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1. INTRODUCTION

B.-Y. Chen revealed the intrinsic and extrinsic invariants who established an in-
equality including Ricci curvature and squared mean curvature of a submanifold in
a real space form Rn(c) in 1999 (see [4]). In 2005 by B.-Y. Chen, a generalization
of this inequality was proved for arbitrary submanifolds in an arbitrary Riemannian
manifold (see [5]). Subsequently, this inequality has been comprehensively examined
for different ambient spaces by some authors who are achieved some results (see
[3, 7, 16, 19, 22, 25]).

A C∞-submersion ϕ can be defined according to the following conditions: a (pse-
udo)-Riemannian submersion [1, 8, 12, 17, 20, 21], an almost Hermitian submersion
[23], a quaternionic submersion [13] , a slant submersion [11], a Clairaut Submer-
sion [10], an anti-invariant submersion [6], conformal anti-invariant submersion [2],
a semi-invariant submersion [18], etc. As far as we know, Riemannian submersions
were presented by B. O’Neill [17] and A. Gray [8] in 1960s, independently. Es-
pecially, by utilizing the notion of almost Hermitian submersions, B. Watson [23]
presented some differential geometric features among fibers, base manifolds, and
total manifolds. Subsequently, many results occur on this topic.

The main goal of the current paper is to study sharp type inequalities including
the scalar and Ricci curvatures of anti-invariant Riemannian submersions in complex
space forms. The structure of the paper is as follows: After recalling some basic
definitions and formulas in the second part, we investigate several inequalities in-
cluding the Ricci and the scalar curvatures on kerϕ∗ and (kerϕ∗)

⊥ distributions of
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anti-invariant Riemannian submersions in complex space forms and then, we obtain
Chen-Ricci inequalities on kerϕ∗ and (kerϕ∗)

⊥ of anti-invariant Riemannian sub-
mersions in complex space forms.

2. PRELIMINARIES

Let (B1,g1) be an almost Hermitian manifold. This implies [24] that B1 admits a
tensor field J of type (1,1) on B1 such that ∀ Z1,Z2 ∈ χ(B1), we obtain

J2 =−I, g1(JZ1,Z2)+g1(Z1,JZ2) = 0. (2.1)

An almost Hermitian manifold B1 is called Kaehler manifold if

(∇1
Z1
)Z2 = 0, ∀Z1,Z2 ∈ χ(B1),

here ∇1 is the Levi-Civita connection on B1. If {Z1,JZ1} spans a plane section, the
sectional curvature FB1(Z1) = KB1(Z1 ∧ JZ1) of span{Z1,JZ1} is called a sectional
curvature. The Riemannian-Christoffel curvature tensor of a Kaehler manifold [24]
B1(ν) of constant holomorphic sectional curvature ν satisfies

RB1(Z1,Z2,Z3,Z4) =
ν

4
{g1(Z1,Z4)g1(Z2,Z3)−g1(Z1,Z3)g1(Z2,Z4)

+g1(JZ2,Z3)g1(JZ1,Z4)−g1(JZ1,Z3)g1(JZ2,Z4)

+2g1(Z1,JZ2)g1(JZ3,Z4)}

(2.2)

for all Z1,Z2,Z3,Z4 ∈ χ(B1).
Let (B1,g1) and (B2,g2) be Riemannian manifolds. A Riemannian submersion is

a smooth map ϕ : B1 → B2 which is onto and satisfies the following conditions:

(i) ϕ∗p : TpB1 → Tϕ(p)B2 is onto for all p ∈ B1;
(ii) the fibres ϕ−1

x ,x ∈ B2, are Riemannian submanifolds of B1;
(iii) ϕ∗p preserves the length of the horizontal vectors.

The vectors tangent to the fibres are called vertical and those normal to the fibres
are called horizontal. The tangent bundle of B1 splits as the Whitney sum of two
distributions, the vertical one kerϕ∗ and the orthogonal complementary distribution
(kerϕ∗)

⊥ called horizontal, and we denote by h and v the horizontal and vertical
projections, respectively. A horizontal vector field Z1 on B1 is called as basic if Z1
is ϕ-related to a vector field Z1∗ on B2 [17]. A Riemannian submersion ϕ : B1 → B2
specifies two (1,2) tensor fields T and A on B1, by the formulae [17]:

T (Z1,Z2) = TZ1Z2 = h∇
1
vZ1

vZ2 + v∇
1
vZ1

hZ2

and
A(Z1,Z2) = AZ1Z2 = v∇

1
hZ1

hZ2 +h∇
1
hZ1

vZ2

for all Z1,Z2 ∈ χ(B1).
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Lemma 1 (Lemma 4 in [17]). Let ϕ : (B1,g2) → (B2,g2) be a Riemannian sub-
mersion. Then we have:

AZ1Z2 =−AZ2Z1, Z1,Z2 ∈ χ((kerϕ∗)
⊥); (2.3)

TF1F2 = TF2F1, F1,F2 ∈ χ(kerϕ∗); (2.4)

g1(TF1Z2,Z3) =−g1(TF1Z3,Z2), F1 ∈ χ(kerϕ∗), Z2,Z3 ∈ χ(B1);

g1(AZ1Z2,Z3) =−g1(AZ1Z3,Z2), Z1 ∈ χ((kerϕ∗)
⊥), Z2,Z3 ∈ χ(B1).

Let RB1 ,RB2 ,Rkerϕ∗ and R(kerϕ∗)
⊥

stand for the Riemannian curvature tensors of
Riemannian manifolds B1,B2, the vertical distribution kerϕ∗ and the horizontal dis-
tribution (kerϕ∗)

⊥, respectively.

Lemma 2 (Theorem 2 in [17]). Let ϕ : (B1,g2)→ (B2,g2) be a Riemannian sub-
mersion. Then we have:

RB1(F1,F2,F3,F4) = Rkerϕ∗(F1,F2,F3,F4)+g1(TF1F4,TF2F3)

−g1(TF2F4,TF1F3),
(2.5)

RB1(Z1,Z2,Z3,Z4) = R(kerϕ∗)
⊥
(Z1,Z2,Z3,Z4)−2g1(AZ1Z2,AZ3Z4)

+g1(AZ2Z3,AZ1Z4)−g1(AZ1Z3,AZ2Z4),
(2.6)

RB1(Z1,F1,Z2,F2) = g1((∇
1
Z1

T )(F1,F2),Z2)+g1((∇
1
F1

A)(Z1,Z2),F2)

−g1(TF1Z1,TF2Z2)+g1(AZ2F2,AZ1F1)
(2.7)

for all Z1,Z2,Z3,Z4 ∈ χ((kerϕ∗)
⊥) and F1,F2,F3,F4 ∈ χ(kerϕ∗).

Further, the H mean curvature of every fibre of ϕ Riemannian submersion is
defined

H =
1
s

N , N =
s

∑
p=1

TEpEp, (2.8)

where {E1,E2, . . . ,Es} forms an orthonormal basis for the vertical distribution kerϕ∗.
Also, ϕ has totally geodesic fibres if T = 0 on kerϕ∗ and (kerϕ∗)

⊥.

Definition 1 (Definition 3.1 in [6]). Let (B1,g1,J) be a Kaehler manifold and
(B2,g2) be a Riemannian manifold. ϕ : (B1,g1,J)→ (B2,g2) is called anti-invariant,
if kerϕ∗ is anti-invariant with respect to J, i.e. J(kerϕ∗)⊆ (kerϕ∗)

⊥.

From above definition, we get J(kerϕ∗)∩ (kerϕ∗)
⊥ ̸= {0}. We denote the com-

plementary orthogonal distribution to J(kerϕ∗) in (kerϕ∗)
⊥ by η. Then we obtain

(kerϕ∗)
⊥ = J(kerϕ∗)⊕η.

It is straightforward to show that η is an invariant distribution of (kerϕ∗)
⊥ under the

endomorphism J. So, for Z1 ∈ χ(kerϕ∗)
⊥, we can state

JZ1 = αZ1 +βZ1, (2.9)
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here αZ1 ∈ χ(kerϕ∗) and βZ1 ∈ χ(η). Using (2.1) and (2.9), we have

β
2Z1 =−Z1 − JαZ1. (2.10)

Example 1. Let B1 be a 4-dimensional Euclidean space given by B1 = {(x,y,z,w)∈
R 4 : z ∈ R −{k π

2 ,kπ},k ∈ Z and x ̸= 0}. We define the Kaehler structure (J,g1) on
B1 given by

g1 = (dx)2 +(dy)2)+(dz)2 +(dw)2 and J(b1,b2,b3,b4) = (−b4,b3,−b2,b1).

Let B2 be {(x,v) ∈ R 2 : x ̸= 0}. We choose the Riemannian metric g2 on B2 in the
following form

g2 = e−2x((dx)2 +(dv)2).

Now we define the map ϕ : (B1,g1,J)→ (B2,g2) by

ϕ(x,y,z,w) = (ex cosz,ex sinz).

Then the kernel of ϕ∗ is

kerϕ∗ = Span{F1 =−ex cosz
∂

∂y
− ex sinz

∂

∂w
,F2 = ex sinz

∂

∂y
− ex cosz

∂

∂w
},

and the horizontal distribution is spanned by

(kerϕ∗)
⊥ = Span{Z1 = ex cosz

∂

∂x
− ex sinz

∂

∂z
,Z2 = ex sinz

∂

∂x
+ ex cosz

∂

∂z
}.

Thus, ϕ is a Riemannnian submersion. Moreover, JF1 = Z2 and JF2 = Z1 imply that
(kerϕ∗)

⊥ = J(kerϕ∗). Hence ϕ ia an anti-invariant Riemannnian submersion.

3. BASIC INEQUALITIES

First we give the following result. Since ϕ is an anti-invariant Riemannian sub-
mersion, and using (2.2) and (2.5) we have:

Lemma 3. (B1(υ),g1) and (B2,g2) denote a complex space form and a Rieman-
nian manifold and let ϕ : (B1(υ),g1) → (B2,g2) be an anti-invariant Riemannian
submersion. Then any for F1,F2,F3,F4 ∈ χ(kerϕ∗) we obtain

Rkerϕ∗(F1,F2,F3,F4) =
ν

4
{g1(F1,F4)g1(F2,F3)−g1(F1,F3)g1(F2,F4)}

−g1(TF1F4,TF2F3)+g1(TF2F4,TF1F3),
(3.1)

Kkerϕ∗(F1,F2) =
ν

4
{g2

1(F1,F2)−∥F1∥2∥F2∥2}−∥TF1F2∥2

+g1(TF2F2,TF1F1),

here Kkerϕ∗ is a bi-sectional curvature of kerϕ∗.
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Let ϕ : B1(ν)→ B2 be an anti-invariant Riemannian submersion. For every node
k ∈ B1, let {E1, . . . ,Es,e1, . . . ,em} be an orthonormal basis of TkB1(ν) such that
kerϕ∗ = span{E1, . . . ,Es}, (kerϕ∗)

⊥ = span{e1, . . . ,em}.
Now, if we take F4 = F1 and F2 = F3 = Ei, i = 1,2, . . . ,s in (3.1), and using (2.8)

then we arrive at

Rickerϕ∗(F1) =
ν

4
(s−1)g1(F1,F1)− sg1(TF1F1,H )+

s

∑
i=1

g1(TFiF1,TF1Fi). (3.2)

From here, we get:

Theorem 1. Let ϕ : (B1(ν),g1)→ (B2,g2) be an anti-invariant Riemannian sub-
mersion. Then we have

Rickerϕ∗(F1)≥
ν

4
(s−1)g1(F1,F1)− sg1(TF1F1,H ).

For a unit vertical vector F1 ∈ χ(kerϕ∗), the equality status of the inequality holds if
and only if every fibre is totally geodesic.

Taking F1 = E j, j = 1, . . . ,s in (3.2) and using (2.4), then we obtain

2ρ
kerϕ∗ =

ν

4
s(s−1)− s2∥H ∥2 +

s

∑
i, j=1

g1(TEiE j,TEiE j).

Therefore, we can state the following result.

Theorem 2. Let ϕ : (B1(ν),g1)→ (B2,g2) be an anti-invariant Riemannian sub-
mersion. Then we have

2ρ
kerϕ∗ ≥ ν

4
s(s−1)− s2∥H ∥2.

The equality status of the inequality satisfies if and only if every fibre is totally
geodesic.

Since ϕ is an anti-invariant submersion, and using (2.2), (2.6), (2.9) we obtain:

Lemma 4. Let ϕ : (B1(ν),g1) → (B2,g2) be an anti-invariant Riemannian sub-
mersion. Then for Z1,Z2,Z3,Z4 ∈ χ((kerϕ∗)

⊥) we have

R(kerϕ∗)
⊥
(Z1,Z2,Z3,Z4) =

ν

4
{g1(Z1,Z4)g1(Z2,Z3)−g1(Z1,Z3)g1(Z2,Z4)

+g1(βZ2,Z3)g1(βZ1,Z4)−g1(βZ1,Z3)g1(βZ2,Z4)

+2g1(Z1,βZ2)g1(βZ3,Z4)}+2g1(AZ1Z2,AZ3Z4)

−g1(AZ2Z3,AZ1Z4)+g1(AZ1Z3,AZ2Z4),

(3.3)

B(kerϕ∗)
⊥
(Z1,Z2) =

ν

4
{g2

1(Z1,Z2)−∥Z1∥2∥Z2∥2

−3g2
1(βZ1,Z2)}+3∥AZ1Z2∥2,

here B(kerϕ∗)
⊥

is a bi-sectional curvature of (kerϕ∗)
⊥.
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Now, if we take Z4 = Z1 and Z2 = Z3 = e j, j = 1,2, . . . ,m in (3.3), and using (2.3),
(2.10) then we get

Ric(kerϕ∗)
⊥
(Z1) =

ν

4
{(m+2)g1(Z1,Z1)+3g1(JαZ1,Z1)}

−3
m

∑
j=1

g1(AZ1e j,AZ1e j).
(3.4)

Taking Z1 = ei, i = 1,2, . . . ,m in (3.4), then we have:

2ρ
(kerϕ∗)

⊥
=

ν

4
{m(m+2)+3tr(Jα)}−3

m

∑
i, j=1

g1(Aeie j,Aeie j). (3.5)

Then we write
2ρ

(kerϕ∗)
⊥ ≤ ν

4
{m(m+2)+3tr(Jα)}. (3.6)

Thus, we can give:

Theorem 3. Let ϕ : (B1(ν),g1)→ (B2,g2) be an anti-invariant Riemannian sub-
mersion. Then

2ρ
(kerϕ∗)

⊥ ≤ ν

4
{m(m+2)+3tr(Jα)}.

The equality status of (3.6) satisfies if and only if (kerϕ∗)
⊥ is integrable.

4. CHEN-RICCI INEQUALITIES

Let (B1(ν),g1) be a complex space form, (B2,g2) a Riemannian manifold and
ϕ : B1(ν) → B2 be an anti-invariant Riemannian submersion. For every node k ∈
B1, let {E1, . . . ,Es,e1, . . . ,em} be an orthonormal basis of TkB1(ν) such that kerϕ∗ =
span{E1, . . . ,Es} and (kerϕ∗)

⊥ = span{e1, . . . ,em}. Let’s denote T t
i j by

T t
i j = g1(TEiE j,et), (4.1)

where 1 ≤ i, j ≤ s and 1 ≤ t ≤ m. Similarly, let’s denote Aα
i j by

Aα
i j = g1(Aeie j,Eα), (4.2)

in which 1 ≤ i, j ≤ m and 1 ≤ α ≤ s and we employee

δ(N ) =
m

∑
i=1

s

∑
k=1

((∇1
ei

T )Ek Ek,ei). (4.3)

Now, from (3.1), we get

2ρ
kerϕ∗ =

ν

4
s(s−1)− s2∥H ∥2 +

s

∑
i, j=1

g1(TEiE j,TEiE j).

Using (2.4) and (4.1), we arrive at

2ρ
kerϕ∗ =

ν

4
s(s−1)− s2∥H ∥2 +

m

∑
t=1

s

∑
i, j=1

(T t
i j)

2. (4.4)
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From [9] we know that
m

∑
t=1

s

∑
i, j=1

(T t
i j)

2 =
1
2

s2∥H ∥2 +
1
2

m

∑
t=1

[
T t

11 −T t
22 −·· ·−T t

ss
]2

+2
m

∑
t=1

s

∑
j=2

(T t
1 j)

2 −2
m

∑
t=1

s

∑
2≤i< j≤s

[
T t

ii T t
j j −

(
T t

i j
)2
]
.

(4.5)

If we put (4.5) in (4.4), we obtain

2ρ
kerϕ∗ =

ν

4
s(s−1)− 1

2
s2∥H ∥2 +

1
2

m

∑
t=1

[
T t

11 −T t
22 −·· ·−T t

ss
]2

+2
m

∑
t=1

s

∑
j=2

(T t
1 j)

2 −2
m

∑
t=1

s

∑
2≤i< j≤s

[
T t

ii T t
j j −

(
T t

i j
)2
]
.

From here, we have

2ρ
kerϕ∗ ≥ ν

4
s(s−1)− 1

2
s2∥H ∥2 −2

m

∑
t=1

s

∑
2≤i< j≤s

[
T t

ii T t
j j −

(
T t

i j
)2
]
. (4.6)

On the other hand, from (2.5), taking F1 = F4 = Ei,F2 = F3 = E j and using (4.1), we
have

2 ∑
2≤i< j≤s

RB1(Ei,E j,E j,Ei) = 2 ∑
2≤i< j≤s

Rkerϕ∗(Ei,E j,E j,Ei)

+2
m

∑
t=1

s

∑
2≤i< j≤s

[
T t

ii T t
j j −

(
T t

i j
)2
]
.

From the last equality, (4.6) can be written as

2ρ
kerϕ∗ ≥ ν

4
s(s−1)− 1

2
s2∥H ∥2 +2 ∑

2≤i< j≤s
Rkerϕ∗(Ei,E j,E j,Ei)

−2 ∑
2≤i< j≤s

RB1(Ei,E j,E j,Ei).
(4.7)

Furthermore, we know that

2ρ
kerϕ∗ = 2 ∑

2≤i< j≤s
Rkerϕ∗(Ei,E j,E j,Ei)+2

s

∑
j=1

Rkerϕ∗(E1,E j,E j,E1).

If we put the last equality in (4.7), then we have

2Rickerϕ∗(E1)≥
ν

4
s(s−1)− 1

2
s2∥H ∥2 −2 ∑

2≤i< j≤s
RB1(Ei,E j,E j,Ei).

Since B1 is a complex space form, curvature tensor RB1 of B1 provides equation
(2.2), therefore we acquire

Rickerϕ∗(E1)≥
ν

4
(s−1)− 1

4
s2∥H ∥2.
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Thus, we can give the following result:

Theorem 4. Let ϕ : B1(ν)→B2 be an anti-invariant Riemannian submersion from
a complex space form (B1(ν),g1) onto a Riemannian manifold (B2,g2). Then we have

Rickerϕ∗(E1)≥
ν

4
(s−1)− 1

4
s2∥H ∥2.

The equality status of the inequality satisfies if and only

T t
11 = T t

22 + · · ·+T t
ss

T t
1 j = 0, j = 2, . . . ,s.

From (3.5), we have

2ρ
(kerϕ∗)

⊥
=

ν

4
{m(m+2)+3tr(Jα)}−3

m

∑
i, j=1

g1(Aeie j,Aeie j).

Using (2.10) and (4.2), then we have

2ρ
(kerϕ∗)

⊥
=

ν

4
{m(m+2)+3tr(Jα)}−3

s

∑
α=1

m

∑
i, j=1

(Aα
i j)

2. (4.8)

From (2.3) then (4.8) turns into

2ρ
(kerϕ∗)

⊥
=

ν

4
{m(m+2)+3tr(Jα)}−6

s

∑
α=1

m

∑
j=2

(Aα
1 j)

2 −6
s

∑
α=1

∑
2≤i< j≤m

(Aα
i j)

2. (4.9)

Moreover, from (2.6), taking Z1 = Z4 = ei,Z2 = Z3 = e j and using (4.2) we obtain

2 ∑
2≤i< j≤m

RB1(ei,e j,e j,ei) = 2 ∑
2≤i< j≤m

R(kerϕ∗)
⊥
(ei,e j,e j,ei)

+6
s

∑
α=1

∑
2≤i< j≤m

(Aα
i j)

2.
(4.10)

If we consider (4.10) in (4.9), then we have

2ρ
(kerϕ∗)

⊥
=

ν

4
{m(m+2)+3tr(Jα)}−6

s

∑
α=1

m

∑
j=2

(Aα
1 j)

2

−2 ∑
2≤i< j≤m

RB1(ei,e j,e j,ei)+2 ∑
2≤i< j≤m

R(kerϕ∗)
⊥
(ei,e j,e j,ei).

Since B1 is a complex space form, curvature tensor RB1 of B1 satisfies (2.2), hence
we get

2Ric(kerϕ∗)
⊥
(e1) =

ν

4
(2m−2+6∥βe1∥2)−6

s

∑
α=1

m

∑
j=2

(Aα
1 j)

2.

Then we can write

Ric(kerϕ∗)
⊥
(e1)≤

ν

4
(m−1+3∥βe1∥2).
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Thus, we can give the following result:

Theorem 5. Let ϕ : B1(ν)→B2 be an anti-invariant Riemannian submersion from
a complex space form (B1(ν),g1) onto a Riemannian manifold (B2,g2). Then we have

Ric(kerϕ∗)
⊥
(e1)≤

ν

4
(m−1+3∥βe1∥2),

the equality status of the inequality satisfies if and only

A1 j = 0, j = 2, . . . ,m.

Next, we can state the inequality of Chen Ricci among the kerϕ∗ and (kerϕ∗)
⊥.

The ρ scalar curvature of B1(ν) is defined as

2ρ =
m

∑
t=1

Ric(et ,et)+
s

∑
k=1

Ric(Ek,ek),

2ρ =
s

∑
j,k=1

RB1(E j,Ek,Ek,E j)+
m

∑
i=1

s

∑
k=1

RB1(ei,Ek,Ek,ei)

+
m

∑
i,t=1

RB1(ei,et ,et ,ei)+
m

∑
t=1

s

∑
j=1

RB1(E j,et ,et ,E j).

(4.11)

Since B1(ν) is a complex space form, using (4.11) and (2.2), we have

2ρ =
ν

4
{s(s−1)+m(m+2)+2sm+3tr(Jα)}. (4.12)

On the other hand, using the equations (2.5), (2.6) and (2.7), we obtain also the ρ

scalar curvature of B1(ν) as

2ρ = 2ρ
kerϕ∗ +2ρ

(kerϕ∗)
⊥
+ s2∥H ∥2

+
s

∑
j,k=1

g1(TEk E j,TEk E j)+3
m

∑
i,t=1

g1(Aeiet ,Aeiet)

−
m

∑
i=1

s

∑
k=1

g1((∇
1
ei

T )Ek
Ek,ei)+

m

∑
i=1

s

∑
k=1

{g1(TEk ei,TEk ei)−g1(AeiEk,AeiEk)}

−
m

∑
t=1

s

∑
j=1

g1((∇
1
et

T )E j
E j,et)+

m

∑
t=1

s

∑
j=1

{
g1(TE j et ,TE j et)−g1(Aet E j,Aet E j)

}
.

Using (4.3) and (4.5), we obtain

2ρ = 2ρ
kerϕ∗ +2ρ

(kerϕ∗)
⊥
+

1
2

s2∥H ∥2 − 1
2

m

∑
t=1

[
T t

11 −T t
22 −·· ·−T t

ss
]2 (4.13)

−2
m

∑
t=1

s

∑
j=2

(
T t

1 j
)2

+2
m

∑
t=1

s

∑
2≤ j<k≤s

[
T t

j jT t
kk −

(
T t

jk
)2
]
+6

s

∑
α=1

m

∑
t=2

(Aα
1t)

2
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+6
s

∑
α=1

m

∑
2≤i<t≤m

(Aα
it )

2 +
m

∑
i=1

s

∑
k=1

{g1(TEk ei,TEk ei)−g1(AeiEk,AeiEk)}

−2δ(N )+
m

∑
t=1

s

∑
j=1

{
g1(TE j et ,TE j et)−g1(Aet E j,Aet E j)

}
.

Using (4.7), (4.10) and (4.12) in the (4.13) then we have
ν

4
{sm+m+ s−1+3∥βe1∥2}= Rickerϕ∗(E1)+Ric(kerϕ∗)

⊥
(e1)+

1
4

s2∥H ∥2

− 1
4

m

∑
t=1

[
T t

11 −T t
22 −·· ·−T t

ss
]2 −

m

∑
t=1

s

∑
j=2

(
T t

1 j
)2

+3
s

∑
α=1

m

∑
t=2

(Aα
1t)

2 −2δ(N )+∥T V∥2 −∥AH∥2,

where ∥T V∥2 = ∑
m
i=1 ∑

s
k=1 g1(TEk ei,TEk ei), ∥AH∥2 = ∑

m
i=1 ∑

s
k=1 g1(AeiEk,AeiEk).

Since B1(ν) is a complex space form, from (2.2), we have following result readily:

Theorem 6. Let ϕ : B1(ν)→B2 be an anti-invariant Riemannian submersion from
a complex space form (B1(ν),g1) onto a Riemannian manifold (B2,g2). Then we have

ν

4
{sm+m+ s−1+3∥βe1∥2} ≤ Rickerϕ∗(E1)+Ric(kerϕ∗)

⊥
(e1)+

1
4

s2∥H ∥2

+3
s

∑
α=1

m

∑
t=2

(Aα
1t)

2 −δ(N )+∥T V∥2 −∥AH∥2

the equality status of the inequality satisfies if and only

T t
11 = T t

22 + · · ·+T t
ss T t

1 j = 0, j = 2, . . . ,s.

Remark 1. Recently, Chen-Ricci inequalities were stated for Riemannian maps
from complex space forms in [14]. Recall that Riemannian maps generalize the well-
known concepts of isometric immersions and Riemannian submersions (see, e.g., the
recent work of Lee et. al.,[15]). Therefore, a natural problem is to extend the results
of this work in the general setting of anti-invariant Riemannian maps.
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