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GLOBALLY RIGID AUGMENTATION OF RIGID GRAPHS*

CSABA KIRALY' AND ANDRAS MIHALYKO?!

Abstract. We consider the following augmentation problem: Given a rigid graph G = (V, E),
find a minimum cardinality edge set F' such that the graph G’ = (V, E U F) is globally rigid. We
provide a min-max theorem and a polynomial-time algorithm for this problem for several types of
rigidity, such as rigidity in the plane or on the cylinder. Rigidity is often characterized by some
sparsity properties of the underlying graph and global rigidity is characterized by redundant rigidity
(where the graph remains rigid after deleting an arbitrary edge) and 2- or 3-vertex-connectivity.
Hence, to solve the above-mentioned problem, we define and solve polynomially a combinatorial
optimization problem family based on these sparsity and connectivity properties. This family also
includes the problem of augmenting a k-tree-connected graph to a highly k-tree-connected and 2-
connected graph. Moreover, as an interesting consequence, we give an optimal solution to the
so-called global rigidity pinning problem, where we aim to find a minimum cardinality vertex set X
for a rigid graph G = (V, E), such that the graph G + Kx is globally rigid in R? where Kx denotes
the complete graph on the vertex set X.

Key words. Graph rigidity, global rigidity, augmentation, connectivity

AMS subject classifications. 52C25, 05B35, 05C40, 68R10

1. Introduction. In this paper we consider a graph augmentation problem that
fits to a branch of connectivity augmentations where edge-connectivity and vertex-
connectivity should be augmented simultaneously [8, 17]. For example, our result
provides a polynomial algorithm for the following problem: Given a k-tree con-
nected graph G = (V, E) (that is, G contains k edge disjoint spanning trees), find
a minimum set of edges F such that the graph G’ = (V, E U F) is highly k-tree-
connected (that is, G’ — e still contains k edge disjoint spanning trees for each
e € FEUF) and 2-connected. Nonetheless, the problem gains much of its importance
due to its connection to Rigidity Theory, that we introduce now.

A d-dimensional (bar-joint) framework is a pair (G,p), where G = (V,E) is
a graph and p : V — R is a map of the vertices to some given subset of the d-
dimensional Euclidean space. We call (G, p) a realization of G. Two realizations of
G, say (G,p) and (G, q) are equivalent if ||p(u) — p(v)|| = l[q(u) — q(v)]| for every
uv € E. Two realizations are congruent, if ||p(u) — p(v)|| = |l¢(u) — q(v)|| holds for
every vertex pair u,v € V, or in other words, when (G, p) is isometric to (G, q). We say
that the framework (G, p) is globally rigid in R?, if each of its equivalent realizations
is also congruent, that is, the edge lengths of the framework uniquely determine its
realization up to the isometries of R?. The framework (G, p) is rigid when the above
condition only holds for realizations q : V' — R¢ for which ||p(v) — q(v)|| < € for some
€ > 0. This concept of global rigidity plays an important role in rigidity theory and
network localization problems [4, 5, 20].

For example, given some sensors in the plane with known distances between some
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2 CS. KIRALY ANDRAS MIHALYKO

of them, one may consider the following question. At least how many sensor-locations
do we need to measure exactly to be able to reconstruct the exact location of each sen-
sor? This is the so-called global rigidity pinning (or anchoring) problem. Sometimes
measuring the exact sensor-locations is too expensive or even impossible. Instead, one
may ask at least how many new distances need to be measured so that the distances
uniquely determine the positions of the sensors (up to isometry). This problem is
called the global rigidity augmentation problem. (We note that reconstructing the
position of the sensors is a challenging task, even if they are uniquely determined by
the framework, see [2, 25, 34]. In this paper we do not address this problem.)

Determining whether a given bar-joint framework is rigid (or globally rigid, re-
spectively) is NP-hard even in the plane (or on the line, respectively) [1, 33]. The
analysis gets more tractable, if we consider generic frameworks where the set of
coordinates of the points is algebraically independent over the rationals [3, 15]. We
call a graph G rigid (or globally rigid, respectively) in R? if each (or equivalently,
some) of its generic realizations in R? is rigid (or globally rigid, respectively). The
characterization of rigid and globally rigid graphs is known for d = 1,2 [19, 28, 32]
and is a major open problem of rigidity theory for d > 3.

There are some other types of frameworks for which both rigidity and global rigid-
ity are characterized as a property of their underlying graphs (with some genericity
assumptions), for example for body-bar frameworks [6, 36, 38], for body-hinge and
body-bar-hinge frameworks [18, 24, 37, 39, 41], and for bar-joint frameworks which
are restricted to lie (and move) on some given surface in R3 such as a sphere [7, 40]
or a cylinder [21, 31].

In this paper, we consider the following meta-problem related to the above-
mentioned versions of rigidity and global rigidity.

PROBLEM 1. Given a graph G = (V, E), find an edge set F of minimum cardi-
nality on the same vertex set, such that G+ F = (V,EUF) is ‘globally rigid’.

As we noted in the beginning, to solve the problem for ‘rigid’ inputs, we give
a common combinatorial generalization of this problem for all the above-mentioned
types of rigidity in Section 2. The common point is that (k, ¢)-sparse graphs are used
for the characterization of rigidity, while redundant rigidity (where G —e remains rigid
after the deletion of an arbitrary edge) and 2- or 3-vertex-connectivity is usually used
for the characterization of global rigidity. The problem of augmenting rigid graphs to
redundantly rigid was considered in [14, 27], while vertex-connectivity augmentation
problems have a quite extensive literature (see [9, 16, 22] for related results and [13]
for a survey) of which we only need some basic ones due to the special conditions of
our problem.

2. Preliminaries. In this section we collect the basic definitions and results
that we shall use, including the formal definition of the combinatorial problem family
solved in this paper, and its connection to the problem presented in the introduction.
For a detailed introduction to combinatorial rigidity theory, the reader is referred to
[23]. Although our goal is to solve a graph augmentation problem, we will need to use
hypergraphs (see Section 3) hence some definitions will be for hypergraphs instead of
graphs.

Given a hypergraph H = (V,£), let d4y(v) denote the number of hyperedges that
contain v € V and let d3;(X,Y’) denote the number of hyperedges that are induced
by X UY but not induced by neither X nor Y for X, Y C V. The neighbor set of
X CVisNy(X)={veV —-X:3zec X and e € € such that v,z € e}.

This manuscript is for review purposes only.
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For two integers k and ¢ for which 0 < k and ¢ < 2k hold, a hypergraph H = (V, £)
is called (k, £)-sparse if i3, (X) < k| X|—£ holds for all X C V with k| X|—¢ > 0, where
174 (X) denotes the number of edges induced by X in H. A hypergraph H = (V,€)
is called (k,£)-tight if it is sparse and |€| = k|V| — €. Due to its usage in rigidity
theory, which we present in Section 2.1, we call a hypergraph (k, £)-rigid if it contains
a spanning (k, £)-tight subhypergraph and has no loop (that is, no hyperedge which
is a singleton) if k& < ¢. (For example, the (1,1)-sparse graphs are the forests, the
(1,1)-tight graphs are the trees, and the (1, 1)-rigid graphs are the connected graphs.)

(k, )-tight hypergraphs have some well known properties. For example, any
subhypergraph of a (k,¢)-sparse hypergraph is always (k,{)-sparse and any (k,{)-
tight subhypergraph of a (k, ¢)-sparse hypergraph is an induced subhypergraph. If
Hi = (V1,&1) and Ho = (V3,E) both are tight subhypergraphs of a (k,£)-sparse
hypergraph H, then H;, N Ho = (V1 N V4, E1 N Ey) is an induced subhypergraph of H
(by the submodularity of iy).

The hyperedge sets of the (k,¢)-tight subhypergraphs of a hypergraph H corre-
spond to the independent sets of the so-called (k, £)-sparsity matroid (or count
matroid) of H (see [12, Section 13.5], [30] and [42, Appendix A]). (This matroid
family generalizes the graphic matroid as the graphic matroid on the edge set of a
graph G is isomorphic to the (1, 1)-sparsity matroid of G.) The spanning (k, ¢)-tight
subhypergraphs form a basis of this matroid, while a hypergraph which forms a cir-
cuit in this matroid is called a (k,£)-M-circuit. In particular, if H is (k,¢)-tight
and e = ij is a new (graph) edge, then G + e has a unique (k, £)-M-circuit, denoted
by Cy(ij) or Cy(e). This circuit contains e. (V(Cyx/(e)),E(Cx(e)) — e) forms a (k, £)-
tight subhypergraph of H, that we call T3 (e) or Tx(ij). (Note that this definition
may also be extended to the case where we add a new hyperedge to a (k,¢)-tight
hypergraph, however, in this paper we only consider additional graph edges.) For the
sake of convenience, we do not distinguish a hypergraph from its edge set, that is,
Tau(e) = E(Cy(e)) —e. When the hypergraph H is clear from the context, we shall
omit the subscript H from T3 (e). The next lemma is folklore and follows easily from
basic matroid properties.

LEMMA 2.1. Let H = (V,E) be a (k,L)-tight graph and let e = ij be an edge for
some i, € V. If H' is a (k,L)-tight subhypergraph of H with {i,j} C V(H'), then
T2 (i) is a subhypergraph of H'. Thus Ty(if) is equal to the intersection of all tight
subhypergraphs T, of H with {i,5} C V(Tp).

A hyperedge e of a rigid hypergraph H is called (k,£)-redundant if H — e is
(k, £)-rigid. A hypergraph is (k, £)-redundant if all of its hyperedges are redundant.
(For example, the (1,1)-redundant graphs are the 2-edge-connected graphs.)

There are some differences in the properties of (k, £)-rigid hypergraphs depending
on the relation of k£ and ¢, as the following two results show. To simplify the pre-
sentation of our results, let cg o:= max { f%] 70}, that is, cg ¢ is zero if £ < 0, one if
0 < ¢ <k, and two if k < £ < 2k. With standard submodular techniques one can
prove the following (see [23, 27]).

LEMMA 2.2. LetH = (V,E) be a (k,£)-sparse hypergraph on at least three vertices,
and let H1 = (V1,&1) and Ha = (Va, &) be (k,L)-tight subhypergraphs of H. If
Vi N Va| > e e, then Hi U Ho is a (k, £)-tight subhypergraph of H.

A graph G = (V, E) is called k-connected if |V| > k and G — X is connected
for any vertex set X C V of cardinality at most k¥ — 1. For the sake of convenience,
a graph which is not necessarily connected will be called 0-connected in this paper.

This manuscript is for review purposes only.
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4 CS. KIRALY ANDRAS MIHALYKO

Connectivity has several connections to rigidity. An often used folklore result is the
following.

PROPOSITION 2.3. If G = (V, E) is a (k,0)-rigid graph for which |V| > 3, then G
18 ¢y ¢-connected.

Based on Proposition 2.3, one may ask the following problem as an extension of
the problem which was considered in [27] (see Section 2.2 for more details on this
problem).

PROBLEM 2. Given a (k,¢)-rigid graph G = (V, E) with |V| > 3, find a graph
H = (V, F) with a minimum cardinality edge set F, such that GUH = (V,EUF) is
(k,0)-redundant and (cg¢ + 1)-connected.

In this paper, we give a min-max theorem and a polynomial algorithm for Problem
2 for all integer pairs of (k,¢) where max(0,¢) < k and also for 0 < k < ¢ < 3k with
the extra assumption that the input is a simple graph (that is, it contains no parallel
edges and no loops). In all cases, the output edge set F' can be provided in such a
way that F'NE = () if such an augmentation is possible (that is, if the complete graph
on V is (k, £)-redundant).

2.1. Connection to rigidity theory. In this subsection we show how Problem
2 is connected to the problems from rigidity theory presented in Problem 1. We start
with the characterization of rigidity and global rigidity of graphs in R? and on the unit
sphere S? C R? given by Pollaczeck-Geiringer [32], Laman [28], Jackson and Jordan
[19], Whiteley [40], and Connelly and Whiteley [7].

THEOREM 2.4 ([28, 32, 40]). The following three statements are equivalent for a
graph G. (i) G is rigid in R?, (i) G is rigid on S* C R®, (iii) G is (2,3)-rigid.

Note that parallel edges give no extra condition to a bar-joint framework hence
in the characterization of global rigidity we may assume that G is simple.

THEOREM 2.5 ([7, 19]). The following three statements are equivalent for a sim-
ple graph G on at least three vertices. (i) G is globally rigid in R?, (i) G is globally
rigid on S* C R3, (iii) G is (2,3)-redundant and 3-connected.

Theorems 2.4 and 2.5 imply that the solution of Problem 2 — with the extra
condition that both the input and the output graph should be simple — solves the
global rigidity augmentation problem in R? and on S? C R? on rigid inputs.

The rigidity and global rigidity of graphs on a cylinder C? C R3 has been char-
acterized by Nixon, Owen and Power [31] and Jackson and Nixon [21]. In this case
the characterization uses simple (2, 2)-rigid (and (2, 2)-redundant) graphs. Note that
without the simplicity condition a (2,2)-tight graph may have parallel edges (which
is meaningless from a rigidity point of view).

THEOREM 2.6 ([31]). A simple graph is rigid on the cylinder C C R® if and only
if it is (2, 2)-rigid.

THEOREM 2.7 ([21]). A simple graph is globally rigid on the cylinder C C R® if
and only if it is (2,2)-redundant and 2-connected.

Theorems 2.6 and 2.7 imply that the solution of Problem 2 — with the extra
condition that we may only use non-graph edges for the augmentation — solves the
global rigidity augmentation problem on the cylinder C' C R? on rigid inputs.

Finally we note that the generic rigidity (and generic global rigidity, respec-
tively) of body-bar and body-hinge frameworks in R? have been characterized by
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("5, (431))-rigidity (and ((“3"), (*5'))-redundancy, respectively) of a correspond-
ing graph in [18, 24, 37, 39, 41]. Hence in these cases the global rigidity augmentation
problem can be solved optimally in polynomial time by the results of [27] that we
summarize in the following section.

2.2. Augmentation to a (k,{)-redundant hypergraph. Let us now inves-
tigate the problem of augmenting a (k,¢)-tight hypergraph H = (V,€&) to a (k,{)-
redundant hypergraph by a minimum number of graph edges. This problem was
considered and solved previously in [27]. In this subsection we list some notions and
results from [27] that we shall use in this paper.

If we add the edges eq, . . ., ex to H, we make some hyperedges of H redundant. Let
us denote the set of these hyperedges by Ry (e, - .., ex). Note that Ry (e1) = T (e1)-
The following statement generalizes this simple fact.

LeEMMA 2.8 ([27]). Let H = (V, &) be a tight hypergraph. Then Ry (eq, ..., ex) =
Tu(er)U---UTyler) for arbitrary edges eq,. .., eg.

Given a tight hypergraph H = (V,€&), a set C ¢ V is called (k,£)-co-tight
if V' — C induces a tight subhypergraph. This is equivalent to the following: C' is
(k, £)-co-tight in H if k|]V — C| > ¢ and |E4(C)| = k|C| where E2(C) denotes
the set of hyperedges of H for which at least one of its vertices is in C'. Notice,
that |Ex(X)] = ix(X) + dy(X,V — X) and |€| = |Ex(X)| + i (V — X) holds for
every X C V. Hence |E4(X)| > Ek|X]| for every X C V where |X| < |V| — ¢k e by
|€] = k|V| — £ and the sparsity of H — X. By Lemma 2.1, the following property
follows easily:

PROPOSITION 2.9 ([27]). Let C be a (k,£)-co-tight set of a (k,£)-tight hypergraph
H. If {u,v} N C =0, then T (uwv) N Ex(C) = 0.

Let us abbreviate the name of minimal (k, £)-co-tight sets by (k,£)-MCT sets

and let C3, denote the family of all (k, £)-MCT sets of H. We shall use the following
results.

LEMMA 2.10 ([27]). Let Cy and Cy be two intersecting (k,£)-MCT sets of a
(k, £)-tight hypergraph H = (V,E). Then |C1 U Cs| > |V| — 1, moreover C; UCy =V
if k> 4.

LEMMA 2.11 ([27]). Let H be a (k,£)-tight hypergraph. The members of C;, are
pairwise disjoint or there are two vertices v,w € V such that {v,w} N C # O for all
Cedly.

LEMMA 2.12 ([27, Lemma 5.4]). Let H = (V,€) be a (k,£)-tight hypergraph and
let P C V be a set which intersects each member of Cy,. Suppose that H' = (V',E’)
is a (k,0)-tight subhypergraph of H such that P C V'. Then H' =H.

Lemmas 2.11 and 2.12 imply that if there are at least two intersecting (k, £)-MCT
sets, then there exists an edge e such that T3(e) = H. If we consider the other case,
then the (k,£)-MCT sets are disjoint. This motivates us to investigate the disjoint
(k,£)-MCT sets. The following lemma slightly extends the statement of [27, Lemma
5.6).

LEMMA 2.13. Let H = (V,€&) be a (k,£)-tight hypergraph and let C, K be two
disjoint (k,0)-MCT sets of H. If k|V — (CUK)| > ¢, then E4(C) N Ex(K) = 0.

Proof. By counting the hyperedges induced by V — (C U K), we get that

in(V = (CUK)) <KV = (CUK)| = =kV| = |E(C)| - |En(K)| — ¢

This manuscript is for review purposes only.
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where the first inequality comes from the sparsity of H and the property k|V — (C'U
K)| > ¢, while the equalities hold because C' and K are disjoint (k, £)-MCT sets.
Counting the same hyperedges with their complements implies

in(V = (CUK)) = [€] = |Eu(C) UEW(K)| > k|V| = £ — |Ex(C)| — |En(K).

Thus equality must hold throughout. This is only possible if EH(C) N &y (K)=0. O

LEMMA 2.14 ([27, Lemma 5.7]). Let H = (V,&) be a (k,{)-tight hypergraph on
at least 4 vertices. Let A be a (k,¢)-MCT set, u € A andv € V—(AUNy(A)). Then
AU Ny (A) C V(Ty(uw)).

THEOREM 2.15 ([27]). Let H = (V,€&) be a (k,£)-tight hypergraph on at least
k2 + 3 wvertices. If there exists any (k,l)-co-tight set in H, then

min{|F|: H = (V, F) is a graph for which H U H is (k,{)-redundant}
= max{ Pg'-‘ : C is a family of disjoint (k,£)-co-tight sets} .

Otherwise, H + wv is (k, £)-redundant for every pair u,v € V.

2.3. Connectivity augmentation. By Proposition 2.3, every (k, £)-tight graph
G is cp -connected and thus we augment a cg¢-connected graph to a (cxe + 1)-
connected graph where ¢ ¢ is 0, 1 or 2. There exist several methods to deal with
these particular problems, even linear time algorithms [9, 16]. However, we also need
to augment G to a (k,£)-redundant graph hence we follow simpler ideas from [9, 22].

Let G = (V, E) be a c-connected graph. Let us call a set X C V of cardinality ¢ a
min-cut of G, if G — X is not connected. For a min-cut X of G, let b$ (G) denote the
number of components of G—X. Let b(G) denote the maximum value of b5 (G) over
all min-cuts X of G if there exist any, and let b°(G) := 1 otherwise. Clearly, any edge
set F' that augments G to a (¢+1)-connected graph needs to induce a connected graph
on the components of G — X for every min-cut X. Thus |F| > b°(G)—1. Aset PCV
is called a (¢4 1)-fragment of a c-connected graph G which is not (¢+ 1)-connected
if Ng(P) is a min-cut of G and P induces a connected subgraph of G. Let us denote
the maximum number of pairwise disjoint (¢ + 1)-fragments by t(G). Increasing the
connectivity of a c-connected graph G which is not (¢ 4+ 1)-connected is equivalent
to increasing the number of neighbors of each (¢ + 1)-fragment of G. Hence, for any
edge set F' that augments G to a (c+ 1)-connected graph, |V (F)| > ¢°(G) must hold.
These with Proposition 2.3 imply the following statement.

LEMMA 2.16. Given a (k,£)-rigid graph G. The minimum number of edges that
augment G to a (cke + 1)-connected graph is at least max{bc’cl(G) -1, {%—‘ }

Let us call an inclusion-wise minimal (¢ + 1)-fragment a (¢ + 1)-end. As every
(¢ 4+ 1)-fragment contains at least one (¢ + 1)-end, t°(G) is equal to the number of
pairwise disjoint (¢ + 1)-ends. It is easy to see that, for ¢ = 1, the (¢ + 1)-ends are
pairwise disjoint. As we will see in the following lemma, this statement is also true
for ¢ = 2, even though in this case the structure is slightly more difficult as there
are two types of min-cuts. A min-cut {u,v} of a 2- but not 3-connected connected
graph G is called a weak min-cut if it separates another min-cut {u’, v’} of G, that
is, v’ and v’ are in different connected components of G — {u,v}. Note that in this
case the min-cut {u’,v'} is also weak and b% ({u,v}) = b%4 ({v/,v'}) = 2. If a min-cut
is not weak then it is called a strong min-cut. (For example, in a cycle of length

This manuscript is for review purposes only.
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four, the two neighbors of a vertex form a weak min-cut as the complement of this
two element set form also a min-cut. On the other hand, if we add a diagonal to the
cycle, the resulting graph has only one min-cut, the two endpoints of of the diagonal
edge.) When (k, ) = (2, 3), the structure of G is much simpler by the following result
of Jackson and Jordan [19].

LEMMA 2.17 ([19]). Let G be a (2,3)-rigid graph. Then G contains no weak
min-cuts.

Lemma 2.17 immediately implies the following statement when (k,¢) = (2,3).
However, it holds for general pairs of k and ¢, too.

LEMMA 2.18. Let G be a ¢y o-connected graph. Then the (ck ¢+ 1)-ends of G are
pairwise disjoint.

Proof. If G is (ck,¢ + 1)-connected, the statement holds obviously. Also, if k > ¢
thus ¢ ¢ < 1, then the (cx¢ + 1)-ends of G are clearly pairwise disjoint.

Now suppose that k& < £ hence c; o = 2. Let C; and C3 be two intersecting 3-ends
and let N(Cp) = {u1,v1} and N(C3) = {uz,v2} be the two (weak) min-cuts defining
Cy and Cy. We may suppose that u; € Cy and ug € Cy. If we consider N(C; N Cy)
we can conclude that N(Cy; N Cs) = {u1,usz} that contradicts the minimality of the
3-ends C7 and Cs. 0

3. The (k,{)-M-component hypergraph. In our main theorem we shall com-
bine the results presented in the previous two subsections. However, it was shown in
[27] that the problem of augmenting a (k, £)-rigid graph to a (k,{)-redundant graph
with the minimum number of edges is NP-hard. In this section, we show how this is-
sue can be bypassed by using an auxiliary (k, £)-tight hypergraph which is constructed
by using an extra property of (¢ ¢) + 1)-connected (k, £)-redundant graphs, namely,
their (k, £)-M-connectivity.

First, we list some basic definitions concerning the sparsity matroid. We refer to
[23, 42] for more details. As we have noted before, the edge sets of spanning (k, £)-
tight subgraphs of a graph G correspond to the bases of the (k, £)-sparsity matroid of
G. Tt is well-known, that an equivalence relation can be defined on the ground set S
of an arbitrary matroid M (by using the circuit axioms of a matroid), as follows. Two
elements x,y € S are equivalent if there exists a circuit C' of M such that z,y € C.
The equivalence classes of this matroid are called components of M. The components
of the 2-dimensional rigidity matroid of G are often called the M-components of G
(see e.g. in [19]). By extending this notion to other sparsity matroids, we will call
a component of the (k, £)-sparsity matroid of G a (k, £)-M-component. Note that
if an edge e of G is not redundant, then {e} is a (k, £)-M-component of G and it is
called a trivial (k, £)-M-component of G. (See Fig. 1 (later) for an illustration of non-
trivial (2,3)-M-components in a (2,3)-rigid graph.) Let us also show the following
easy properties of the (k, £)-M-components.

OBSERVATION 1. Let G be a (k,£)-rigid graph and C' a (k,£)-M-component of G.
Then C is an induced subgraph of G.

Proof. Suppose that i,j € V(C). Then there exists a circuit C' C C for which
i,j € V(C'). However, this means that there exists a (k,¢)-tight subgraph 7" C C’
for which 4,5 € V(T) and hence T¢/(ij) € C’ by Lemma 2.2. If ij is an edge of G,
then Tr(ij) + 4j is a circuit that intersects C’, thus the equivalence relation on the
matroid circuits shows that ij € C. ]

This manuscript is for review purposes only.
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8 CS. KIRALY ANDRAS MIHALYKO

LEMMA 3.1. Let G = (V. E) be a (k,0)-rigid graph and let G* = (V, E*) be an
arbitrary (k,£)-tight spanning subgraph of G. Then every trivial (k,£)-M-component
is contained in E*, and, for any non-trivial (k,£)-M-component C of G, ig+(V(C)) =
ElV(C)| —¢.

Proof. If C' is a trivial (k,¢)-M-component of G, then C consists of a single non-
redundant edge e of G. Thus e must also be an edge of G* since G* is (k, £)-rigid
while G — e is not (k, £)-rigid.

Suppose now that C' is non-trivial. Let B = E* N C that is ig-(V(C)) = |B].
Now B must be a base of C' in the (k,{)-sparsity matroid since otherwise we may
add edges from C to G* by maintaining its sparsity (as the edges in C are only
contained in (k,£)-circuits of G consisting of the edges of C' by the definition of a
(k, £)-M-component). This shows that |B| = k|V(C)| — £. 0

If G has only one (k,¢)-M-component, then it is called (k,£)-M-connected.
Note that each non-trivial (k,¢)-M-component is (k,¢)-M-connected. It is obvious
that the (k, £)-M-connectivity of a graph implies that it is (k, ¢)-redundant (see [19]
for (k,¢) = (2,3)). The converse implication is not always true. However, for our
purpose, the following extension of a result from Jackson and Jordan [19] is enough.

LEMMA 3.2. Let k be a positive integer and £ be an integer such that ¢ < %k and
let G be a (cx,e+ 1)-connected and (k,¢)-redundant graph. If k < ¢, then suppose also
that G has mo two vertices which are connected by more than 2k — £ edges. Then G
is (k,€)-M-connected.

Proof. Suppose that G is not (k, ¢)-M-connected and let Hy, ..., H, be its (k, £)-
M-components. Notice that |H;| # 1fori =1,...q, because G is (k, £)-redundant. Let
X; =V(Hi) —U;4; V(H;) denote the set of vertices that do not belong to any (k, £)-

q q
M-component other than H;. Let ¥; = V(H;) — X;. Cleatly |V| = Y |X;|+| U Y3
i=1 i=1

and Z |Y:| > 2] U Y;| hence |V| < Z | X;| + 35 Z |Y;|. Moreover, notice that by
1=1
the (ckr + 1)- connect1v1ty of G |Yi] > ck o+ 1. (More precisely we can only claim

that |Y;| > cx¢ + 1 when |V (H;)| > ¢k + 1, however, this is obvious if ¢, < 1 and
follows from our assumption on the the number of parallel edges in G if £ < £ and
thus ¢ ¢ = 2.)

Let us now choose a (k, ¢)-tight subgraph G* = (V, E*) of G. Let B; = H; N E*

q
for i =1,...,q. Note that U B; = E* . Hence, by using the above inequalities and

=1

q
Lemma 3.1, wegetk|V|—€—|UB|—Z\B|—Zk\V( D ==k 3 Xl +
zl i=1 =1

kZIYI*qf*k(ZIXH ZIY|)+ ZIY\*q€>k|V|+ ZIYI*q€>

k|V| + C’€++1)q qé If0 < Z < k, then the previous inequality gives k|V| — ¢ >
kElV|+ q% —ql>ElV| -1, a contradlctlon If k < ¢ < 2k, then it gives k|V|— ¢ >
E|V| 4 q5k — qf > k|V| — ¢, also a contradiction. 0

Notice that, for example, if G is simple, then G has no two vertices which are
connected by more than 2k — ¢ edges.

For a (k, £)-rigid graph G = (V, E), let Hg = (V, €) be a hypergraph, called the
(k, £)-M-component hypergraph of G, such that £ consists of the non-redundant
edges of E and k|V(C)| — ¢ parallel copies of the hyperedge formed on V(C) for
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each non-trivial (k,¢)-M-component C' of G. (For example, the (1,1)-M-component
hypergraph of G contains | X | — 1 parallel copies of the hyperedge on the vertex set X
for each 2-connected component X of G.) The (2,3)-M-component hypergraph was
defined previously by Fekete and Jordan [11].

LEMMA 3.3. Let G = (V, E) be a (k, 0)-rigid graph, let G* = (V, E*) be a spanning
(k, £)-tight subgraph of G, and let Hg be the (k,£)-M-component hypergraph of G.
Then iy, (X) < ig-(X) holds for each X C V. Furthermore, equality holds exactly
when X induces either all or none of the edges of each (k,£)-M-component of G.

Proof. Let E’' denote the set of non-redundant edges of G and Hy, ..., H; denote
the non-trivial (k, ¢)-M-components of G.

Note that |G* N H;| = k|V(H;)| — ¢ = iy (V(H;)) holds for every ¢ = 1,...,¢t
by Lemma 3.1. Notice that, for each e € E’, ¢ € E* and e € Hg must also hold.
Recall that the (k,¢)-M-components partition the edge set of G and the non-trivial
ones are induced subgraphs by Observation 1. Observe also that, for X C V and
1€ {1,...,t}, either XNV (H;) induces no hyperedge in Hg or V(H;) C X. Hence, we

t

have i+ (X) = z'E/<X>+§ i (XNV(H) 2 i/ (X)+ 2 ing (XN (H)) = ingg (X)

for each X C V where eqlzality holds exactly when for all i = 1,...,t either XNV (H;)
induces no edge in G* or V(H;) C X. O

Lemma 3.3 has the following corollary.

OBSERVATION 2. If G is a (k,£)-rigid graph, then the (k,{)-M-component hyper-
graph He of G is a (k,£)-tight hypergraph. Furthermore, if X induces a (k,£)-tight
subhypergraph of Ha, then G|X] is a (k,{)-rigid subgraph of G.

The following lemma may be understood as the converse of Lemma 3.1.

LEMMA 3.4. Let H = (V,E) be a (k,l)-tight hypergraph. Suppose, for a hyperedge
e € &, that e has exactly k|V (e)| — ¢ parallel copies in E. Let H' be the hypergraph we
get by deleting all the k|V (e)| — £ parallel copies of e from &€ and inserting an arbitrary
(k, £)-tight spanning subgraph on V(e). Then H' is also (k,?)-tight.

Proof. As the number of (hyper)edges does not change we only need to show
the (k, ¢)-sparsity of H'. For the sake of contradiction suppose that H’ is not (k, ¢)-
sparse. Let Y denote the vertex set of a circuit in H’. By the (k,{)-sparsity of
H, |[V(e)NY]| > 2. Hence Lemma 2.2 may be used on the (k,¢)-tight subgraph of
H' induced by V(e) and on Y minus one edge which is not induced by V(e). This
shows that V(e)UY induces a (k, ¢)-rigid subgraph in H' that is not (k, £)-tight which
contradicts ix(V(e)UY) =iy (V(e)UY). d

The key observation which will imply that the global rigidity augmentation prob-
lem is polynomially solvable for all rigid inputs (contrary to the case if we want to
augment G to a (k,£)-redundant graph, see in [27]) is the following.

LEMMA 3.5. Let G = (V, E) be a (k,£)-rigid graph, let He = (V,E) be the (k,{)-
M-component hypergraph of G, and let F' be an edge set on V.

(i) If G+ F is (k,0)-M-connected, then Hg + F is (k, £)-redundant.

(i) If Hg + F is (k,£)-redundant, then G + F is (k,{)-redundant.

Proof. (1) As Hg is a (k, £)-tight hypergraph by Observation 2, each f € F is
redundant in Hg + F. Let us take now a hyperedge ¢’ € £. Let e € E be any edge
from the (k, £)-M-component corresponding to ¢’. As G+ F is (k, £)-M-connected, for
any f € F, there exists an M-circuit C' of G + F' such that e, f € C. Let us choose
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a (k,¢)-tight spanning subgraph G* = (V, E*) of G such that C — f C E*. Clearly,
e € Ta(f). Now iz, (X) <ig+(X) forall X C V (7~ (f)) holds by Lemma 3.3, which
results that V(Tg-(f)) € V(Tug(f)) by Lemma 2.1. This shows that €' € Ty (f)
implying that €’ is redundant in Hg + F.

(ii) As G is a (k, £)-rigid graph, each f € F isredundant in G+ F'. It is also obvious
that every edge that is contained by a non-trivial (k,¢)-M-component is redundant.
Now let us consider an edge e that is not redundant in G. That is, e € ENE. Now,
as Hg is (k,0)-tight and Hg + F is (k,£)-redundant, there is an f € F, such that
€ € Tyo(f) thus Hg — e+ f is (k, £)-tight. Now by using Lemma 3.4 sequentially on
the non-trivial hyperedges starting with Hg — e + f we can get a (k, £)-tight graph
G*, as the conditions of Lemma 3.4 are met after every step we made. In every step
an arbitrary (k, ¢)-tight subgraph can be inserted, hence we may insert the one from
G provided by Lemma 3.1. Thus G* C G, G* is (k, ¢)-tight and e ¢ G*. This shows
that e is (k, £)-redundant in G. ad

Note that Lemma 3.2 implies that if F' is a feasible solution of Problem 2 for a
(k, 0)-rigid graph G (and G + F is simple when k < ¢ < %k), then G + F is (k, {)-
M-connected. Now, Lemma 3.5 implies that Hg + F' is (k,f)-redundant. On the
other hand, if Hg + F is (k,¢)-redundant, then G + F is also (k,¢)-redundant by
Lemma 3.5. Hence, to solve Problem 2, it is enough to find a minimal edge set F
for which G + F is (¢ ¢ + 1)-connected and H¢ + F is (k,¢)-redundant. As Hq is
(k, £)-tight by Observation 2, the results on (k,¢)-redundant augmentations can be
applied this way. (Note that, when we seek for a (k,¢)-redundant augmentation of
a (k,£)-rigid graph, the (k,¢)-M-connectivity of G + F' is not guaranteed. It was
shown in [27] that the problem of finding a minimum cardinality edge set that makes
a (k, £)-rigid (hyper)graph (k, £)-redundant is NP-hard whenever ¢ > k.)

4. The min-max theorem. In this section we shall merge the results on the
problem of augmenting a (k, £)-tight hypergraph to a (k, £)-redundant hypergraph and
on the (ck¢ + 1)-connectivity augmentation problem to a new min-max theorem for
Problem 2 by mixing the statements of Theorem 2.15 and Lemma 2.16, as follows.

THEOREM 4.1. Let k > 0 and € be two integers such that £ < 3k. Let G = (V, E)
be a (k,0)-rigid graph on at least k* + 3 vertices. Suppose also that G is simple if
k<t Let Hg = (V,€) be the M-component hypergraph of G. If G is (cxe + 1)-
connected, (k,0)-tight and there is no (k,£)-co-tight set in Hg, then any new edge
makes G (k, £)-redundant. Otherwise, min{|F|: G+F = (V, EUF) is (k,{)-redundant

and (cx.¢ + 1)-connected} = max {bc’“v‘f(G) — 1, max { [%—‘ : A is a family of disjoint
(k, £)-co-tight sets of Ha and (ke + 1)-fragments of G}}

Note that, for a non-tight (k,¢)-rigid graph G which is not (k, ¢)-M-connected,
He always has a (k, £)-co-tight set since the vertex set of a hyperedge corresponding
to a non-trivial M-component is (k, £)-tight and hence the complement of its vertex
set is (k, £)-co-tight. This statement is also true for (2,3)-tight graphs as any edge
of G forms a (2,3)-tight subgraph of G. Also, if G is already (k,¢)-redundant and
(¢k,¢ +1)-connected (and hence (k, £)-M-connected by Lemma 3.2), then both sides in
Theorem 4.1 are 0. Nonetheless, if G is (k, ¢)-tight for (k,¢) # (2,3), it can happen
that G has no (k, £)-co-tight sets (see [27]).

Our main tool to prove Theorem 4.1 for (k, ¢)-rigid (and not for only (k, £)-tight)
inputs is the usage of the M-component hypergraph. If G + F is (k, £)-redundant and
(¢k,e+1)-connected, then Lemma 3.2 can be used to prove that it is (k, £)-M-connected
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and hence Hg + F is (k, £)-redundant (by Lemma 3.5) except when £ > k and G+ F
has more than 2k — ¢ parallel edges between two vertices. The following statement
implies that this exceptional case can be avoided.

LEMMA 4.2. Let k > 0 and £ be two integers such that { < %k, and let G = (V,E)
be a (k,£)-rigid graph on at least k* + 3 vertices. Then there exists an edge set F with
min{|F'| : G+ F' = (V,EUF") is (k,£)-redundant and (ci ¢ + 1)-connected} edges for
which G + F is (k, £)-redundant, (ci¢ + 1)-connected and no edge in F is parallel to
any edge in G.

Proof. Let F' be a minimum cardinality edge set for which G + F is (k,{)-
redundant, (cge + 1)-connected and F' has the minimal number of parallel edges
with G. Assume that an edge e € F is parallel to some edge ¢’ of G. As the omission
of e from F' does not affect the (c¢x ¢ + 1)-connectivity of G + F', we only need to deal
with the (k, ¢)-redundancy of G + F.

Let G' = (V, E’) be a (k, £)-tight spanning subgraph of G with ¢’ € E'. Tt is easy
to check that a simple complete graph Ky on V is (k,¢)-redundant if |[V| > k% + 3.
Hence, by Lemma 2.8, E" = (J;ck,, g Tor(f), that is, for each edge e; in E' (in
particular, for e’) there exists an edge f., € Ky — E’ such that e; € Te/(fe,). Thus
To(e) = Tar(€') C Ter(fer) by Lemma 2.1. This combined with the fact that E' =
Userum—p) Ter(f) by Lemma 2.8 results that B = Ucp_eyum—p—eyuy Ter (f)
also holds, that is, F/ = F — e U f’ is also a minimal edge set for which G + F’ is
(k,¢)-redundant, (cg + 1)-connected and has less edges parallel to the edges of G
than F' (since, if f' would be parallel to an edge e* € E — E' — e, T/ (e) C Tor(e*)
would contradict the minimality of F), a contradiction. Thus F' contains no parallel
edge to G. O

We start this section by proving Theorem 4.1 for (k,¢) = (2,3), because of its
importance in rigidity theory. As it is mentioned in Section 2.1 this is the global
rigidity augmentation problem in R2. Later in this section we sketch how the presented
method can be generalized to solve the cases where k < ¢ < 3k but (k, £) # (2,3) and
in the end for ¢ < k.

4.1. Proof of Theorem 4.1 for (k,¢) = (2,3). For the sake of simplicity, we
shall omit the prefix (2,3) from all the notions in this subsection such as (2, 3)-tight
graph or set, (2,3)-co-tight set, (2,3)-MCT set or (2,3)-M-component, and use the
term of rigid and redundantly rigid graph instead of simple (2, 3)-rigid and (2, 3)-
redundant graph, respectively, to match the terminology of rigidity theory. When we
are talking about hypergraphs, we keep the notions (2, 3)-rigid and (2, 3)-redundant.
We may call graphs that are redundantly rigid and 3-connected globally rigid. As
in this case ¢, = 2 we may omit it from the superscript of b% (G) and b*(G). When
a graph is 2-connected but not 3-connected all its min-cuts have cardinality two. A
min-cut of size two will be called a cut-pair.

Notice that, if G is 3-connected, then Theorem 4.1 follows directly by Theo-
rem 2.15 and Lemmas 3.2, 3.5 and 4.2. For a non-3-connected graph G the min > max
implication in Theorem 4.1 is obvious by Proposition 2.9 and Lemmas 2.16, 3.2, 3.5
and 4.2. To prove the min < max part, let us consider the family which consists of all
MCT sets of Hg and all 3-ends of G. Let us call the inclusion-wise minimal elements
of this family the atoms of G. (In Fig. 1, these are the three sets formed by the
highlighted vertices: the big (blue) disks form an MCT set of Hc, the (gray) square
vertex forms an MCT set of Hg which is also a 3-end of G, and the (red) triangle
vertices form a 3-end of G. At the end of Section 4.1, we present other examples.)

This manuscript is for review purposes only.
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Fig. 1: A rigid graph with its M-components (encircled). It has two 3-ends: the one
formed by the (red) triangles and the other one formed by the (gray) square. The
M-component hypergraph has two MCT sets: the one formed by the big (blue) disks
and the other one formed by the (gray) square. Adding an edge between the (gray)
square and one (red) triangle augments the graph to a 3-connected graph. Adding
one edge between the (gray) square and one (blue) disk augments the M-component
hypergraph to a redundantly rigid hypergraph. Hence the addition of these two edges
to the graph results in a globally rigid graph.

Let us denote the family of atoms by A*. We shall show that the atoms are pairwise
disjoint and there exists a set of max {b(G) -1, [@—‘ } edges that augments G to a
globally rigid graph. Hence we first need to prove the following.

LEMMA 4.3. Let G = (V, E) be a rigid graph which is not 3-connected. Then the
atoms of G are pairwise disjoint.

To prove Lemma 4.3, we need the following three statements.

OBSERVATION 3. Suppose that C' is a co-tight set in the tight hypergraph Ha =
(V,E), and C" C C such that dy, (C',C — C") = 0. Then C’ is also co-tight.

Proof. Recall that dy,(C’,C — C'") = 0 means that no hyperedge of Hg has
vertices in both C” and C—C”. This implies that |£(C)| = |E(C")|+|E(C—C")|. Recall
that a set X is co-tight if and only if |V — X| > £ and £(X) = k|X|. Furthermore,
for any set Y with k|V — Y| > ¢, E(Y) > k|Y| always holds. Thus if C’ is not
(2,3)-co-tight, then |E(C")| > 2|C’| + 1 and hence |E(C — C')| < 2|C - C'| — 1, a
contradiction. 0

LEMMA 4.4. Let G = (V, E) be a rigid graph which is not 3-connected and let
a € A€ A* be a vertex from an atom of G. Then there is no v € V such that a and
v forms a cut-pair.

Proof. If A is a 3-end, then the statement follows immediately by Lemmas 2.17
and 2.18.

Now let A be an MCT set of Hg. Then Hg[V — A] is tight and hence Observation
2 implies that G[V — A] is rigid. Suppose that a,v forms a cut-pair for a € A and
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veV.

Suppose first that |V — A| > 2. Then G[V — A] is 2-connected by Proposition 2.3.
Thus V — A intersects only one component of G — {a,v}, otherwise v would be a
cut-vertex in G[V — A]. Now A — a contains at least one component of G — {a, v}
(which contains a 3-end of G), contradicting the minimality of A.

Now assume that |V — A| < 2. By the minimality of A, it cannot contain any
components of G—{a,v}. Thus V — A consists of two vertices from the two component
of G — {a,v}. However, this contradicts the fact that Hqg[V — A] is tight, because
every trivial component of H¢ is also an edge of G. ]

LEMMA 4.5. Let G = (V, E) be a rigid graph which is not 3-connected and let
Ha = (V,E) be its M-component hypergraph. Let C and L be two distinct atoms
of G such that C' is an MCT set of Hg and L is a 3-end of G. Then there is no
M-component of G which has a vertex set intersecting both C — L and L.

Proof. For the sake of a contradiction, suppose that there exists an M-component
of G with vertex set M such that M N L # () and M N (C — L) # (. By Lemma 4.4,
|C' N Ng(L)| = 0 thus this M-component cannot be trivial. Conseqently, G[M] is M-
connected and hence redundantly rigid and thus 2-connected. Therefore, Ng(L) C M.
E(C—M)| < [E(C) - (2[M|=3) = 2|C| - (2|M]=3) < 2[C| = (2|CNM|+2|Ne(L)| -
3) < 2|C'— M|, where the second inequality comes from |CNNg(L)| = 0 by Lemma 4.4.
As|C—M| < |C| < [V|-2, |E(C—M)| < 2|C — M| is a contradiction by our previous
observation that |£(X)| > 2|X| holds for each X C V with |X| < |V| — 2. 0

Proof of Lemma /4.53. Let C* denote the family of MCT sets of Hg and let £*
denote the family of 3-ends of G. By Lemma 2.18, the members of £* are pairwise
disjoint.

Suppose that C' € C*NA* and L € £L*NA*. By Lemma 4.5, dy,(CNL,C—L) = 0.
Then, by Observation 3, either C N L = @ or C N L is co-tight in Hg contradicting
the minimality of C.

Suppose now that there exist two distinct intersecting sets C1,Cy € C* N A*. By
Lemma 2.10, |Cy U Cy] > |V| — 1 contradicting Lemma 4.4 as G is not 3-connected.O

Now, we turn to prove that there exists a set of max {b(G) -1, [%—‘} edges
that augments H¢ to a (2, 3)-redundant hypergraph and G to a 3-connected graph. A
set X is called a transversal of a family S if | XNS| =1 for each S € S and | X| = [S].
Let P be a transversal of A*. As the members of A* are pairwise disjoint if G is not
3-connected by Lemma 4.3, choosing one arbitrary vertex from every A € A* obtains
a transversal. Observe that P is a minimum cardinality vertex set that intersects
all MCT sets and 3-ends, and consequently all co-tight sets and 3-fragments. Hence
|A] < |P| holds for an arbitrary family A of disjoint co-tight sets and 3-fragments.
We shall show now that a connected graph on P augments G to a 3-connected graph
and H¢ to a (2, 3)-redundant hypergraph. Later, we will reduce the number of edges
needed for this augmentation to the optimum value.

LEMMA 4.6. Suppose that G is a rigid graph which is not 3-connected. Let P
be a transversal of A*. Then, for any connected graph H = (P,F) on P, G+ F is
3-connected.

Proof. G is 2-connected by Proposition 2.3. Also, P contains no member of
any cut-pair by Lemma 4.4. If there exists a cut-pair in G + F, then in one of its
components there is no vertex from P, but P intersects all 3-ends and this component

This manuscript is for review purposes only.
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is the union of some 3-fragments of G which must contain a 3-end and hence an atom,
a contradiction to the choice of P. O

To show that Hg and a connected graph on P results a (2, 3)-redundant hyper-
graph, we extend the ideas of the proof of Theorem 2.15 from [27].

LEMMA 4.7. Let G = (V, E) be a rigid graph which is not 3-connected and let
He = (V,E) be its M-component hypergraph. Let A, B be two atoms such that A is
an MCT set of Hg. Then AN Ny, (B) = 0.

Proof. Recall that A and B are disjoint by Lemma 4.3. Since G is not 3-connected,
|V — (AU B)| > 2 by Lemma 4.4. Thus if both of A and B are MCT sets, then the
statement follows by Lemma 2.13.

Suppose that B is a 3-end. By Lemma 4.3 A — B = A hence Lemma 4.5 implies
AN Ny (B) =0. a0

Lemma 4.7 and the fact that 3-ends are not connected in G' immediately imply
the following.

OBSERVATION 4. The vertex set P induces no edge in G.

Recall that Ry, (F) denotes the set of redundant hyperedges of Hg in Hg + F.
The following lemma and its proof is a direct extension of [27, Lemma 5.8].

LEMMA 4.8. Suppose that G is a rigid graph which is not 3-connected and Heg is
its M-component hypergraph. Let A* be the set of atoms of G and let P be a transversal
of A*. Let F be an edge set of a connected graph on P' C P. Then Ry (F) is the
minimal tight subhypergraph inducing all elements of P'. In particular, if F is the
edge set of a star Ky p|—1 on the vertex set P, then Hg + F' is (2, 3)-redundant.

Proof. Recall that Ry, (F) = Uep Tre (f) by Lemma 2.8. Let us use induction
on |F|. If F = {ij}, then Ry, (F) = Ty (i) which is the minimal tight subhyper-
graph of H¢g containing both of ¢ and j by Lemma 2.1.

CLAIM 4.9. For each p € P there exists a set D, such that D, C V(Tu.(pq))
with |Dp| > 2 for all g € P —p.

Proof. Let A, B € A* such that p € A and ¢ € B. We claim that D, := Ng(A) is
a suitable set. By Proposition 2.3, |[Dp| > 2. If A is an MCT set of H¢, then Lemmas
4.3 and 4.7 imply that (AU Ny, (A)) N B = (. Hence, by the definition of Hg and
Lemma 2.14, AUNg(A) C AUNy, (A) C V(Tu,(pq)), and thus D, C V(T (pq)). If
A is a 3-end, then each ¢ € P—p is an element of V — (AUNg(A)) by Lemmas 4.3 and
4.4. Now the tightness of T3 (pq) and the definition of Hg imply that G[V (T3 (pq))]
is rigid and hence 2-connected by Proposition 2.3. Since p and ¢ are from different
connected components of G — Ng(A), D, = Ng(A) C V(T (pq)) follows. O

Let ¢j € F' such that F' —4j is connected. By induction, Ry, (F' — ij) is a tight
subhypergraph of Hg which induces each element of V(Ry (F — ij)), in particular,
we may assume (by possibly switching the role of ¢ and j) that i € V(Ry (F—ij)). If
Jj € V(Ry (F—ij)) also holds, then T3, (ij) C Ry (F—ij) by Lemma 2.1. Hence we
may assume that j ¢ V(R (F —ij)). The connectivity of F' —ij implies that there
exists an edge ij’ € F'—ij. Note that Ty (ij') C Ry (F —ij) by Lemma 2.8. Hence
D; CV(Tu,(if")) CV(Ry,(F —ij)) and D; C V(Ty (i) by Claim 4.9. Thus we
may use Lemmas 2.2 and 2.8 to conclude that Ry, (F) = Ry, (F —ij) U Twe (i) is
tight.

Let now 7 be the minimal tight subhypergraph of H which induces all elements
of P'. Lemma 2.1 imply that Ty, (f) € T for each f € F. Hence it follows by
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Lemma 2.8 that Ry, (F) = Ujep Tre (f) € T, that is, Ry (F) = T.
Finally, if P" = P, then P C V(Ry, (F)) and thus Ry, (F') = Hg by Lemma 2.12
since P intersects every MCT set. ]

Now we show how the cardinality of the augmenting edge set provided by the
above lemmas can be reduced to the optimum. By a direct extension of [27, Lemma
5.9] and its proof, we get the following.

LEMMA 4.10. Let G = (V, E) be a not 3-connected rigid graph with M-component
hypergraph He. Let A* be the set of atoms of G and let P be a transversal of A*.
Suppose that x1, 2,23,y € P are distinct vertices. Let T* = Tyg(21y) U Ty (z2y) U
Tue(xsy). Then T* = Tyg(x1y) U Tag (x2x3) or T = Tug (x2y) U T (z123) holds.

Proof. Let T* = (V*,£*). Let us suppose that T* # Ty, (z1y) U T (T2x3).
Thus there exists a hyperedge e, for which e € £* and e ¢ Ty, (x1y) U Tar, (z223).

Lemmas 2.8 and 4.8 imply that 7* is the minimal tight subhypergraph of G in-
ducing all of 1, x2, 3 and y. However, they similarly imply that this statement also
holds for Ty, (21y) U T (x223) U T (23y) and Ta g (21y) U Tg (x223) U T (2122),
that is, these two hypergraphs both are equal to 7*. Since e € T* and e ¢ Ty, (z1y)U
Tug (xaxs), we get e € Ty, (z3y) and e € Ty (T122).

Now Lemma 2.2 implies that Ty, (z3y) U T, (x122) is a tight subhypergraph of
G (and also of 7*) inducing all of 1, x2, x5 and y, hence it must be equal to 7*. O

Observe that the operation in Lemma 4.10 allows us to reduce the cardinality of
the edge set used for the augmentation by maintaining the property that it augments
He to a (2,3)-redundant hypergraph (and hence G to a redundantly rigid graph by
Lemma 3.5). However, we also need to maintain the 3-connectivity of G + F to
complete the proof of Theorem 4.1.

Proof of Theorem /.1 for (k,¢) = (2,3). As we have seen at the beginning of this
section, we only need to prove the min < max part of Theorem 4.1 and only for the
case where G is not 3-connected. In this case, the atoms of G (denoted by A*) are
pairwise disjoint by Lemma 4.3 and a tree on a transversal P of A* augments G to
a globally rigid graph with |A*| — 1 edges by Lemmas 3.5, 4.6 and 4.8. Note that,
as A* consists of pairwise disjoint MCT sets of the M-component hypergraphH ¢ of

G and 3-ends of G, the maximum in Theorem 4.1 is at least max {b(G) -1, [@—‘ },

furthermore, this latter value equals to |.A*| — 1 when | A*| < 3 completing our proof
for this case.

To reduce the number of edges needed for the augmentation, we do the following
procedure. Let us define a vertex set N C P. The set N stands for “not fixed”
vertices while vertices in P — IV are the “fixed” vertices. We can fix an edge xy by
removing x and y from N and adding xy to F.

We shall keep some properties during the whole procedure:

1. For an arbitrary star Sy on the vertex set N, Hg+F+S is a (2, 3)-redundant
hypergraph.
2. In every 3-end of G + F, there is at least one vertex from N.
3. max{b(G +F)-1, P—g'—‘ } +|F| = max{b(G) -1, PL;'—‘ }
Notice that Properties 1-3 hold for N = P and F' = () by Lemmas 4.6 and 4.8.

Remark 4.11. Properties 2 and 1 ensure that G + F + Sy is 3-connected and
Hag + F + Sy is (2,3)-redundant and thus G + F + Sy is redundantly rigid by
Lemma 3.5.
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Remark 4.12. If |N| > 4, then from any two edges chosen on z1, 22,23 € N one
may fix at least one of them (by Lemma 4.10) in such a way that this fixing maintains
Property 1.

By Remark 4.12 we always aim to find at least two possibilities to fix such that
Property 2 is maintained. Also, if it can be done in such a way that max{b(G +

F)y—1, Pzﬂ—‘ } decreases by one, then we can maintain Properties 1-3. Roughly, we

distinguish 4 different possibilities in each of which we find 3 vertices from N such
that we can apply Remark 4.12 and hence we can fix one edge while maintaining
Properties 1-3.

LEMMA 4.13. Let G be a not 3-connected rigid graph with M-component hyper-
graph Heg. Let A* denote the atoms of G. Assume that |A*| > 4. Let P be a
transversal on A*. Let N C P be a vertex set and F' be an edge set on P such that G,
N and P satisfy Properties 1-3. If [N| > max{4,b(G + F') + 1}, then we can choose
x,y € N, such that for N — {z,y} and F + {xy} (that is, for fixing xy) Properties
1-3 also hold.

Proof. We use the following method for the proof. Notice, that this can be turned
into a polynomial time algorithm.

60 1 I b(G+F)—1> P—m,then

2 If there is only one cut-pair (u,v) such that b, .\ (G + F) = b(G + F), then
Choose 21, 9 from a component of G+ F — {u, v} that contains at least
two vertices from N. Let z3 € N be a vertex from a component of
G + F — {u,v} that does not contain z; and xs.

3 else
Let (u1,v1) and (ug,v2) be two cut-pairs for which b, (G + F) =
b((G + F) = bluyu)(G + F). Choose x1,75 € N from two different
components of G + F — {uy,v1} that do not contain {ug,vs}. Choose
x3 € N from a component of G + F — {ug,v2} that does not contain

{u,v1}.

4 else

5 If there is a 3-fragment K of G such that [INNK| > 2 and [N — K| > 2, then
Choose z1, 2o from N N K and choose x3 from N — K.

6 else (Notice that if b(G + F) = 1, then this is the only possible case.)

Choose z1, 2,23 € N arbitrarily.
7T If He+ F+ SN — {z1,23}) + z123 is (2, 3)-redundant, then
ri=T1,Y = I3.
else
T =9,y 1= T3.

First we prove that the method above is consistent, that is, we can execute each
of its steps. As |[N| > b(G + F)+ 1 and P contains no vertex from a cut-pair of G by
Lemma 4.4, [N| > b(, (G + F) for an arbitrary cut-pair {u,v} hence there exists a
component of G + F — {u,v} that contains at least two vertices from N. This shows
that we can choose vertices in STEP 2 consistently. In STEP 3 there are at least two
components of G + F — {uy,v1} that do not contain {us, vy} since |[N| > 4 and thus
b(uy ) (G + F) > 3. The consistency of STEPS 5 and 6 is obvious.

Now let us show that the choice of z and y maintains Property 2.

CraM 4.14. Suppose that there is a cut-pair {u,v} such that for one component
of G —{u,v}, say K, 1,290 € NN K and z3,y € (V — K)NN. Then fizing either
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r1T3 or xoxs maintains Property 2.

Proof. Notice that the role of z1 and x5 is symmetric thus we might suppose that
we fixed the edge x1x3. Suppose that we form a new 3-end L with it in G 4+ F. Then
necessarily 1,23 € L. If o € L or y € L, then Property 2 holds automatically. On
the other hand, if none of them is in L, then, as the cut-pair {u,v} is strong (since
all the cut-pairs are strong by Lemma 2.17) there is a cut-pair of G in K U{u} or in
K U {v} which separates z; from x5 (see Fig. 2a). There is another cut-pair {u’, v’}
in V — K (other than {u,v}) which separates z3 from y. Both remain cut-pairs after
fixing the edge x1x3. However, this contradicts the assumption that L is 3-end, as
[N¢(L)| = 2 must hold for a 3-end. |

(a) Illustration of Claim 4.14. Notice, that  (b) In case of STEP 6 we cannot form a new
we need the existence of the vertex y. 3-end.

Fig. 2: Proofs why the algorithm of Lemma 4.13 maintains Property 2.

Notice, that the conditions of this claim hold in STEPS 2, 3 and 5 thus with our
choice of z1, x2, and z3 Property 2 is maintained. If G + F is already 3-connected,
then Property 2 is obvious. Otherwise, in STEP 6, every cut-pair cuts G + F' into
two components one of which contains exactly one vertex from N by the condition
of STEP 5 (see Fig. 2b). For the sake of a contradiction, assume that G + F + zy
contains a 3-end L which contains no element of N—{xz, y}. Let Ng(L) = {u,v}. Then
NNL={z,y},V—L—{u,v} # 0, and u,v is a cut pair of G+ F. By the condition of
STEP 5, (u,v) cuts G+ F into two component one of which contains exactly one vertex
from N. Hence exactly L and V — L — {u, v} are these two components. Moreover,
as |L N N| =2, this implies [N N (V — L — {u,v})| = 1, contradicting |N| > 4.

Now we show that our method maintains Property 3. Fixing any edge decreases
[@—I by one while increases F' by one. When we chose x1, 2 and x3 in STEPS 5

or 6, this fact is enough to keep Property 3 true as in these cases max{b(G +F)-—

1, @ } > b(G + F) — 1. We need to show that if the condition in STEP 1 is true,

then we also decrease b(G + F). By a simple calculation on the number of 3-ends,
it can be shown that if 5(G+ F) —1 > PQE—‘, then there are at most two cut-pairs
of G + F satisfying b(,,,)(G + F) = b(G + F) (see [22]). If there is only one such
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18 CS. KIRALY ANDRAS MIHALYKO

cut-pair, the pair (u,v) chosen in STEP 2, then we only need to decrease b, . (G + F)
to decrease b(G + F'). Since zixs and xex3 both connect two different components
of G+ F — {u,v}, b(u)(G + F) decreases by one after fixing any of them. If there
are at least two such cut-pairs, then there are exactly two of them (see for example
[22, Lemma 2.3]). Let now (u1,v1) and (ug,v2) be chosen in STEP 3, then we need
to decrease by, ,)(G + F) and b(y,,.,)(G + F') simultaneously. Again our choice of
z1z3 and xox3 guarantees this.

Therefore, by Remark 4.12 applied to STEP 7, fixing xy maintains Properties 1-3.
This completes the proof of Lemma 4.13. ]

We apply Lemma 4.13 recursively until | N| < max{4,b(G+ F)+1}. To complete
the proof of Theorem 4.1, we need to show the following.

CrAM 4.15. Let F', N be sets, such that they satisfy Properties 1-3 with G. If
2 <|N| < max{3,b(G+ F)}, then, for an arbitrary star Sy on N, G+ F + Sy forms

a 3-connected redundantly rigid graph for which |F|+ |Sy| = max{b(G) -1, P—gl—‘ }

Proof. G + F + Sy is 3-connected and redundantly rigid by Remark 4.11. By
Property 3 it is enough to show that max{b(G +F)—-1, [@—‘} =|Sn|=|N|-1. If

|IN| = b(G + F), then max{b(G—i—F)—l, [%—‘} =|N| -1 as [@—‘ <|N|—=1. On

the other hand, if |N| < b(G + F), then 2 < |[N| < 3 thus ﬂfm —|N| - 1. 0

Recall that A* consists of pairwise disjoint MCT sets and 3-ends of G and hence

the maximum in Theorem 4.1 is at least max {b(G) -1, %*' . On the other hand,

the above claim implies that G can be augmented to a globally rigid graph by an
addition of an edge set of cardinality max{b(G) -1, P—];'—‘ } = max{b(G) -1, [@-‘ }
This completes the proof of Theorem 4.1.

OBSERVATION 5. The method in Lemma 4.13 adds edges only between vertices
from P. This means that G + F is a simple graph by our assumption on G and
Observation 4. Thus G + F is globally rigid in R2 by Theorem 2.5.

Before proving Theorem 4.1 for the cases other than (k,¢) = (2, 3), let us follow
our proof on the graph G in Fig. 3 to find an optimal solution for Problem 2 when
(k,£) = (2,3). Note that the 3-ends and the atoms of G' do not depend on the form
of the inner M-connected graph Gy, however, b(G) and hence the size of the optimal
solution of Problem 2 may do. For example, when Gy = K75 is the complete graph
on 12 vertices, then b(G) = 2. In this case, the optimal solution has four edges by
Theorem 4.1. Indeed, we need at least four edges for the augmentation as we need to
touch each atom of G by Proposition 2.9 and Lemmas 2.16, 3.2 and 3.5. On the other
hand, we know that any connected graph on a transversal of the atoms (for example,
on the set N of the vertices represented by (red) triangles) augments G to a globally
rigid graph by Lemmas 4.6 and 4.8. We start to run the algorithm of Lemma 4.13.
As b(G) = 2, the condition of STEP 1 does not hold hence the algorithm checks the
condition of STEP 5 which holds for any 3-fragment of the cut-pair {u,v}. Hence the
algorithm may choose z1, x5 and x3, as drawn in Fig. 3 and after that it adds the
edge x1x3 in STEP 7. Now, the condition of STEP 5 does not hold for G + z1z3, and
hence in the next step the algorithm takes three arbitrary vertices from N — {z1, 23}
and uses STEP 7 of the algorithm to find the next augmenting edge, for example, zsa.
This way the number of non-covered elements of N reduces to three, and hence the
algorithm stops and extends the augmenting edge set with a star on the remaining
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Fig. 3: A (2,3)-rigid graph G with its (2, 3)-M-components (encircled with solid cir-
cles) where the graph Gy in the light gray area is an arbitrary (2, 3)-M-connected
graph on 12 vertices and the dark grey areas are complete graphs on the drawn ver-
tex sets. The 3-ends of this graphs are the dotted sets (since G cannot contain any
3-ends as each of its vertices is contained in a cut-pair of G). The (2,3)-MCT sets
of the (2, 3)-M-component hypergraph are the vertex sets of the five K5 subgraphs
and the singleton formed by the vertex x; of degree two. Hence the atoms are the
vertex sets of the K5 subgraphs and the two dotted sets which are not containing any
K5 subgraph. These are disjoint as claimed by Lemma 4.3 and no edge of the graph
connects them as stated in Lemma 4.7. The vertices, which are represented by (red)
triangles, form a transversal of the atoms. The addition of the dashed edge represents
the first step of the algorithm of Lemma 4.13 for several choices of Gy.

three vertices by Claim 4.15, for example, it may add bc and cd. Thus, the resulted
(optimal) augmenting edge set {z1x3, x2a, be, cd} has cardinality four.

In our second example, let Gy be the graph which contains the 6 edges drawn in
Fig. 3 (between the elements of each cut-pair which separates other parts of G from
Go) and the edges from u and v to each other vertex of Gy, that is, let Gy be the
drawn matching plus the complete bipartite graph K5 1o where the two element set
of the bipartition is {u,v}. In this case, b(G) = b(y,,)(G) = 6 and hence the optimal
solution has five edges by Theorem 4.1. Indeed, we need at least five edges to make G
3-connected, as G—{u, v} has six connected components. On the other hand, similarly
to the previous example, we know that any connected graph on the set transversal N
of the atoms which is formed by the vertices represented by (red) triangles augments G
to a globally rigid graph and we may reduce its cardinality (which is at least seven) by
running the algorithm of Lemma 4.13. Now, the condition of STEP 1 of the algorithm
holds and the algorithm may choose x1, x2 and x3 as drawn in Fig. 3 in STEP 2. Next,
it takes the augmenting edge ;23 in STEP 7. Now, b(G 4 z1x3) = 5 and we have 5
vertices in our transversal set which are not covered by an augmenting edge. Hence
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the condition of Lemma 4.13 does not hold any more, and the algorithm stops. Now,
Claim 4.15 states that z1x3 and a star on N — {z1,z3} form an optimal augmenting
edge set (for example, {x123,x2a, ab, ac,ad}) of cardinality five.

4.2. Proof sketch of Theorem 4.1 for k£ < ¢ < %k In this subsection we
briefly sketch how the proof of Theorem 4.1 for (k,¢) = (2,3) presented before can
be extended for general (k, £) # (2,3) where k < £ < 3k. In this case we still want to
augment G to a 3-connected graph. The bulk of the proof can be transferred literally,
however, there are two main differences caused by the weak cut-pairs. This is due
to the fact that Lemma 2.17 does not extend for general (k,£), there may be weak
cut-pairs that pose a challenge.

The first issue is in the proof of the extension of Lemma 4.4 for general (k,?).
When the atom A is a 3-end we used Lemmas 2.17 and 2.18 in the proof to conclude
that it cannot contain any vertex a which forms a cut-pair with another vertex v. In
the general case, {a,v} may be a weak cut-pair which separates the two vertices of
N(A) = {u/,v'}. In this case a is a cut vertex of GJAUN (A)] that separates v’ and v'.
Moreover, G|A U N(A)] — a has exactly two components since otherwise a would be
a cut vertex of G (see Fig. 4a for an illustration). Note that |A| > 2 must hold since
G is a simple (k, ¢)-rigid graph in which each vertex has a degree of at least k that is
at least 3 by our assumptions on (k,#). Thus one of the two connected components
in GIJAU N(A)] — a, say the component U’ containing »’ has cardinality at least two.
Now Ng(U'—u') = {u/,a}, and hence U’ —u' C A is a 3-fragment of G, contradicting
the fact that A is a 3-end. Hence we proved the statement if A is a 3-end. The rest
of the proof (that is, when A is a (k,£)-MCT set) can be generalized easily.

A
/ v’ U1 v
u
v u
(a) If the 3-end A contains an element a of (b) All path from 5 to u which avoids v
a cut-pair, then we obtain a smaller 3-end must induce u; hence u ¢ A5 in the proof
which is a contradiction. of Claim 4.16.

Fig. 4: Extension of the proof in Section 4.1 to the case where k < ¢ < %k‘

The second issue appears in the proof of Lemma 4.13 since we used Lemma 2.17
for the proof of Claim 4.14. Note that for a weak pair {u’,v'}, b%u’,v’)(G +F)=2
hence weak pairs can occur only in STEP 5. Hence we still can use Claim 4.14 to
prove that Property 2 for STEPS 2 and 3 as the cut-pair {u,v} is strong in those
cases. However, our choice in STEP 5 may destroy Property 2. Hence we need to
modify this step in the general case, as follows.
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5 If there is a 3-fragment K of G such that [N N K| > 2 and |[N — K| > 2,
then
Choose z}, x4 from N N K and choose z3 from N — K.
If every 3-end of G + F + 223 contains a vertex from N — {2, x3},
then let ©1 =z := 27,
else let x1 = xo := 2.

Cram 4.16. If x1 = z2 and x3 is chosen by STEP 5°, then Properties 1 — 3 are
maintained after fiving the edge xix3.

Proof. Let {u,v} be the cut-pair for which K is a component of G + F — {u,v}.
To see that Property 1 holds, observe that {u, v} separates z; = x5 and x3 and it also
separates the vertices of N—{x1,x3} by the condition in STEP 5°. This implies that the
star Sy _{z, 2.} has an edge wz connecting two distinct components of G—{u,v}. Now
Tae (wz) and Ty (z123) are (k, £)-tight subhypergraphs of He (on at least 3 vertices)
and hence their vertex sets induce (k, £)-rigid subgraphs of G (by the definition of the
M-component hypergraph) which are 2-connected by Proposition 2.3. This implies
that they both contain w and v. Hence Lemma 2.2 implies that Ty, (wz) U Ty, (x123)
is (k,¢)—tight and hence Ty (wx1) C Ty, (wz) U Ty, (z123) by Lemma 2.1. This
with Lemmas 2.8 and 4.8 implies that Ry, (SN —{a1,25} U2173) = Rare (SN—{21,24) U
{z123, wr1}) = R3y. (Sn) and hence Property 1 remains true.

If neither the fixing of x5 nor the fixing of z4,zs maintains Property 2, then it
means that there is a 3-end with vertex set A; in G + F + z}z3 such that A; contains
no vertex from N — {z}, x5} for i = 1,2. Let Ngir(4;) = {ui,v;} for i = 1,2. Now,
NN A; ={},23} and {u,v} (chosen in STEP 5°) separates {u;,v;} in G+ F, as it
separates z; and x5 for ¢ = 1,2. This also means that x} is separated from any other
vertex of N by, say, {u,u;} or {v,u;} since KU{u,v} contains either u; or v; and this
vertex (say, u;) is a cut vertex in (G + F)[K U{u,v}]. Let us denote the vertex set of
the corresponding component of G — {u, u;} or G — {v, u;} that contains only } from
N by A} for i = 1,2. Without loss of generality, we may assume that z is separated
from any other vertex of N by {u,u;}. Now, a similar argument and the existence of
the 3-end A; in G + F + z)x3 implies that x5 is separated from any other vertex of
N by {u,v1}. Furthermore, all paths in G[K U {u,v}] from x5 to u contain u; and
hence A} cannot contain w since otherwise it should also contain w; and hence, by
the connectivity of G[K], all vertices from A} (in particular, z) contradicting that
it contains only 24 from N (see Fig. 4b for an illustration). Hence, the the existence
of the 3-end As in G + F + z4x5 implies that a3 is separated from any other vertex
of N by {v,v2}. However, in this case, v; and all the components of G[V — K] — v,
other than Ay must be in the component of G[V — K| — vy containing z3 and v, and
hence it must contain all the vertices in N — K, a contradiction.

After STEP 5’ P%I—‘ decreased by 1 while | F'| increased by 1, and, as the condition
in STEP 1 did not hold in this case, this is sufficient to maintain Property 3. O

With this modification on STEP 5 we can use the algorithm from Lemma 4.13 so
that it results an optimal edge set for any (k,¢) # (2, 3) pair where k < £ < %k

4.3. Proof sketch of Theorem 4.1 for ¢ < k. It is easy to see, how the
results presented in Section 2 with some elementary observations can be used to prove
Theorem 4.1 in the case where ¢ < 0. (Notice that in this case ¢k ¢ = 0, thus we aim
to augment G to a (k, £)-redundant and connected graph.) We leave the details of this
rather simple special case to the reader and this enables us to assume in what follows
that k& and ¢ are positive integers. This simplifies the presentation of the results. Let

This manuscript is for review purposes only.



880
881
882
883
884

885

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

22 CS. KIRALY ANDRAS MIHALYKO

us now briefly sketch, how the proof presented in Subsection 4.1 may be transferred
to the values of 0 < £ < k. (We note that similar methods may be used also for the
case where ¢ < 0.) In this case ¢; ¢ = 1 thus we aim to augment G to a 2-connected
and (k,¢)-redundant graph. This means, that each 2-end is separated from G by a
cut-vertex and thus cut-pairs in the proofs should be changed to cut-vertices. In fact,
all our proofs can be extended (almost) literally hence we only reprove the counterpart
of Lemma 4.4 as its statement is slightly modified in this case.

LEMMA 4.17. Let k and ¢ be positive integers with k > £ and let G = (V, E) be
a (k,0)-rigid graph which is not 2-connected and let a € A € A* be a vertex from an
atom of G. Then a is not a cut-vertex in A.

Proof. If A is a 2-end, then the statement follows immediately by Lemma 2.18.

Now let A be a (k, £)-MCT set of Hg. Then He[V — A] is (k, £)-tight and hence
Observation 2 implies that G[V — A] is (k, ¢)-rigid and hence connected. For the sake
of a contradiction, suppose that a € A is a cut-vertex of G. This immediately implies
that |A| > 2 and A — a contains at least one component of G — a (which also contains
a 2-end of G), contradicting the minimality of A. O

As the M-connected hypergraph of any (k, £)-rigid graph [12, 29, 35], all the (k, ¢)-
MCT sets of a (k, £)-tight hypergraph [27] and all the 2-ends of a connected graph and
3-ends of a 2-connected graph [9, 16, 22] can be computed in polynomial time, it is
easy to see that the method presented in the proof of Theorem 4.1 yields a polynomial
algorithm for finding the optimal edge set. By developing some further details, the
running time of this algorithm can be reduced to O(|V|?) [26].

5. Concluding remarks. Theorem 4.1 leaves open the natural question, what
can we do if G is not rigid. For general inputs, we give a 2-approximation, as follows.

As we saw in Section 2, the (k, £)-sparse edge sets form the independent sets and
the (k, £)-tight sets form the bases of a matroid. Thus all the edge sets that optimally
augment G to a rigid graph have the same cardinality. Also, such a set can be easily
computed in polynomial time [12, 29]. Moreover, such a set can be chosen in such a
way that no newly added edge is parallel to any original edge of G (if its vertex set
is sufficiently large). Hence our algorithm consists of the following two parts: first
we find a minimal cardinality edge set Fy such that G’ = G + (V, Fy) is a (k, ¢)-rigid
graph (which is still simple if & < £), then using the algorithm presented in Section 4
we augment G’ to a (k,¢)-redundant and (cj ¢ + 1)-connected graph with a new edge
set F,. We show that this result indeed has the approximation ratio of 2.

Any edge set F' that augments G to a (k,¢)-redundant and (cj ¢ + 1)-connected
graph must also augment G to a (k, ¢)-rigid graph. Thus |F| > |F}| holds. On the
other hand, if G + F is (k, {)-redundant and (¢ ¢ + 1)-connected, then G + Fy + F is
also (k,¢)-redundant (since for each edge e G + F + F; — e contains the (k, ¢)-tight
spanning subgraph of G+ F —e) and, obviously, (¢x ¢+ 1)-connected. Hence |F'| > | F3]
follows.

Let us recall the global rigidity pinning problem. In this problem, the goal is to
anchor a minimum set of points of a framework such that the resulting framework
is globally rigid. We note that the complexity of this problem is open, only a 3-
approximation algorithm was given by Fekete and Jordan [11] in the generic case for
arbitrary input graphs. However, we can show that our method yields an optimal
pinning set for rigid graphs and a 2-approximation for general graphs.
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It is easy to see that pinning can be modeled by adding a complete graph on the
anchored vertices to the graph (see [11]). Let G = (V, E) be a (2,3)-rigid (but not
globally rigid) graph that we want to pin down to a globally rigid graph. If G can be
augmented to a globally rigid graph by a single edge, then pinning down its endpoints
results a globally rigid graph. Hence we may assume that no edge augments G to
a globally rigid graph. It is clear that each 3-end of G needs to be pinned down to
eliminate its cut-pairs. On the other hand, each (k,¢)-MCT set of Hg needs to be
pinned down by Lemmas 2.1, 3.2 and 3.5. However, by Lemmas 2.11 and 4.3 all the
atoms of G are pairwise disjoint (if no edge augments it to a globally rigid graph).
Hence, we must pin down a vertex from each atom of G. By Lemmas 4.6 and 4.8 this
pinning results a globally rigid graph and thus this is an optimal pinning. When G
is not rigid, then we can follow the idea of the above approximation algorithm: First,
pin G down to a rigid graph (which can be done optimally in polynomial time [10, 23])
and next pin this (already rigid graph) down to a globally rigid one. Similarly to the
case of augmentation, it can be shown that the approximation ratio of this algorithm
is 2.

Finally, we note that the pinning problem is also solvable in the case where we
have some already pinned vertices. In this case the model is the following. We are
given a graph G = (V, E) and a set V/ C V of the already pinned vertices. We seek a
set P C V — V' of minimum cardinality for which G U Kpyy- is globally rigid. When
G U Ky is rigid, then this problem can be solved optimally since we only need to
cover the atoms of G U Ky which do not contain any vertex from V’. On the other
hand, when G U Ky is not rigid, we can also give a 2-approximation algorithm as
above, since it is not hard to modify the algorithm of Fekete [10] in such a way that
it outputs an minimum cardinality set P, CV — V’ for which G U Kp,y- is rigid.
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