-redundant. Otherwise, min{|F | : G+F = (V,E∪F ) is (k, `)-redundant431

and (ck,` + 1)-connected} = max
{
bck,`(G)− 1,max

{⌈
|A|
2

⌉
: A is a family of disjoint432

(k, `)-co-tight sets of HG and (ck,` + 1)-fragments of G
}}

.433

Note that, for a non-tight (k, `)-rigid graph G which is not (k, `)-M-connected,434

HG always has a (k, `)-co-tight set since the vertex set of a hyperedge corresponding435

to a non-trivial M-component is (k, `)-tight and hence the complement of its vertex436

set is (k, `)-co-tight. This statement is also true for (2, 3)-tight graphs as any edge437

of G forms a (2, 3)-tight subgraph of G. Also, if G is already (k, `)-redundant and438

(ck,` +1)-connected (and hence (k, `)-M-connected by Lemma 3.2), then both sides in439

Theorem 4.1 are 0. Nonetheless, if G is (k, `)-tight for (k, `) 6= (2, 3), it can happen440

that G has no (k, `)-co-tight sets (see [27]).441

Our main tool to prove Theorem 4.1 for (k, `)-rigid (and not for only (k, `)-tight)442

inputs is the usage of the M-component hypergraph. If G+F is (k, `)-redundant and443

(ck,`+1)-connected, then Lemma 3.2 can be used to prove that it is (k, `)-M-connected444
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and hence HG +F is (k, `)-redundant (by Lemma 3.5) except when ` > k and G+F445

has more than 2k − ` parallel edges between two vertices. The following statement446

implies that this exceptional case can be avoided.447

Lemma 4.2. Let k > 0 and ` be two integers such that ` ≤ 3
2k, and let G = (V,E)448

be a (k, `)-rigid graph on at least k2 + 3 vertices. Then there exists an edge set F with449

min{|F ′| : G+F ′ = (V,E∪F ′) is (k, `)-redundant and (ck,` + 1)-connected} edges for450

which G + F is (k, `)-redundant, (ck,` + 1)-connected and no edge in F is parallel to451

any edge in G.452

Proof. Let F be a minimum cardinality edge set for which G + F is (k, `)-453

redundant, (ck,` + 1)-connected and F has the minimal number of parallel edges454

with G. Assume that an edge e ∈ F is parallel to some edge e′ of G. As the omission455

of e from F does not affect the (ck,` + 1)-connectivity of G+F , we only need to deal456

with the (k, `)-redundancy of G + F .457

Let G′ = (V,E′) be a (k, `)-tight spanning subgraph of G with e′ ∈ E′. It is easy458

to check that a simple complete graph KV on V is (k, `)-redundant if |V | ≥ k2 + 3.459

Hence, by Lemma 2.8, E′ =
⋃

f∈KV −E′ TG′(f), that is, for each edge ei in E′ (in460

particular, for e′) there exists an edge fei ∈ KV − E′ such that ei ∈ TG′(fei). Thus461

TG′(e) = TG′(e′) ⊆ TG′(fe′) by Lemma 2.1. This combined with the fact that E′ =462 ⋃
f∈F∪(E−E′) TG′(f) by Lemma 2.8 results that E′ =

⋃
f∈(F−e)∪(E−E′−e)∪f ′ TG′(f)463

also holds, that is, F ′ = F − e ∪ f ′ is also a minimal edge set for which G + F ′ is464

(k, `)-redundant, (ck,` + 1)-connected and has less edges parallel to the edges of G465

than F (since, if f ′ would be parallel to an edge e∗ ∈ E − E′ − e, TG′(e) ⊆ TG′(e∗)466

would contradict the minimality of F ), a contradiction. Thus F contains no parallel467

edge to G.468

We start this section by proving Theorem 4.1 for (k, `) = (2, 3), because of its469

importance in rigidity theory. As it is mentioned in Section 2.1 this is the global470

rigidity augmentation problem in R2. Later in this section we sketch how the presented471

method can be generalized to solve the cases where k < ` ≤ 3
2k but (k, `) 6= (2, 3) and472

in the end for ` ≤ k.473

4.1. Proof of Theorem 4.1 for (k, `) = (2, 3). For the sake of simplicity, we474

shall omit the prefix (2, 3) from all the notions in this subsection such as (2, 3)-tight475

graph or set, (2, 3)-co-tight set, (2, 3)-MCT set or (2, 3)-M-component, and use the476

term of rigid and redundantly rigid graph instead of simple (2, 3)-rigid and (2, 3)-477

redundant graph, respectively, to match the terminology of rigidity theory. When we478

are talking about hypergraphs, we keep the notions (2, 3)-rigid and (2, 3)-redundant.479

We may call graphs that are redundantly rigid and 3-connected globally rigid. As480

in this case ck,` = 2 we may omit it from the superscript of b2X(G) and b2(G). When481

a graph is 2-connected but not 3-connected all its min-cuts have cardinality two. A482

min-cut of size two will be called a cut-pair.483

Notice that, if G is 3-connected, then Theorem 4.1 follows directly by Theo-484

rem 2.15 and Lemmas 3.2, 3.5 and 4.2. For a non-3-connected graph G the min ≥ max485

implication in Theorem 4.1 is obvious by Proposition 2.9 and Lemmas 2.16, 3.2, 3.5486

and 4.2. To prove the min ≤ max part, let us consider the family which consists of all487

MCT sets of HG and all 3-ends of G. Let us call the inclusion-wise minimal elements488

of this family the atoms of G. (In Fig. 1, these are the three sets formed by the489

highlighted vertices: the big (blue) disks form an MCT set of HG, the (gray) square490

vertex forms an MCT set of HG which is also a 3-end of G, and the (red) triangle491

vertices form a 3-end of G. At the end of Section 4.1, we present other examples.)492
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Fig. 1: A rigid graph with its M-components (encircled). It has two 3-ends: the one
formed by the (red) triangles and the other one formed by the (gray) square. The
M-component hypergraph has two MCT sets: the one formed by the big (blue) disks
and the other one formed by the (gray) square. Adding an edge between the (gray)
square and one (red) triangle augments the graph to a 3-connected graph. Adding
one edge between the (gray) square and one (blue) disk augments the M-component
hypergraph to a redundantly rigid hypergraph. Hence the addition of these two edges
to the graph results in a globally rigid graph.

Let us denote the family of atoms by A∗. We shall show that the atoms are pairwise493

disjoint and there exists a set of max
{
b(G)− 1,

⌈
|A∗|
2

⌉}
edges that augments G to a494

globally rigid graph. Hence we first need to prove the following.495

Lemma 4.3. Let G = (V,E) be a rigid graph which is not 3-connected. Then the496

atoms of G are pairwise disjoint.497

To prove Lemma 4.3, we need the following three statements.498

Observation 3. Suppose that C is a co-tight set in the tight hypergraph HG =499

(V, E), and C ′ ( C such that dHG
(C ′, C − C ′) = 0. Then C ′ is also co-tight.500

Proof. Recall that dHG
(C ′, C − C ′) = 0 means that no hyperedge of HG has501

vertices in both C ′ and C−C ′. This implies that |Ê(C)| = |Ê(C ′)|+|Ê(C−C ′)|. Recall502

that a set X is co-tight if and only if k|V −X| ≥ ` and Ê(X) = k|X|. Furthermore,503

for any set Y with k|V − Y | ≥ `, Ê(Y ) ≥ k|Y | always holds. Thus if C ′ is not504

(2, 3)-co-tight, then |Ê(C ′)| ≥ 2|C ′| + 1 and hence |Ê(C − C ′)| ≤ 2|C − C ′| − 1, a505

contradiction.506

Lemma 4.4. Let G = (V,E) be a rigid graph which is not 3-connected and let507

a ∈ A ∈ A∗ be a vertex from an atom of G. Then there is no v ∈ V such that a and508

v forms a cut-pair.509

Proof. If A is a 3-end, then the statement follows immediately by Lemmas 2.17510

and 2.18.511

Now let A be an MCT set of HG. Then HG[V −A] is tight and hence Observation512

2 implies that G[V − A] is rigid. Suppose that a, v forms a cut-pair for a ∈ A and513
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v ∈ V .514

Suppose first that |V −A| > 2. Then G[V −A] is 2-connected by Proposition 2.3.515

Thus V − A intersects only one component of G − {a, v}, otherwise v would be a516

cut-vertex in G[V − A]. Now A − a contains at least one component of G − {a, v}517

(which contains a 3-end of G), contradicting the minimality of A.518

Now assume that |V − A| ≤ 2. By the minimality of A, it cannot contain any519

components of G−{a, v}. Thus V −A consists of two vertices from the two component520

of G − {a, v}. However, this contradicts the fact that HG[V − A] is tight, because521

every trivial component of HG is also an edge of G.522

Lemma 4.5. Let G = (V,E) be a rigid graph which is not 3-connected and let523

HG = (V, E) be its M-component hypergraph. Let C and L be two distinct atoms524

of G such that C is an MCT set of HG and L is a 3-end of G. Then there is no525

M-component of G which has a vertex set intersecting both C − L and L.526

Proof. For the sake of a contradiction, suppose that there exists an M-component527

of G with vertex set M such that M ∩ L 6= ∅ and M ∩ (C − L) 6= ∅. By Lemma 4.4,528

|C ∩NG(L)| = 0 thus this M-component cannot be trivial. Conseqently, G[M ] is M-529

connected and hence redundantly rigid and thus 2-connected. Therefore, NG(L) ⊂M .530

|Ê(C−M)| ≤ |Ê(C)|−(2|M |−3) = 2|C|−(2|M |−3) ≤ 2|C|−(2|C∩M |+2|NG(L)|−531

3) < 2|C−M |, where the second inequality comes from |C∩NG(L)| = 0 by Lemma 4.4.532

As |C−M | < |C| ≤ |V |−2, |Ê(C−M)| < 2|C−M | is a contradiction by our previous533

observation that |Ê(X)| ≥ 2|X| holds for each X ⊂ V with |X| ≤ |V | − 2.534

Proof of Lemma 4.3. Let C∗ denote the family of MCT sets of HG and let L∗535

denote the family of 3-ends of G. By Lemma 2.18, the members of L∗ are pairwise536

disjoint.537

Suppose that C ∈ C∗∩A∗ and L ∈ L∗∩A∗. By Lemma 4.5, dHG
(C∩L,C−L) = 0.538

Then, by Observation 3, either C ∩ L = ∅ or C ∩ L is co-tight in HG contradicting539

the minimality of C.540

Suppose now that there exist two distinct intersecting sets C1, C2 ∈ C∗ ∩A∗. By541

Lemma 2.10, |C1 ∪ C2| ≥ |V | − 1 contradicting Lemma 4.4 as G is not 3-connected.542

Now, we turn to prove that there exists a set of max
{
b(G)− 1,

⌈
|A∗|
2

⌉}
edges543

that augments HG to a (2, 3)-redundant hypergraph and G to a 3-connected graph. A544

set X is called a transversal of a family S if |X∩S| = 1 for each S ∈ S and |X| = |S|.545

Let P be a transversal of A∗. As the members of A∗ are pairwise disjoint if G is not546

3-connected by Lemma 4.3, choosing one arbitrary vertex from every A ∈ A∗ obtains547

a transversal. Observe that P is a minimum cardinality vertex set that intersects548

all MCT sets and 3-ends, and consequently all co-tight sets and 3-fragments. Hence549

|A| ≤ |P | holds for an arbitrary family A of disjoint co-tight sets and 3-fragments.550

We shall show now that a connected graph on P augments G to a 3-connected graph551

and HG to a (2, 3)-redundant hypergraph. Later, we will reduce the number of edges552

needed for this augmentation to the optimum value.553

Lemma 4.6. Suppose that G is a rigid graph which is not 3-connected. Let P554

be a transversal of A∗. Then, for any connected graph H = (P, F ) on P , G + F is555

3-connected.556

Proof. G is 2-connected by Proposition 2.3. Also, P contains no member of557

any cut-pair by Lemma 4.4. If there exists a cut-pair in G + F , then in one of its558

components there is no vertex from P , but P intersects all 3-ends and this component559
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is the union of some 3-fragments of G which must contain a 3-end and hence an atom,560

a contradiction to the choice of P .561

To show that HG and a connected graph on P results a (2, 3)-redundant hyper-562

graph, we extend the ideas of the proof of Theorem 2.15 from [27].563

Lemma 4.7. Let G = (V,E) be a rigid graph which is not 3-connected and let564

HG = (V, E) be its M-component hypergraph. Let A,B be two atoms such that A is565

an MCT set of HG. Then A ∩NHG
(B) = ∅.566

Proof. Recall that A and B are disjoint by Lemma 4.3. Since G is not 3-connected,567

|V − (A ∪ B)| ≥ 2 by Lemma 4.4. Thus if both of A and B are MCT sets, then the568

statement follows by Lemma 2.13.569

Suppose that B is a 3-end. By Lemma 4.3 A−B = A hence Lemma 4.5 implies570

A ∩NHG
(B) = ∅.571

Lemma 4.7 and the fact that 3-ends are not connected in G immediately imply572

the following.573

Observation 4. The vertex set P induces no edge in G.574

Recall that RHG
(F ) denotes the set of redundant hyperedges of HG in HG + F .575

The following lemma and its proof is a direct extension of [27, Lemma 5.8].576

Lemma 4.8. Suppose that G is a rigid graph which is not 3-connected and HG is577

its M-component hypergraph. Let A∗ be the set of atoms of G and let P be a transversal578

of A∗. Let F be an edge set of a connected graph on P ′ ⊆ P . Then RHG
(F ) is the579

minimal tight subhypergraph inducing all elements of P ′. In particular, if F is the580

edge set of a star K1,|P |−1 on the vertex set P , then HG + F is (2, 3)-redundant.581

Proof. Recall that RHG
(F ) =

⋃
f∈F THG

(f) by Lemma 2.8. Let us use induction582

on |F |. If F = {ij}, then RHG
(F ) = THG

(ij) which is the minimal tight subhyper-583

graph of HG containing both of i and j by Lemma 2.1.584

Claim 4.9. For each p ∈ P there exists a set Dp such that Dp ⊂ V (THG
(pq))585

with |Dp| ≥ 2 for all q ∈ P − p.586

Proof. Let A,B ∈ A∗ such that p ∈ A and q ∈ B. We claim that Dp := NG(A) is587

a suitable set. By Proposition 2.3, |Dp| ≥ 2. If A is an MCT set of HG, then Lemmas588

4.3 and 4.7 imply that (A ∪ NHG
(A)) ∩ B = ∅. Hence, by the definition of HG and589

Lemma 2.14, A∪NG(A) ⊆ A∪NHG
(A) ⊂ V (THG

(pq)), and thus Dp ⊂ V (THG
(pq)). If590

A is a 3-end, then each q ∈ P−p is an element of V −(A∪NG(A)) by Lemmas 4.3 and591

4.4. Now the tightness of THG
(pq) and the definition of HG imply that G[V (THG

(pq))]592

is rigid and hence 2-connected by Proposition 2.3. Since p and q are from different593

connected components of G−NG(A), Dp = NG(A) ⊂ V (THG
(pq)) follows.594

Let ij ∈ F such that F − ij is connected. By induction, RHG
(F − ij) is a tight595

subhypergraph of HG which induces each element of V (RHG
(F − ij)), in particular,596

we may assume (by possibly switching the role of i and j) that i ∈ V (RHG
(F−ij)). If597

j ∈ V (RHG
(F−ij)) also holds, then THG

(ij) ⊆ RHG
(F−ij) by Lemma 2.1. Hence we598

may assume that j /∈ V (RHG
(F − ij)). The connectivity of F − ij implies that there599

exists an edge ij′ ∈ F − ij. Note that THG
(ij′) ⊆ RHG

(F − ij) by Lemma 2.8. Hence600

Di ⊂ V (THG
(ij′)) ⊆ V (RHG

(F − ij)) and Di ⊂ V (THG
(ij)) by Claim 4.9. Thus we601

may use Lemmas 2.2 and 2.8 to conclude that RHG
(F ) = RHG

(F − ij) ∪ THG
(ij) is602

tight.603

Let now T be the minimal tight subhypergraph of HG which induces all elements604

of P ′. Lemma 2.1 imply that THG
(f) ⊆ T for each f ∈ F . Hence it follows by605
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Lemma 2.8 that RHG
(F ) =

⋃
f∈F THG

(f) ⊆ T , that is, RHG
(F ) = T .606

Finally, if P ′ = P , then P ⊂ V (RHG
(F )) and thusRHG

(F ) = HG by Lemma 2.12607

since P intersects every MCT set.608

Now we show how the cardinality of the augmenting edge set provided by the609

above lemmas can be reduced to the optimum. By a direct extension of [27, Lemma610

5.9] and its proof, we get the following.611

Lemma 4.10. Let G = (V,E) be a not 3-connected rigid graph with M-component612

hypergraph HG. Let A∗ be the set of atoms of G and let P be a transversal of A∗.613

Suppose that x1, x2, x3, y ∈ P are distinct vertices. Let T ∗ = THG
(x1y) ∪ THG

(x2y) ∪614

THG
(x3y). Then T ∗ = THG

(x1y)∪ THG
(x2x3) or T ∗ = THG

(x2y)∪ THG
(x1x3) holds.615

Proof. Let T ∗ = (V ∗, E∗). Let us suppose that T ∗ 6= THG
(x1y) ∪ THG

(x2x3).616

Thus there exists a hyperedge e, for which e ∈ E∗ and e /∈ THG
(x1y) ∪ THG

(x2x3).617

Lemmas 2.8 and 4.8 imply that T ∗ is the minimal tight subhypergraph of G in-618

ducing all of x1, x2, x3 and y. However, they similarly imply that this statement also619

holds for THG
(x1y)∪THG

(x2x3)∪THG
(x3y) and THG

(x1y)∪THG
(x2x3)∪THG

(x1x2),620

that is, these two hypergraphs both are equal to T ∗. Since e ∈ T ∗ and e /∈ THG
(x1y)∪621

THG
(x2x3), we get e ∈ THG

(x3y) and e ∈ THG
(x1x2).622

Now Lemma 2.2 implies that THG
(x3y) ∪ THG

(x1x2) is a tight subhypergraph of623

G (and also of T ∗) inducing all of x1, x2, x3 and y, hence it must be equal to T ∗.624

Observe that the operation in Lemma 4.10 allows us to reduce the cardinality of625

the edge set used for the augmentation by maintaining the property that it augments626

HG to a (2, 3)-redundant hypergraph (and hence G to a redundantly rigid graph by627

Lemma 3.5). However, we also need to maintain the 3-connectivity of G + F to628

complete the proof of Theorem 4.1.629

Proof of Theorem 4.1 for (k, `) = (2, 3). As we have seen at the beginning of this630

section, we only need to prove the min ≤ max part of Theorem 4.1 and only for the631

case where G is not 3-connected. In this case, the atoms of G (denoted by A∗) are632

pairwise disjoint by Lemma 4.3 and a tree on a transversal P of A∗ augments G to633

a globally rigid graph with |A∗| − 1 edges by Lemmas 3.5, 4.6 and 4.8. Note that,634

as A∗ consists of pairwise disjoint MCT sets of the M-component hypergraphHG of635

G and 3-ends of G, the maximum in Theorem 4.1 is at least max
{
b(G)− 1,

⌈
|A∗|
2

⌉}
,636

furthermore, this latter value equals to |A∗| − 1 when |A∗| ≤ 3 completing our proof637

for this case.638

To reduce the number of edges needed for the augmentation, we do the following639

procedure. Let us define a vertex set N ⊆ P . The set N stands for “not fixed”640

vertices while vertices in P − N are the “fixed” vertices. We can fix an edge xy by641

removing x and y from N and adding xy to F .642

We shall keep some properties during the whole procedure:643

1. For an arbitrary star SN on the vertex set N ,HG+F+SN is a (2, 3)-redundant644

hypergraph.645

2. In every 3-end of G + F , there is at least one vertex from N .646

3. max
{
b(G + F )− 1,

⌈
|N |
2

⌉}
+ |F | = max

{
b(G)− 1,

⌈
|P |
2

⌉}
.647

Notice that Properties 1–3 hold for N = P and F = ∅ by Lemmas 4.6 and 4.8.648

Remark 4.11. Properties 2 and 1 ensure that G + F + SN is 3-connected and649

HG + F + SN is (2, 3)-redundant and thus G + F + SN is redundantly rigid by650

Lemma 3.5.651
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Remark 4.12. If |N | ≥ 4, then from any two edges chosen on x1, x2, x3 ∈ N one652

may fix at least one of them (by Lemma 4.10) in such a way that this fixing maintains653

Property 1.654

By Remark 4.12 we always aim to find at least two possibilities to fix such that655

Property 2 is maintained. Also, if it can be done in such a way that max
{
b(G +656

F )− 1,
⌈
|N |
2

⌉}
decreases by one, then we can maintain Properties 1–3. Roughly, we657

distinguish 4 different possibilities in each of which we find 3 vertices from N such658

that we can apply Remark 4.12 and hence we can fix one edge while maintaining659

Properties 1–3.660

Lemma 4.13. Let G be a not 3-connected rigid graph with M-component hyper-661

graph HG. Let A∗ denote the atoms of G. Assume that |A∗| ≥ 4. Let P be a662

transversal on A∗. Let N ⊆ P be a vertex set and F be an edge set on P such that G,663

N and P satisfy Properties 1–3. If |N | ≥ max{4, b(G + F ) + 1}, then we can choose664

x, y ∈ N , such that for N − {x, y} and F + {xy} (that is, for fixing xy) Properties665

1–3 also hold.666

Proof. We use the following method for the proof. Notice, that this can be turned667

into a polynomial time algorithm.668

1 If b(G + F )− 1 ≥
⌈
|N |
2

⌉
, then669

2 If there is only one cut-pair (u, v) such that b(u,v)(G + F ) = b(G + F ), then670

Choose x1, x2 from a component of G+F −{u, v} that contains at least671

two vertices from N . Let x3 ∈ N be a vertex from a component of672

G + F − {u, v} that does not contain x1 and x2.673

3 else674

Let (u1, v1) and (u2, v2) be two cut-pairs for which b(u1,v1)(G + F ) =675

b(G + F ) = b(u2,v2)(G + F ). Choose x1, x2 ∈ N from two different676

components of G + F − {u1, v1} that do not contain {u2, v2}. Choose677

x3 ∈ N from a component of G + F − {u2, v2} that does not contain678

{u1, v1}.679

4 else680

5 If there is a 3-fragment K of G such that |N ∩K| ≥ 2 and |N −K| ≥ 2, then681

Choose x1, x2 from N ∩K and choose x3 from N −K.682

6 else (Notice that if b(G + F ) = 1, then this is the only possible case.)683

Choose x1, x2, x3 ∈ N arbitrarily.684

7 If HG + F + S(N − {x1, x3}) + x1x3 is (2, 3)-redundant, then685

x := x1, y := x3.686

else687

x := x2, y := x3.688

First we prove that the method above is consistent, that is, we can execute each689

of its steps. As |N | ≥ b(G+F ) + 1 and P contains no vertex from a cut-pair of G by690

Lemma 4.4, |N | > b(u,v)(G + F ) for an arbitrary cut-pair {u, v} hence there exists a691

component of G + F − {u, v} that contains at least two vertices from N . This shows692

that we can choose vertices in Step 2 consistently. In Step 3 there are at least two693

components of G + F − {u1, v1} that do not contain {u2, v2} since |N | ≥ 4 and thus694

b(u1,v1)(G + F ) ≥ 3. The consistency of Steps 5 and 6 is obvious.695

Now let us show that the choice of x and y maintains Property 2.696

Claim 4.14. Suppose that there is a cut-pair {u, v} such that for one component697

of G − {u, v}, say K, x1, x2 ∈ N ∩K and x3, y ∈ (V −K) ∩ N . Then fixing either698
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x1x3 or x2x3 maintains Property 2.699

Proof. Notice that the role of x1 and x2 is symmetric thus we might suppose that700

we fixed the edge x1x3. Suppose that we form a new 3-end L with it in G+F . Then701

necessarily x1, x3 ∈ L. If x2 ∈ L or y ∈ L, then Property 2 holds automatically. On702

the other hand, if none of them is in L, then, as the cut-pair {u, v} is strong (since703

all the cut-pairs are strong by Lemma 2.17) there is a cut-pair of G in K ∪ {u} or in704

K ∪ {v} which separates x1 from x2 (see Fig. 2a). There is another cut-pair {u′, v′}705

in V −K (other than {u, v}) which separates x3 from y. Both remain cut-pairs after706

fixing the edge x1x3. However, this contradicts the assumption that L is 3-end, as707

|NG(L)| = 2 must hold for a 3-end.708

(a) Illustration of Claim 4.14. Notice, that
we need the existence of the vertex y.

(b) In case of Step 6 we cannot form a new
3-end.

Fig. 2: Proofs why the algorithm of Lemma 4.13 maintains Property 2.

Notice, that the conditions of this claim hold in Steps 2, 3 and 5 thus with our709

choice of x1, x2, and x3 Property 2 is maintained. If G + F is already 3-connected,710

then Property 2 is obvious. Otherwise, in Step 6, every cut-pair cuts G + F into711

two components one of which contains exactly one vertex from N by the condition712

of Step 5 (see Fig. 2b). For the sake of a contradiction, assume that G + F + xy713

contains a 3-end L which contains no element of N−{x, y}. Let NG(L) = {u, v}. Then714

N ∩L = {x, y}, V −L−{u, v} 6= ∅, and u, v is a cut pair of G+F . By the condition of715

Step 5, (u, v) cuts G+F into two component one of which contains exactly one vertex716

from N . Hence exactly L and V − L − {u, v} are these two components. Moreover,717

as |L ∩N | = 2, this implies |N ∩ (V − L− {u, v})| = 1, contradicting |N | ≥ 4.718

Now we show that our method maintains Property 3. Fixing any edge decreases719 ⌈
|N |
2

⌉
by one while increases F by one. When we chose x1, x2 and x3 in Steps 5720

or 6, this fact is enough to keep Property 3 true as in these cases max
{
b(G + F ) −721

1,
⌈
|N |
2

⌉}
> b(G + F ) − 1. We need to show that if the condition in Step 1 is true,722

then we also decrease b(G + F ). By a simple calculation on the number of 3-ends,723

it can be shown that if b(G + F ) − 1 ≥
⌈
|N |
2

⌉
, then there are at most two cut-pairs724

of G + F satisfying b(u,v)(G + F ) = b(G + F ) (see [22]). If there is only one such725
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cut-pair, the pair (u, v) chosen in Step 2, then we only need to decrease b(u,v)(G+F )726

to decrease b(G + F ). Since x1x3 and x2x3 both connect two different components727

of G + F − {u, v}, b(u,v)(G + F ) decreases by one after fixing any of them. If there728

are at least two such cut-pairs, then there are exactly two of them (see for example729

[22, Lemma 2.3]). Let now (u1, v1) and (u2, v2) be chosen in Step 3, then we need730

to decrease b(u1,v1)(G + F ) and b(u2,v2)(G + F ) simultaneously. Again our choice of731

x1x3 and x2x3 guarantees this.732

Therefore, by Remark 4.12 applied to Step 7, fixing xy maintains Properties 1–3.733

This completes the proof of Lemma 4.13.734

We apply Lemma 4.13 recursively until |N | < max{4, b(G+F )+1}. To complete735

the proof of Theorem 4.1, we need to show the following.736

Claim 4.15. Let F , N be sets, such that they satisfy Properties 1–3 with G. If737

2 ≤ |N | ≤ max{3, b(G+F )}, then, for an arbitrary star SN on N , G+F +SN forms738

a 3-connected redundantly rigid graph for which |F |+ |SN | = max
{
b(G)− 1,

⌈
|P |
2

⌉}
.739

Proof. G + F + SN is 3-connected and redundantly rigid by Remark 4.11. By740

Property 3 it is enough to show that max
{
b(G+F )− 1,

⌈
|N |
2

⌉}
= |SN | = |N | − 1. If741

|N | = b(G + F ), then max
{
b(G + F )− 1,

⌈
|N |
2

⌉}
= |N | − 1 as

⌈
|N |
2

⌉
≤ |N | − 1. On742

the other hand, if |N | < b(G + F ), then 2 ≤ |N | ≤ 3 thus
⌈
|N |
2

⌉
= |N | − 1.743

Recall that A∗ consists of pairwise disjoint MCT sets and 3-ends of G and hence744

the maximum in Theorem 4.1 is at least max
{
b(G)− 1,

⌈
|A∗|
2

⌉}
. On the other hand,745

the above claim implies that G can be augmented to a globally rigid graph by an746

addition of an edge set of cardinality max
{
b(G)−1,

⌈
|P |
2

⌉}
= max

{
b(G)−1,

⌈
|A∗|
2

⌉}
.747

This completes the proof of Theorem 4.1.748

Observation 5. The method in Lemma 4.13 adds edges only between vertices749

from P . This means that G + F is a simple graph by our assumption on G and750

Observation 4. Thus G + F is globally rigid in R2 by Theorem 2.5.751

Before proving Theorem 4.1 for the cases other than (k, `) = (2, 3), let us follow752

our proof on the graph G in Fig. 3 to find an optimal solution for Problem 2 when753

(k, `) = (2, 3). Note that the 3-ends and the atoms of G do not depend on the form754

of the inner M-connected graph G0, however, b(G) and hence the size of the optimal755

solution of Problem 2 may do. For example, when G0 = K12 is the complete graph756

on 12 vertices, then b(G) = 2. In this case, the optimal solution has four edges by757

Theorem 4.1. Indeed, we need at least four edges for the augmentation as we need to758

touch each atom of G by Proposition 2.9 and Lemmas 2.16, 3.2 and 3.5. On the other759

hand, we know that any connected graph on a transversal of the atoms (for example,760

on the set N of the vertices represented by (red) triangles) augments G to a globally761

rigid graph by Lemmas 4.6 and 4.8. We start to run the algorithm of Lemma 4.13.762

As b(G) = 2, the condition of Step 1 does not hold hence the algorithm checks the763

condition of Step 5 which holds for any 3-fragment of the cut-pair {u, v}. Hence the764

algorithm may choose x1, x2 and x3, as drawn in Fig. 3 and after that it adds the765

edge x1x3 in Step 7. Now, the condition of Step 5 does not hold for G + x1x3, and766

hence in the next step the algorithm takes three arbitrary vertices from N −{x1, x3}767

and uses Step 7 of the algorithm to find the next augmenting edge, for example, x2a.768

This way the number of non-covered elements of N reduces to three, and hence the769

algorithm stops and extends the augmenting edge set with a star on the remaining770
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Fig. 3: A (2, 3)-rigid graph G with its (2, 3)-M-components (encircled with solid cir-
cles) where the graph G0 in the light gray area is an arbitrary (2, 3)-M-connected
graph on 12 vertices and the dark grey areas are complete graphs on the drawn ver-
tex sets. The 3-ends of this graphs are the dotted sets (since G0 cannot contain any
3-ends as each of its vertices is contained in a cut-pair of G). The (2, 3)-MCT sets
of the (2, 3)-M-component hypergraph are the vertex sets of the five K5 subgraphs
and the singleton formed by the vertex x1 of degree two. Hence the atoms are the
vertex sets of the K5 subgraphs and the two dotted sets which are not containing any
K5 subgraph. These are disjoint as claimed by Lemma 4.3 and no edge of the graph
connects them as stated in Lemma 4.7. The vertices, which are represented by (red)
triangles, form a transversal of the atoms. The addition of the dashed edge represents
the first step of the algorithm of Lemma 4.13 for several choices of G0.

three vertices by Claim 4.15, for example, it may add bc and cd. Thus, the resulted771

(optimal) augmenting edge set {x1x3, x2a, bc, cd} has cardinality four.772

In our second example, let G0 be the graph which contains the 6 edges drawn in773

Fig. 3 (between the elements of each cut-pair which separates other parts of G from774

G0) and the edges from u and v to each other vertex of G0, that is, let G0 be the775

drawn matching plus the complete bipartite graph K2,10 where the two element set776

of the bipartition is {u, v}. In this case, b(G) = b(u,v)(G) = 6 and hence the optimal777

solution has five edges by Theorem 4.1. Indeed, we need at least five edges to make G778

3-connected, as G−{u, v} has six connected components. On the other hand, similarly779

to the previous example, we know that any connected graph on the set transversal N780

of the atoms which is formed by the vertices represented by (red) triangles augments G781

to a globally rigid graph and we may reduce its cardinality (which is at least seven) by782

running the algorithm of Lemma 4.13. Now, the condition of Step 1 of the algorithm783

holds and the algorithm may choose x1, x2 and x3 as drawn in Fig. 3 in Step 2. Next,784

it takes the augmenting edge x1x3 in Step 7. Now, b(G + x1x3) = 5 and we have 5785

vertices in our transversal set which are not covered by an augmenting edge. Hence786
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the condition of Lemma 4.13 does not hold any more, and the algorithm stops. Now,787

Claim 4.15 states that x1x3 and a star on N − {x1, x3} form an optimal augmenting788

edge set (for example, {x1x3, x2a, ab, ac, ad}) of cardinality five.789

4.2. Proof sketch of Theorem 4.1 for k < ` ≤ 3
2k. In this subsection we790

briefly sketch how the proof of Theorem 4.1 for (k, `) = (2, 3) presented before can791

be extended for general (k, `) 6= (2, 3) where k < ` ≤ 3
2k. In this case we still want to792

augment G to a 3-connected graph. The bulk of the proof can be transferred literally,793

however, there are two main differences caused by the weak cut-pairs. This is due794

to the fact that Lemma 2.17 does not extend for general (k, `), there may be weak795

cut-pairs that pose a challenge.796

The first issue is in the proof of the extension of Lemma 4.4 for general (k, `).797

When the atom A is a 3-end we used Lemmas 2.17 and 2.18 in the proof to conclude798

that it cannot contain any vertex a which forms a cut-pair with another vertex v. In799

the general case, {a, v} may be a weak cut-pair which separates the two vertices of800

N(A) = {u′, v′}. In this case a is a cut vertex of G[A∪N(A)] that separates u′ and v′.801

Moreover, G[A ∪N(A)] − a has exactly two components since otherwise a would be802

a cut vertex of G (see Fig. 4a for an illustration). Note that |A| ≥ 2 must hold since803

G is a simple (k, `)-rigid graph in which each vertex has a degree of at least k that is804

at least 3 by our assumptions on (k, `). Thus one of the two connected components805

in G[A∪N(A)]− a, say the component U ′ containing u′ has cardinality at least two.806

Now NG(U ′−u′) = {u′, a}, and hence U ′−u′ ( A is a 3-fragment of G, contradicting807

the fact that A is a 3-end. Hence we proved the statement if A is a 3-end. The rest808

of the proof (that is, when A is a (k, `)-MCT set) can be generalized easily.809

(a) If the 3-end A contains an element a of
a cut-pair, then we obtain a smaller 3-end
which is a contradiction.

(b) All path from x′2 to u which avoids v
must induce u1 hence u /∈ A′2 in the proof
of Claim 4.16.

Fig. 4: Extension of the proof in Section 4.1 to the case where k < ` ≤ 3
2k.

The second issue appears in the proof of Lemma 4.13 since we used Lemma 2.17810

for the proof of Claim 4.14. Note that for a weak pair {u′, v′}, b2(u′,v′)(G + F ) = 2811

hence weak pairs can occur only in Step 5. Hence we still can use Claim 4.14 to812

prove that Property 2 for Steps 2 and 3 as the cut-pair {u, v} is strong in those813

cases. However, our choice in Step 5 may destroy Property 2. Hence we need to814

modify this step in the general case, as follows.815
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5’ If there is a 3-fragment K of G such that |N ∩ K| ≥ 2 and |N − K| ≥ 2,816

then817

Choose x′1, x
′
2 from N ∩K and choose x3 from N −K.818

If every 3-end of G + F + x′1x3 contains a vertex from N − {x′1, x3},819

then let x1 = x2 := x′1,820

else let x1 = x2 := x′2.821

Claim 4.16. If x1 = x2 and x3 is chosen by Step 5’, then Properties 1 – 3 are822

maintained after fixing the edge x1x3.823

Proof. Let {u, v} be the cut-pair for which K is a component of G + F − {u, v}.824

To see that Property 1 holds, observe that {u, v} separates x1 = x2 and x3 and it also825

separates the vertices of N−{x1, x3} by the condition in Step 5’. This implies that the826

star SN−{x1,x3} has an edge wz connecting two distinct components of G−{u, v}. Now827

THG
(wz) and THG

(x1x3) are (k, `)-tight subhypergraphs of HG (on at least 3 vertices)828

and hence their vertex sets induce (k, `)-rigid subgraphs of G (by the definition of the829

M-component hypergraph) which are 2-connected by Proposition 2.3. This implies830

that they both contain u and v. Hence Lemma 2.2 implies that THG
(wz)∪THG

(x1x3)831

is (k, `)−tight and hence THG
(wx1) ⊆ THG

(wz) ∪ THG
(x1x3) by Lemma 2.1. This832

with Lemmas 2.8 and 4.8 implies that RHG
(SN−{x1,x3} ∪ x1x3) = RHG

(SN−{x1,x3} ∪833

{x1x3, wx1}) = RHG
(SN ) and hence Property 1 remains true.834

If neither the fixing of x′1x3 nor the fixing of x′2x3 maintains Property 2, then it835

means that there is a 3-end with vertex set Ai in G+F + x′ix3 such that Ai contains836

no vertex from N − {x′i, x3} for i = 1, 2. Let NG+F (Ai) = {ui, vi} for i = 1, 2. Now,837

N ∩ Ai = {x′i, x3} and {u, v} (chosen in Step 5’) separates {ui, vi} in G + F , as it838

separates x′i and x3 for i = 1, 2. This also means that x′i is separated from any other839

vertex of N by, say, {u, ui} or {v, ui} since K ∪{u, v} contains either ui or vi and this840

vertex (say, ui) is a cut vertex in (G+F )[K ∪{u, v}]. Let us denote the vertex set of841

the corresponding component of G−{u, ui} or G−{v, ui} that contains only x′i from842

N by A′i for i = 1, 2. Without loss of generality, we may assume that x′1 is separated843

from any other vertex of N by {u, u1}. Now, a similar argument and the existence of844

the 3-end A1 in G + F + x′1x3 implies that x3 is separated from any other vertex of845

N by {u, v1}. Furthermore, all paths in G[K ∪ {u, v}] from x2 to u contain u1 and846

hence A′2 cannot contain u since otherwise it should also contain u1 and hence, by847

the connectivity of G[K], all vertices from A′1 (in particular, x′1) contradicting that848

it contains only x′2 from N (see Fig. 4b for an illustration). Hence, the the existence849

of the 3-end A2 in G + F + x′2x3 implies that x3 is separated from any other vertex850

of N by {v, v2}. However, in this case, v1 and all the components of G[V −K] − v1851

other than A2 must be in the component of G[V −K]− v2 containing x3 and v, and852

hence it must contain all the vertices in N −K, a contradiction.853

After Step 5’
⌈
|N |
2

⌉
decreased by 1 while |F | increased by 1, and, as the condition854

in Step 1 did not hold in this case, this is sufficient to maintain Property 3.855

With this modification on Step 5 we can use the algorithm from Lemma 4.13 so856

that it results an optimal edge set for any (k, `) 6= (2, 3) pair where k < ` ≤ 3
2k.857

4.3. Proof sketch of Theorem 4.1 for ` ≤ k. It is easy to see, how the858

results presented in Section 2 with some elementary observations can be used to prove859

Theorem 4.1 in the case where ` ≤ 0. (Notice that in this case ck,` = 0, thus we aim860

to augment G to a (k, `)-redundant and connected graph.) We leave the details of this861

rather simple special case to the reader and this enables us to assume in what follows862

that k and ` are positive integers. This simplifies the presentation of the results. Let863
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us now briefly sketch, how the proof presented in Subsection 4.1 may be transferred864

to the values of 0 < ` ≤ k. (We note that similar methods may be used also for the865

case where ` ≤ 0.) In this case ck,` = 1 thus we aim to augment G to a 2-connected866

and (k, `)-redundant graph. This means, that each 2-end is separated from G by a867

cut-vertex and thus cut-pairs in the proofs should be changed to cut-vertices. In fact,868

all our proofs can be extended (almost) literally hence we only reprove the counterpart869

of Lemma 4.4 as its statement is slightly modified in this case.870

Lemma 4.17. Let k and ` be positive integers with k ≥ ` and let G = (V,E) be871

a (k, `)-rigid graph which is not 2-connected and let a ∈ A ∈ A∗ be a vertex from an872

atom of G. Then a is not a cut-vertex in A.873

Proof. If A is a 2-end, then the statement follows immediately by Lemma 2.18.874

Now let A be a (k, `)-MCT set of HG. Then HG[V −A] is (k, `)-tight and hence875

Observation 2 implies that G[V −A] is (k, `)-rigid and hence connected. For the sake876

of a contradiction, suppose that a ∈ A is a cut-vertex of G. This immediately implies877

that |A| ≥ 2 and A− a contains at least one component of G− a (which also contains878

a 2-end of G), contradicting the minimality of A.879

As the M-connected hypergraph of any (k, `)-rigid graph [12, 29, 35], all the (k, `)-880

MCT sets of a (k, `)-tight hypergraph [27] and all the 2-ends of a connected graph and881

3-ends of a 2-connected graph [9, 16, 22] can be computed in polynomial time, it is882

easy to see that the method presented in the proof of Theorem 4.1 yields a polynomial883

algorithm for finding the optimal edge set. By developing some further details, the884

running time of this algorithm can be reduced to O(|V |2) [26].885

5. Concluding remarks. Theorem 4.1 leaves open the natural question, what886

can we do if G is not rigid. For general inputs, we give a 2-approximation, as follows.887

As we saw in Section 2, the (k, `)-sparse edge sets form the independent sets and888

the (k, `)-tight sets form the bases of a matroid. Thus all the edge sets that optimally889

augment G to a rigid graph have the same cardinality. Also, such a set can be easily890

computed in polynomial time [12, 29]. Moreover, such a set can be chosen in such a891

way that no newly added edge is parallel to any original edge of G (if its vertex set892

is sufficiently large). Hence our algorithm consists of the following two parts: first893

we find a minimal cardinality edge set F1 such that G′ = G + (V, F1) is a (k, `)-rigid894

graph (which is still simple if k < `), then using the algorithm presented in Section 4895

we augment G′ to a (k, `)-redundant and (ck,` + 1)-connected graph with a new edge896

set F2. We show that this result indeed has the approximation ratio of 2.897

Any edge set F that augments G to a (k, `)-redundant and (ck,` + 1)-connected898

graph must also augment G to a (k, `)-rigid graph. Thus |F | ≥ |F1| holds. On the899

other hand, if G + F is (k, `)-redundant and (ck,` + 1)-connected, then G + F1 + F is900

also (k, `)-redundant (since for each edge e G + F + F1 − e contains the (k, `)-tight901

spanning subgraph of G+F−e) and, obviously, (ck,`+1)-connected. Hence |F | ≥ |F2|902

follows.903

Let us recall the global rigidity pinning problem. In this problem, the goal is to904

anchor a minimum set of points of a framework such that the resulting framework905

is globally rigid. We note that the complexity of this problem is open, only a 3-906

approximation algorithm was given by Fekete and Jordán [11] in the generic case for907

arbitrary input graphs. However, we can show that our method yields an optimal908

pinning set for rigid graphs and a 2-approximation for general graphs.909
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It is easy to see that pinning can be modeled by adding a complete graph on the910

anchored vertices to the graph (see [11]). Let G = (V,E) be a (2, 3)-rigid (but not911

globally rigid) graph that we want to pin down to a globally rigid graph. If G can be912

augmented to a globally rigid graph by a single edge, then pinning down its endpoints913

results a globally rigid graph. Hence we may assume that no edge augments G to914

a globally rigid graph. It is clear that each 3-end of G needs to be pinned down to915

eliminate its cut-pairs. On the other hand, each (k, `)-MCT set of HG needs to be916

pinned down by Lemmas 2.1, 3.2 and 3.5. However, by Lemmas 2.11 and 4.3 all the917

atoms of G are pairwise disjoint (if no edge augments it to a globally rigid graph).918

Hence, we must pin down a vertex from each atom of G. By Lemmas 4.6 and 4.8 this919

pinning results a globally rigid graph and thus this is an optimal pinning. When G920

is not rigid, then we can follow the idea of the above approximation algorithm: First,921

pin G down to a rigid graph (which can be done optimally in polynomial time [10, 23])922

and next pin this (already rigid graph) down to a globally rigid one. Similarly to the923

case of augmentation, it can be shown that the approximation ratio of this algorithm924

is 2.925

Finally, we note that the pinning problem is also solvable in the case where we926

have some already pinned vertices. In this case the model is the following. We are927

given a graph G = (V,E) and a set V ′ ⊆ V of the already pinned vertices. We seek a928

set P ⊆ V − V ′ of minimum cardinality for which G∪KP∪V ′ is globally rigid. When929

G ∪ KV ′ is rigid, then this problem can be solved optimally since we only need to930

cover the atoms of G ∪KV ′ which do not contain any vertex from V ′. On the other931

hand, when G ∪ KV ′ is not rigid, we can also give a 2-approximation algorithm as932

above, since it is not hard to modify the algorithm of Fekete [10] in such a way that933

it outputs an minimum cardinality set P1 ⊆ V − V ′ for which G ∪KP1∪V ′ is rigid.934
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[14] A. Garćıa and J. Tejel, Augmenting the rigidity of a graph in R2, Algorithmica, 59 (2011),976
pp. 145–168, https://doi.org/10.1007/s00453-009-9300-9.977

[15] S. Gortler, A. Healy, and D. Thurston, Characterizing generic global rigidity, American978
Journal of Mathematics, 132 (2007), https://doi.org/10.1353/ajm.0.0132.979

[16] T. Hsu and V. Ramachandran, A linear time algorithm for triconnectivity augmentation,980
Annual Symposium on Foundations of Computer Science (Proceedings), (1991), pp. 548–981
559, https://doi.org/10.1109/SFCS.1991.185418.982

[17] T. Ishii, H. Nagamochi, and T. Ibaraki, Augmenting a (k − 1)-vertex-connected multigraph983
l-edge-connected and k-vertex-connected multigraph, Algorithmica, 44 (2006), pp. 257–280,984
https://doi.org/10.1007/s00453-005-1151-4.985

[18] B. Jackson and T. Jordán, The generic rank of body-bar-and-hinge frameworks, Eur. J.986
Comb., 31 (2010), pp. 574–88, https://doi.org/10.1016/j.ejc.2009.03.030.987

[19] B. Jackson and T. Jordán, Connected rigidity matroids and unique realizations of graphs,988
Journal of Combinatorial Theory, Series B, 94 (2003), pp. 1–29, https://doi.org/10.1016/989
j.jctb.2004.11.002.990

[20] B. Jackson and T. Jordán, Graph theoretic techniques in the analysis of uniquely localizable991
sensor networks, Localization Algorithms and Strategies for Wireless Sensor Networks,992
(2009), https://doi.org/10.4018/978-1-60566-396-8.ch006.993

[21] B. Jackson and A. Nixon, Global rigidity of generic frameworks on the cylinder, J. Comb.994
Theory, Ser. B, 139 (2019), pp. 193–229, https://doi.org/https://doi.org/10.1016/j.jctb.995
2019.03.002.996

[22] T. Jordán, On the optimal vertex-connectivity augmentation, J. Comb. Theory, Ser. B, 63997
(1995), pp. 8–20, https://doi.org/10.1006/jctb.1995.1002.998

[23] T. Jordán, Combinatorial rigidity: Graphs and matroids in the theory of rigid frameworks,999
in Discrete Geometric Analysis, vol. 34 of MSJ Memoirs, Mathematical Society of Japan,1000
Japan, 2016, pp. 33–112, https://doi.org/10.2969/msjmemoirs/03401C020.1001
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