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Abstract. In this paper we initiate a systematic study of the Turán problem for edge-ordered
graphs. A simple graph is called edge-ordered if its edges are linearly ordered. This notion allows
us to study graphs (and in particular their maximum number of edges) when a subgraph is
forbidden with a specific edge-order but the same underlying graph may appear with a different
edge-order.

We prove an Erdős-Stone-Simonovits-type theorem for edge-ordered graphs—we identify the
relevant parameter for the Turán number of an edge-ordered graph and call it the order chromatic
number. We establish several important properties of this parameter.

We also study Turán numbers of edge-ordered paths, star forests and the cycle of length four.
We make strong connections to Davenport-Schinzel theory, the theory of forbidden submatrices,
and show an application in discrete geometry.

1. Introduction

The most basic Turán-type extremal problem asks the maximum number ex(n,H) of edges in
an n vertex simple graph that does not contain a “forbidden” graph H as a subgraph. For a
family H of forbidden graphs we write ex(n,H) to denote the maximal number of edges of a
simple graph on n vertices that contains no member of H as a subgraph. This problem has its
roots in the works of Mantel, [29] and Turán, [43], where they considered the case where the
forbidden graph is a complete graph. For a survey see Füredi and Simonovits, [19]. Several
extensions of Turán-type extremal problems for graphs have been studied. For a survey on
extremal hypergraph problems see Keevash, [23]. The extremal theory of graphs with a circular
or linear order on their vertex set has a rich history. For example, see Braß, Károlyi, Valtr, [5] or
Tardos, [42], respectively. In this paper we initiate a systematic study of Turán-type problems
for edge-ordered graphs and establish several fundamental results.

An edge-ordered graph is a finite simple graph G = (V,E) with a linear order on its edge set
E. We often give this linear order (that we also call edge-ordering or edge-order, in short) with a
labeling L : E → R. In this case we denote the edge-ordered graph obtained by GL, and we also
call it a labeling of G. Note that we always assume the function L : E → R is injective (so that
it defines a linear order on the edges) and we use the labeling only to define this edge-order, so
GL and GL′ represent the same edge-ordered graph if for any pair of edges e, f ∈ E, L(e) < L(f)
holds if and only if L′(e) < L′(f) holds.
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An isomorphism between edge-ordered graphs must respect the edge-order. A subgraph of an
edge-ordered graph is itself an edge-ordered graph with the induced edge-order. We say that the
edge-ordered graph G contains another edge-ordered graph H if H is isomorphic to a subgraph
of G. Otherwise we say that G avoids H. We say that G avoids a family of edge-ordered graphs
if it avoids every member of the family. When speaking of a family of edge-ordered graphs we
always assume that all members of the family are non-empty, that is they have at least one edge.
This is necessary for the definition of the Turán number below to make sense. Note that similar
extremal problems for vertex-ordered graphs (where the linear order is on the vertices instead of
edges) has been studied before, see for example [26, 31, 32, 42].

The Turán problem for edge-ordered graphs can be formulated as follows.

Definition 1.1. For a positive integer n and a family of edge-ordered graphs H, let the Turán
number of H be the maximal number of edges in an edge-ordered graph on n vertices that avoids
H, and let this maximum be denoted by ex<(n,H). If there is only one forbidden edge-ordered
graph H, we simply write ex<(n,H) instead of ex<(n, {H}).

Any Turán-type problem from classical extremal graph theory can also be formulated in this
language. Indeed, let H be a family of forbidden simple graphs and define H′ = {HL : H ∈
H, L is a labeling of H}. We clearly have

ex(n,H) = ex<(n,H′).
As a consequence, we have the following simple but useful bound for any simple graph H and
any labeling L:

ex<(n,HL) ≥ ex(n,H).

Notation. We will denote the edge-order of short paths and cycles by simply giving labels to
the edges along the path or cycle. For example, the edge-ordering of a path P4 on four vertices,
say abcd, that gives the edge ab the label 1, the edge bc the label 3, and the edge cd the label
2 is denoted by P 132

4 . (In other words, this labeling denotes the edge-ordering ab < cd < bc.)
Similarly, C1234

4 denotes the cyclically increasing labeling of the cycle C4.

1.1. History. Only a few special instances of the Turán problem for edge-ordered graphs have
been investigated so far. In most of these cases the aim was to find an increasing path or
trail, defined as follows: We call a sequence v1, . . . , vk+1 of vertices in an edge-ordered graph an
increasing trail of length k if vivi+1 form a strictly increasing sequence of edges for 1 ≤ i ≤ k. If
all the vertices vi are distinct we call it an increasing path of length k.

Chvátal and Komlós [9] asked for the length of the longest increasing trail that one can
guarantee in any edge-ordering of the complete n-vertex graph Kn. This question was solved
by Graham and Kleitman in [21]. In the same paper [9], Chvátal and Komlós also asked the
corresponding question for a path (rather than a trail). More precisely, they asked: What is the
maximum integer k such that every edge-ordering of Kn has an increasing path of length k? It is
very natural to ask this question for arbitrary host graphs (rather than just for complete graphs):
The altitude of a simple graph G is defined as the maximum k such that every edge-ordering of
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G has an increasing path of length k. This seemingly simple question turned out to be quite
challenging. Let P inc

k+1 denote the increasing path of length k. The maximal number of edges in
a graph on n vertices with a given altitude k can have is precisely ex<(n, P inc

k+2).

Rödl [40, 44] proved that any graph G with average degree d ≥ k(k + 1) has altitude at
least k. In other words, ex<(n, P inc

k ) <
(
k
2

)
n. (On the other hand, ex<(n, P inc

k ) ≥ ex(n, Pk) =
k−2
2
n−O(k2).) For sufficiently dense graphs, Milans [33] proved that any graph G with average

degree d has altitude at least Ω(d/(n1/3(log n)2/3)), where n is the number of vertices in G. Very
recently, Bucić, Kwan, Pokrovskiy, Sudakov, Tran, Wagner [7] significantly improved this bound,
showing that the altitude is almost as large as d, provided d is not too small. This result is close
to being optimal because the longest path in a graph G with average degree d may be as short
as d (for example, if G is a disjoint union of cliques of size d + 1). Inspired by the question
of Chvátal and Komlós, several authors studied the altitude of various special classes of graphs
including the hypercube [10], the random graph [10, 28]. Closely related problems were also
studied with respect to geometric graphs [11].

Concerning the case when the forbidden edge-ordered graph is not a path (or a trail), a pre-
liminary result was shown by Gerbner, Patkós and Vizer, [20], who proved that ex<(n,C1243

4 ) =
O(n5/3) and applied it to a problem in extremal set theory. Another interesting result is an
unpublished result of Leeb (see the paper of Nešetřil and Rödl [35]), stating that for any given
n ∈ N, every large enough edge-ordered complete graph contains a copy of Kn such that the
edges of this copy induce one of four special edge-orderings (see Section 2.1 for more details).
Ramsey numbers of edge-ordered graphs have been studied recently (motivated by this paper),
see [3, 16].

1.2. Outline of the paper and main results. In Section 2 we present the analogue of Erdős-
Stone-Simonovits theorem that applies to edge-ordered graphs. This theorem ties the Turán
number of an edge-ordered graph to its order chromatic number, a notion that we will introduce.
Order chromatic number is in turn strongly connected to some special edge-orders called canonical
edge-orders. This connection is discussed in Section 2.1, where we also prove several important
properties of order chromatic number (see, for example, Theorem 2.5 and Corollary 2.6). In
particular, it turns out that the order chromatic number behaves rather differently compared to
the usual chromatic number in several aspects. For example the order chromatic number of a
family of edge-ordered graphs can be substantially smaller than that of any single member of
the family, and the order chromatic number of a finite edge-ordered graph can be infinite. In
Section 2.2 we consider edge-ordered graphs with finite order chromatic number and estimate
how large the order chromatic number can be in this case. Among other things, we will show
that even when the order chromatic number of an edge-ordered graph G is finite, it can grow
exponentially in the number of vertices of G (see Theorem 2.14). Finally, in Section 2.3, we
briefly study the smallest and the largest possible order chromatic number of a graph G over
all possible edge-orderings of G. For most graphs, this latter number is infinite as shown by
Theorem 2.18.
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In Section 3, we study Turán numbers of edge-ordered star forests. Recall that a star is a
simple, connected graph in which all edges share a common vertex and a star forest is a non-
empty graph whose connected components are all stars. We show a strong connection between
this problem and Davenport-Schinzel theory and prove that the Turán number is close to being
linear for any given edge-ordered star forest (see Corollary 3.4).

In Section 4 we study Turán numbers of edge-ordered paths. For edge-ordered paths with three
edges, we determine the Turán number exactly or up to an additive constant in Section 4.1. And
for most edge-ordered paths with four edges, in Section 4.2 we show that the Turán number is
either Θ(n), Θ(n log n) or Θ(n2) (see the table at the beginning of Section 4.2 for a complete list
of results). This section also makes connections to the theory of forbidden submatrices.

In Section 5 we study Turán numbers of edge-ordered 4-cycles. The 4-cycle C4 has three
non-isomorphic edge-orderings. The most interesting one is C1243

4 . For this one, using a special
weighting argument, we show that the answer is close to Θ(n3/2) (as in the case of the usual
Turán problem). It is easy to show that the Turán number of the other two edge-orderings of C4

is
(
n
2

)
.

Lastly, in Section 6 we make some concluding remarks. Turán theory for edge-ordered graphs
is very likely to have applications in other areas. As an example, using one of our results, we
show that the maximum number of unit distances among n points in convex position in the plane
is O(n log n), reproving a result of Edelsbrunner-Hajnal [12], and Füredi [17] (see Section 6.1).
We finish the paper with some open problems in Section 6.3.

Throughout the paper, we use log to denote the binary logarithm.

2. Erdős-Stone-Simonovits theorem for edge-ordered graphs
and order chromatic number

The most general result in Turán-type extremal graph theory is the Erdős-Stone-Simonovits
theorem, stated below. Note that when using asymptotic notation to estimate the Turán numbers
of families of graphs or edge-ordered graphs, we always consider the family to be fixed. In
particular, the o(1) term in the following theorem tends to zero as n goes to infinity, for a fixed
family H.

Theorem 2.1 (Erdős-Stone-Simonovits theorem, [13, 14]). Any family H of simple graphs with
r + 1 := min{χ(H) : H ∈ H} ≥ 2 satisfies

ex(n,H) =

(
1− 1

r
+ o(1)

)
n2

2
.

The lower bound is given by the Turán graph T (n, r), which is the complete r-partite graph
with each part having size bn/rc or dn/re. Here χ(H) stands for the chromatic number of the
graph H. The key to extending this result to edge-ordered graphs is to find the notion that can
play the role of chromatic number in the original theorem. We do this as follows.
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Definition 2.2. We say that a simple graph G can avoid a family H of edge-ordered graphs if
there is labeling GL of G that avoids H. (In other words, a graph G cannot avoid H if every
labeling GL of G contains a member of H.)

Let χ<(H), the order chromatic number of H stand for the smallest chromatic number χ(G)
of a finite graph G that cannot avoid H. In case all finite simple graphs can avoid H we define
χ<(H) = ∞. In case the family H contains a single edge-ordered graph we write χ<(H) to
denote χ<({H}).

Remark. Recall that when speaking of a family of edge-ordered graphs we assume no member
of the family is empty. This makes the order chromatic number at least 2.

We consider only finite graphs and edge-ordered graphs in this paper, so all members of H are
finite and so is G. But here we remark that the definition of the order chromatic number would
not be altered if we allowed for infinite graphs G – this can be shown using compactness.

Theorem 2.3 (Erdős-Stone-Simonovits theorem for edge-ordered graphs). If χ<(H) =∞, then

ex<(n,H) =

(
n

2

)
.

If χ<(H) = r + 1 <∞, then

ex<(n,H) =

(
1− 1

r
+ o(1)

)
n2

2
.

Proof. Clearly, if the simple graph G = (V,E) can avoid H, then ex<(|V |,H) ≥ |E|. If χ<(H) =
∞ (or just larger than n), then the complete graph Kn can avoid H, and this proves the first
statement.

The lower bound for the second statement can be proved similarly as the Turán graph T (n, r)

with n vertices and r classes has (1− 1
r
)n

2

2
−O(r2) edges and it can avoid H.

For the upper bound in the second statement, let F be a simple graph with minimum chromatic
number χ(F ) = r + 1 that cannot avoid H. Clearly, we have ex<(n,H) ≤ ex(n, F ). The bound

then follows from the Erdős-Stone-Simonovits theorem: ex(n, F ) = (1− 1
r

+ o(1))n
2

2
. �

Let us emphasize here that Theorem 2.3 relates the Turán number of a family of edge-ordered
graphs to the order chromatic number of the family. This is in contrast to the original Erdős-
Stone-Simonovits theorem (or the vertex-ordered graph version in [36]), that speaks of chromatic
number (interval chromatic number) of a single graph (a single vertex-ordered graph, respectively)
and relates the Turán number of a family to the least (interval) chromatic number of a member
of the family. As we will see, this is a meaningful difference, because the order chromatic
number of a family can be substantially smaller than that of any single member in the family,
see Proposition 2.10. In the context of extremal hypergraph theory such families are called
non-principal. More precisely, a family H of r-uniform hypergraphs is called non-principal if
any r-uniform hypergraph avoiding the family contains an asymptotically smaller fraction of the
hyperedges of a complete r-uniform hypergraph than hypergraphs avoiding just a single element
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of the family. Balogh, [4], found non-principal families of 3-uniform hypergraphs of finite size.
Later Mubayi and Pikhurko, [34], found a non-principal family of size two.

In light of Theorem 2.3, the asymptotics of the Turán number of an edge-ordered graph is
precisely captured by its order chromatic number unless it is 2. In the following subsections
we will prove several properties of this parameter. In particular, we will show that the order
chromatic number is strongly connected to the notion of canonical edge-orders, studied in the
next subsection.

2.1. Canonical edge-orders. The Erdős-Stone-Simonovits theorem (Theorem 2.1) connects
the classical Turán number to the well-established notion of chromatic number, while the vertex-
ordered version of the Erdős-Stone-Simonovits theorem, [36], is connected to interval chromatic
number, a simple and easy to compute parameter. Theorem 2.3 shows that the order chromatic
number is the relevant parameter for the Turán number of edge-ordered graphs, but this notion
seems less accessible. In Theorem 2.5 we give criteria to determine the order chromatic number
of a family of edge-ordered graphs. To decide whether the order chromatic number is two (that
is, whether the Turán number is quadratic in n) is especially simple, see Corollary 2.6.

For the upcoming characterization of the order chromatic number (see Theorem 2.5) we need
to introduce the notion of canonical edge-orders. Let us assume that the vertices of a complete
graph Kn are linearly ordered, say, they are v1, . . . , vn. We call an edge-ordering of Kn canonical
if the order of two edges is always determined by the relative order of their endpoints. Clearly,
the canonical edge-order is determined by the order of the six edges spanned by any four vertices.
In fact, the order of the three edges in a triangle almost determine the canonical order: four of
the six possible orders of the edges in a triangle determine the entire canonical edge-order, while
for the other two possible orders the relative order of “overlapping” edges like v1v3 and v2v4 is
not determined, so they yield two canonical edge-orders each. The total of eight canonical edge-
orders are isomorphic in pairs; the isomorphism is provided by reversing the order of vertices.
Thus, it is enough to give name to the four non-isomorphic edge-orders of Kn:

• min-labeling of Kn: For 1 ≤ i < j ≤ n the label of the edge vivj is L1(vivj) = ni+ j.

• max-labeling of Kn: For 1 ≤ i < j ≤ n the label of the edge vivj is L2(vivj) = nj + i.

• inverse min-labeling of Kn: For 1 ≤ i < j ≤ n the label of the edge vivj is L3(vivj) = ni− j.
• inverse max-labeling of Kn: For 1 ≤ i < j ≤ n the label of the edge vivj is L4(vivj) = nj− i.

We need a similar notion of canonical edge-ordering for complete multi-partite graphs as
well. Let us denote by Kk×n the complete balanced k-partite graph on kn vertices. We denote
the vertices of Kk×n by vi,j with 1 ≤ i ≤ k, 1 ≤ j ≤ n. For 1 ≤ i ≤ k we call the set
Vi = {vi,j | 1 ≤ j ≤ n} a class of vertices and two vertices in Kk×n are adjacent if and only if
they belong to distinct classes, i.e., vi1,j1vi2,j2 is an edge if and only if i1 6= i2.

We call an edge-ordering of Kk×n canonical if the order of two edges is determined by the
classes of the vertices they connect and in case some of these vertices belong to the same class,
then also by the order of those vertices within that class. Thus, in a canonical edge-order the
order of the edges e = vii,j1vi2,j2 and f = vi3,j3vi4,j4 is typically determined by the indices i1, i2, i3,
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and i4, but in case some of these indices coincide, like il = im, then the order of jl and jm may
also influence the order of e and f .

Let us first concentrate on the complete bipartite graphs induced by Vi1 ∪ Vi2 that we call the
parts of the Kk×n. Here 1 ≤ i1, i2 ≤ k, i1 6= i2. (Note the slightly unusual use of the word ‘part’,
which sometimes means a vertex class of Kk×n but in the rest of this subsection we use it in the
sense just introduced.)

By the definition above, the edge-order within a part induced by Vi1 ∪ Vi2 is determined by
the relative order of the endpoints of the edges, so it is completely determined by the order of
the four edges in any K2×2 subgraph. A closer inspection shows that for all n ≥ 2 there are
exactly eight possible canonical edge-orders on any part and these can be given by the following
labelings:

• L1(vi1,j1vi2,j2) = nj1 + j2
• L2(vi1,j1vi2,j2) = nj1 − j2
• L3(vi1,j1vi2,j2) = −nj1 + j2
• L4(vi1,j1vi2,j2) = −nj1 − j2
• L5(vi1,j1vi2,j2) = nj2 + j1
• L6(vi1,j1vi2,j2) = nj2 − j1
• L7(vi1,j1vi2,j2) = −nj2 + j1
• L8(vi1,j1vi2,j2) = −nj2 − j1

In the first four cases, class Vi1 is dominant, while in the last four class, Vi2 is dominant.
To specify a canonical edge-order of Kk×n for k > 2, one has to also say how edges from

different parts compare. We say that a part of Gk×n precedes another part in an edge-ordering
of Gk×n if all edges in the former part come before all edges in the latter part. By our definition,
between two vertex disjoint parts in a canonical edge-order one has to precede the other. But
this does not have to hold for the distinct parts induced by Vi1 ∪ Vi2 and Vi1 ∪ Vi4 . If neither of
these parts precedes the other, then we say that these parts interleave. In this case the order of
the edges e = vi1,j1vi2,j2 and f = vi1,j3vi4,j4 must be determined solely by the order of j1 and j3.
This leads to the following four possibilities for a fixed pair of interleaving parts:

• e < f if and only if j1 < j3,
• e < f if and only if j1 ≤ j3,
• e < f if and only if j1 > j3 or
• e < f if and only if j1 ≥ j3.

Clearly, the choice of the canonical edge-orders on the individual parts of Kk×n and the choices
for their pairwise behavior determines the relation of every pair of edges. Some combination of
these choices do not actually yield a transitive relation, but those that yield a transitive relation,
give rise to a canonical edge-order of Kk×n. It is easy to see that the same choices yield canonical
edge-orders independent of the value of n as long as n ≥ 3, so the number of canonical edge-
orders of Kk×n depends only on k. (The case n = 2 is exceptional as in Kk×2 for k ≥ 4 we may
have distinct parts A, B and C such that A and B interleave, so do B and C but A precedes C.
Such a configuration is not possible in a canonical edge-order of Kk×n for n ≥ 3.)
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In the simplest case of K2×n = Kn,n, we have a single part only, so we have exactly eight
canonical edge-orders. All eight of them yield isomorphic edge-ordered complete bipartite graphs.
(The isomorphisms are given by reversing the order of the vertices in one or both of the classes
and/or switching the two classes.) We denote this canonical edge-ordered complete bipartite
graph by Kcan

n,n (which is therefore unique up to isomorphism). For greater values of k, however,
both the number of canonical edge-orders of Kk×n and the number of non-isomorphic edge-
ordered graphs obtained is growing fast. It is easier to count canonical edge-orders without
interleaving parts: They are determined by an arbitrary order of the

(
k
2

)
parts and also arbitrary

canonical edge-orders on each of them. This yields
(
k
2

)
! · 8(k

2) canonical edge-orders without an

interleaving pair of parts and
(
k
2

)
!8(k

2)/(k!2k) non-isomorphic edge-ordered graphs. For k = 3 this
is 3072 canonical edge-orders and 64 non-isomorphic edge-ordered graphs. Still for k = 3 there
are 768 additional canonical edge-orders with a pair of interleaving parts yielding 16 additional
non-isomorphic edge-ordered graphs.

Note that if the part A induced by Vi ∪ Vj and the part B induced by Vi ∪ Vj′ interleave in a
canonical edge-order of Kk×n, then any part not containing Vi must either be preceded by both
interleaving parts A and B or it must precede both A and B. This yields the useful observation
that in any canonical ordering of K3×n there must be a part that precedes the other two parts
or a part that is preceded by the other two parts.

More generally, given an edge-ordering K of Kk×n, the relation “precedes” defines a partial
order on the parts. This partial order, plus the ordering within the parts and between incom-
parable (that is, interleaved) pairs of parts defines the entire edge-order. It is not hard to prove
the following characterization of canonical edge-orders.

Proposition 2.4. An edge-order K of Kk×n (k ≥ 2, n ≥ 3) is canonical if and only if “in-
terleaved” is an equivalence relation on the parts with each equivalence class forming a star-like
structure with a common class Vi0, and other classes Vi1 , . . . , Vim, such that the restriction of K
to the bipartite graph between Vi0 and Vi1∪· · ·∪Vim can be made canonical (with Vi0 the dominant
side if m > 1) by appropriately ordering its vertices such that the vertices of each class Vij appear
consecutively and in monotone (increasing or decreasing) order.

From the proposition above one can see that such a star can have m!2m+1 possible edge-orders
for m > 1, while singleton equivalence classes have 8 possible edge-orders.

The following theorem connects order chromatic number with the notion of canonical edge-
orders. The first part of this theorem is not new and it goes back to an unpublished result of
Leeb (see [35]), but we include its simple proof for completeness.

Theorem 2.5. • The order chromatic number of a family H of edge-ordered graphs is
infinity if and only if one of the canonical edge-orders of Kn avoids H for all n.
• χ<(H) > k holds for a family H of edge-ordered graphs and k ≥ 2 if and only if for all
n, one of the canonical edge-orders of Kk×n avoids H.

Note that if H is finite, then the “for all n” requirement in both parts of this theorem can be
equivalently replaced by setting n to be the largest number of vertices of any member of H.



TURÁN PROBLEMS FOR EDGE-ORDERED GRAPHS 9

Proof. We start with the proof of the first claim of the theorem. If a canonical (or any) edge-
order of Kn avoids H, then Kn and therefore any of its subgraphs can avoid H. If this holds for
all n, then all finite graphs can avoid H, so its order chromatic number is infinity. This proves
the “if” part of the claim.

Assume now that the order chromatic number is infinity, therefore any graph can avoid H.
Take an edge-ordering K of Km that avoids H and color the 4-subsets of its vertices according
to the order of the six edges between these vertices. That is, for 1 ≤ j1 < j2 < j3 < j4 ≤ m we
color the set {vj1 , vj2 , vj3 , vj4} by the order of the six edges vjavjb in the induced subgraph. This
is a 720-coloring of the 4-subsets. Let us choose a monochromatic subset {vjl | 1 ≤ l ≤ n} such
that j1 < j2 < · · · < jn. By Ramsey’s theorem we can do this for any fixed n if we start with
a large enough complete graph Km. Clearly, the order of two edges is determined by the color
of any 4-subset containing their endpoints. This means that the monochromatic subset induces
a canonically edge-ordered copy of Kn as long as n ≥ 5. (The n = 4 is exceptional here as any
4-subset is monochromatic, but not all are canonically edge-ordered.) Being a subgraph of K
that avoids H, this canonical edge-ordering of Kn also avoids H proving the “only if” part of the
first claim.

For the proof of the second claim assume a canonical (or any) edge-order of Kk×n avoids H,
so Kk×n can avoid H. As any finite graph of chromatic number at most k is a subgraph of Kk×n
for an appropriate n, we find that it can also avoid H proving the “if” part of the second claim.

Assume now that χ<(H) > k, therefore Kk×m can avoid H for any m. Let us fix an edge-
ordering K of Kk×m avoidingH. We color the 4-subsets H = {{j1, j2, j3, j4} : 1 ≤ j1 < j2 < j3 <
j4 ≤ m} with the order of the edges between the 4k vertices in H∗ = {vi,jl | 1 ≤ i ≤ k, 1 ≤ l ≤ 4}.
There are 16

(
k
2

)
such edges, so we have (16

(
k
2

)
)! colors. Let us assume that the subset S formed

by j1 < j2 < · · · < jkn is monochromatic. By Ramsey’s theorem we can find such a set for any
n if we start with a large enough value of m. Now we consider the edge-ordered subgraph G of
K induced by the vertices vi,jl for 1 ≤ i ≤ k and (i − 1)n < l ≤ in. Clearly, the underlying
simple graph of G is isomorphic to Kk×n with the isomorphism mapping vi,l of Kk×n to vi,j(i−1)k+l

in G. This isomorphism induces an edge-order on Kk×n and the fact that S is monochromatic
implies that this edge-order is canonical if nk ≥ 5. Indeed, for any pair of edges in G their order
is determined by the color of any set H with H∗ containing all four endpoints, and thus by the
common color of all 4-subsets of S. In particular, the order between two edges of Kk×n whose
endpoints are in four distinct classes is determined by these classes, and the order between two
edges whose endpoints are in fewer classes is determined by the classes and the relative order of
the endpoints in the common classes. The requirement that nk ≥ 5 is needed to ensure that if a
subset is monochromatic with respect to our coloring of 4-subsets, then the same subset is also
monochromatic with respect to a similar coloring of the 3-subsets.

Since G is a subgraph of K, G avoids H, so the canonical edge-order of Kk×n isomorphic to
G also avoids H proving the “only if” part of the second claim and finishing the proof of the
theorem. �

Theorem 2.5 implies the following corollary.
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Corollary 2.6. Let H be a family of edge-ordered graphs.

(1) The order chromatic number of a subfamily H′ ⊆ H satisfies χ<(H′) ≥ χ<(H).
(2) χ<(H) = 2 holds if and only if there exists G ∈ H with χ<(G) = 2.
(3) An edge-ordered graph G on n vertices satisfies χ<(G) = 2 if and only if Kcan

n,n contains
G.

(4) If χ<(H) is finite, then there exists a subfamily H′ ⊆ H of size at most four with χ<(H′)
finite.

(5) For k ≥ 3 there exists a number ck (depending only on k) such that if χ<(H) = k, then
there exists a subfamily H′ ⊆ H of size at most ck with χ<(H′) = k. One can choose
c3 = 80.

Proof. The monotonicity claimed in part 1 of the corollary follows directly from the definition
of the order chromatic number: if a graph can avoid a family H, then it can also avoid all its
subfamilies.

For part 4 we use the first claim of Theorem 2.5. As the order chromatic number of H is finite,
none of the four canonical edge-orders of Kn avoid H for all n. For each one of the four canonical
edge-orders, we can find a value of n and an element H of H such that Kn with that particular
canonical edge-order does not avoid H. By the first part of Theorem 2.5 again, the subfamily
consisting of these four elements of H has finite order chromatic number.

For part 5 we argue very similarly. Let ck be the number of canonical edge-orders of Kk×n.
By the second part of Theorem 2.5 for each of the canonical edge-orders there is a choice of n
such that Kk×n with that edge-order contains a particular element H of H. Let H′ consist of
the elements of H selected for one of those canonical edge-orders. By Theorem 2.5 the order
chromatic number of H′ is at most k. But by part 1 above it is at least k, so we have χ<(H′) = k.

Note that in this argument we could set ck to be the number of non-isomorphic edge-ordered
graphs obtained from canonical edge-orderings of Kk×n as isomorphic edge-ordered graphs avoid
the same edge-ordered graphs.

This makes us able to choose c3 = 80 as claimed in part 5 and also proves parts 2 and 3 of the
corollary as we know that each canonical edge-order of K2×n is isomorphic to Kcan

n,n . �

The following two simple observations are related to Kcan
n,n and part 3 of Corollary 2.6.

Proposition 2.7. If m is large enough compared to n, then Km,m cannot avoid Kcan
n,n .

Proof. Kcan
2n,2n contains Kcan

n,n , so by part 3 of Corollary 2.6 we have χ<(Kcan
n,n ) = 2. By definition,

this implies the existence of a bipartite graph G that cannot avoid Kcan
n,n . Clearly, G is a subgraph

of Km,m if m is large enough, so neither can Km,m avoid Kcan
n,n . �

Note that Proposition 2.7 is also the two dimensional special case of a 1993 result by Fishburn

and Graham, [15]. Recently Bucić, Sudakov and Tran, [8] proved that the choice m = 22(4+o(1))n2

is enough for the statement of the proposition to hold. Note that this bound is much lower than
the one that follows from the argument above or the result of Fishburn and Graham.

Definition 2.8. We call a vertex v of an edge-ordered graph close if the edges incident to v are
consecutive in the edge-ordering, that is, they form an interval in the edge-order.
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Proposition 2.9. If an edge-ordered graph G is contained in the max-labeling or inverse max-
labeling of some complete graph, then one of the end vertices of the maximal edge in G is close in
G. Symmetrically, if G is contained in the min-labeling or inverse min-labeling of some complete
graph, then one of the end vertices of the minimal edge in G is close in G.

If χ<(GL) = 2 for some labeling of a simple graph G, then G has a proper 2-coloring with all
vertices in one color class being close in GL. The converse also holds if G is a forest, namely
if the forest G has a labeling L and a proper 2-coloring in which all vertices of one of the color
classes are close in GL, then χ<(GL) = 2.

Note that the requirement of G being a forest is necessary in the last statement. The edge-
ordered cycle C1234

4 is bipartite, and all but one of its vertices are close, yet it is not contained
in either the min-labeling or max-labeling of any complete graph, so χ<(C1234

4 ) =∞.

Proof. Consider any subgraph G of Kn with either the max-labeling or the inverse max-labeling.
The larger-indexed end vertex of the maximal edge in G is close in G. Similarly, in a subgraph G
of the min-labeling or inverse min-labeling of Kn the smaller-indexed end vertex of the minimal
edge in G is close in G. This proves the first two statements of the proposition.

By Corollary 2.6 we have χ<(GL) = 2 if and only if GL is contained in Kcan
n,n for some n. We

think of Kcan
n,n as the complete bipartite graph on vertices ui and vi with 1 ≤ i ≤ n and with the

label of edge uivj being ni+ j. Clearly, the vertices ui are close in this graph and they form one
color class of the only bipartition of Kn,n. These vertices remain close in any subgraph of Kcan

n,n

proving the third statement of the observation.
For the final statement we need to embed GL isomorphically to Kcan

n,n , where n is the number
of vertices in G. Let us fix a proper 2-coloring of G with all vertices in one color class (say red)
being close. The red vertices are linearly ordered by the labeling of the incident edges (except
for isolated vertices). We map the red vertices to vertices ui respecting this ordering, that is, if
for red vertices x and y the edges incident to x are lower than those incident to y, then we map
x to uix and y to uiy with ix < iy. Isolated red vertices can be mapped to any remaining vertices
ui. To obtain an isomorphic embedding all we have to do is map the vertices of the other color
class to vertices vj in Kcan

n,n such that for any red vertex x the mapping of its neighbors y respect
the order of the labels L(xy). As G is a forest these requirements do not form a directed cycle,
so all can be satisfied simultaneously. �

We finish this section by highlighting two aspects of the order chromatic number not shared
by either the ordinary chromatic number of simple graphs or the interval chromatic number of
vertex ordered graphs.

Firstly, we show that the order chromatic number of a family of edge-ordered graphs can
indeed be smaller than that of any member. The jump we exhibit here is the largest allowed by
Corollary 2.6. Recall that P 1423

5 denotes the path on five vertices, say a, b, c, d, e, with its edges
ordered as ab < cd < de < bc. Similarly, P 2314

5 is the path on five vertices, with edges ordered as
cd < ab < bc < de.

Proposition 2.10. χ<(P 1423
5 ) = χ<(P 2314

5 ) =∞, but χ<({P 1423
5 , P 2314

5 }) = 3.



12 GERBNER, METHUKU, NAGY, PÁLVÖLGYI, TARDOS, VIZER

Proof. Notice that reversing the edge-order in P 1423
5 yields an edge-ordered graph isomorphic to

P 2314
5 (by reversing the vertices) giving a certain symmetry to the statements of the proposition.
Neither endpoint of the smallest edge in P 2314

5 is close, so by Proposition 2.9, P 2314
5 is not

contained in either the min-labeling or the inverse min-labeling of a complete graph. Symmetri-
cally, the max-labeling and the inverse max-labeling avoid P 1423

5 . This shows that both of these
edge-ordered paths have order chromatic number infinity if considered separately.

One can observe that both the max labeling and the inverse max-labeling of Kn contain P 2314
5

as long as n ≥ 5 and symmetrically the min-labeling and the inverse min-labeling of Kn contain
P 1423
5 . By Theorem 2.5 this proves that that the order chromatic number of the pair {P 1423

5 , P 2314
5 }

is finite. We want to prove specifically that it is 3. By part 2 of Corollary 2.6 it cannot be 2, so
we need only to show that it is at most 3. Instead of exhibiting an explicit 3-chromatic graph
that cannot avoid the pair, we use Theorem 2.5 again and show that all canonical edge-orders of
K3×2 contain one of the two edge-ordered paths. Let us recall that the classes of K3×2 are the
pairs Vi = {vi,1, vi,2} for 1 ≤ i ≤ 3 and the parts of K3×2 are the complete bipartite subgraphs
induced by two classes. As we have observed, in any canonical edge-order of K3×2 (or of K3×n
in general) there is a smallest part preceding the other two parts or there is a largest part that
is preceded by the other two parts. In the former case we can find an isomorphic copy of P 231

4 in
the smallest part and then we can extend it with an edge from another part to get an isomorphic
copy of P 2314

4 . In the latter case we find an isomorphic copy of P 423
4 in the largest part and extend

it with an edge from another part to obtain an isomorphic copy of P 1423
5 . Thus, no canonical

edge-order of K3×2 avoids both P 1423
5 and P 2314

5 . This finishes the proof of the proposition. �

Secondly, recall that the order chromatic number of finite edge-ordered graphs can be infinite.
In Section 2.2, we will show the existence of edge-ordered graphs for which the order chromatic
number is finite but significantly larger than its number of vertices (or even its number of edges).
In particular, we will construct edge-ordered graphs Dn on n vertices for which the order chro-
matic number is finite but it still grows exponentially with n (see Theorem 2.14).

2.2. How large can the order chromatic number be? We saw examples of rather small
edge-ordered graphs with order chromatic number infinity. In fact, Theorem 2.18 below claims
that every simple graph with more than 3 edges that is not a star forest has such an edge-ordering.
Here we consider edge-ordered graphs with finite order chromatic number. More specifically, we
ask how large the order chromatic number of an n-vertex edge-ordered graph (or of a family of
edge-ordered graphs with at most n vertices in each) can be if it is finite.

Let Kn stand for the family of the four canonical labelings of the complete graph Kn. By the
Ramsey theoretic theorem of Leeb that appeared in the paper [35] and stated here as the first
half of Theorem 2.5, there exists m for any n such that Km cannot avoid Kn. Let fLeeb(n) be
the smallest integer m with this property.

Proposition 2.11. If a family H of edge-ordered graphs on at most n vertices has finite order
chromatic number, then

χ<(H) ≤ χ<(Kn) ≤ fLeeb(n).
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Proof. By Theorem 2.5 and as the order chromatic number of H is finite, none of the four
canonical edge-orders of Km avoid H for every m. But then none of the four edge-ordered graphs
in Kn avoid H as otherwise the corresponding element of Km would also avoid H for all m. (Note
that we use here that all elements of H have at most n vertices.)

The claim above implies that all edge-ordered graphs avoiding H also avoid Kn and therefore
all simple graphs that cannot avoid Kn cannot avoid H either. This proves the first inequality.

To see the second inequality notice that for m = fLeeb(n), Km cannot avoid Kn by definition,
so we have χ<(Kn) ≤ χ(Km) = m. �

The upper bound on fLeeb(n) coming from the argument presented in the proof Theorem 2.5 is
a Ramsey number for coloring 4-uniform hypergraphs of which the best available bound is triply
exponential in n. However, a better upper bound that is doubly exponential in a polynomial of n
has been recently claimed by C. Reiher, V. Rödl, M. Sales, K. Sames, and M. Schacht, [39] and
independently also by D. Conlon, J. Fox and B. Sudakov (unpublished). These recent results
also contain a doubly exponential lower bound for fLeeb(n). However, the lower bound does not
seem to directly translate to a lower bound on χ<(Kn) because it is possible that a very large
graph with a small chromatic number cannot avoid the family Kn.

Now we construct a sequence of edge-ordered graphs Dn to show that the order chromatic
number can grow exponentially in the number of vertices and still remain finite: For n ≥ 2, let
Dn be the edge-ordered graph with vertices x1, . . . , xn and the 2n− 3 edges incident to x1 or xn
with the edge-order x1x2 < x1x3 < · · · < x1xn < x2xn < · · · < xn−1xn.

Proposition 2.12. χ<(Dn) <∞ for any n ≥ 2 but χ<(D∗) =∞ for every edge-ordering D∗ of
the underlying simple graph of Dn that is not isomorphic to Dn.

Proof. We show that Dn is contained in all canonical edge-orders of Kn. By Theorem 2.5 this is
enough to see that χ<(Dn) <∞.

We embed the vertices of Dn in the min-labeled and the max-labeled Kn in their natural order
to show the containment. For the inverse min-labeled Kn we use the order x1, xn, xn−1, . . . , x2.
For the inverse max-labeled Kn we use the order xn−1, xn−2, . . . , x1, xn.

Now let D∗ be an edge-ordering of the underlying graph of Dn with χ<(D∗) < ∞. We need
to show that D∗ is isomorphic to Dn.

For n ≤ 3 the underlying graph of Dn is Kn and all its edge-orderings are isomorphic to
Dn. Assume next that n = 4. By Proposition 2.9, D∗ must have a close vertex incident to the
maximal edge and another incident to the minimal edge. These two vertices either need to be
non-adjacent, or they need to be incident to all edges. In our case, this means that they could
only be x2 and x3 (the only non-adjacent pair) or x1 and x4 (the only pair incident to all edges).
The former case yields two non-isomorphic edge-orderings: x1x2 < x2x4 < x1x4 < x1x3 < x3x4
and x1x2 < x2x4 < x1x4 < x3x4 < x1x3. The first of these is avoided by the inverse min-labeling,
while the second is avoided by the min-labeling, so both have infinite order chromatic number.
There are also two non-isomorphic edge-orders in which x1 and x4 are the close vertices incident
to the minimal and maximal edges. One of them is the edge-ordering of D4, while the other is
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x1x2 < x1x3 < x1x4 < x3x4 < x2x4, yielding an edge-ordered graph avoided by all four canonical
clique-labelings, so the order chromatic number of this edge-ordered graph is also infinite.

Finally for n > 4 we use that the subgraph of D∗ induced by x1, xn and any two other vertices
(being an edge-ordering of the underlying graph of D4) must be isomorphic to D4 or the order
chromatic number of the subgraph, and hence D∗ itself is infinite. This implies that D∗ itself is
isomorphic to Dn. �

To prove an exponential lower bound on χ<(Dn) (in Theorem 2.14), we need the following
lemma.

Lemma 2.13. Let n ≥ 2 and m ≥ 2 be integers. The relation χ<(Dn) > m holds if and only if
there is an edge-ordering K of Km avoiding Dn such that the auxiliary graphs Gx are bipartite
for all vertices x of Km. Here V (Gx) = V (Km) \ {x} and E(Gx) consists of the edges yz such
that xy < yz < zx in the edge-ordering of K.

Proof. By Theorem 2.5 we have χ<(Dn) > m if and only if there is a canonical edge-ordering
of Km×n avoiding Dn. To prove the “only if” part of the lemma let us assume that K∗ is a
canonical edge-ordering of Km×n that avoids Dn. Recall that the vertices of Km×n are vi,j with
1 ≤ i ≤ m and 1 ≤ j ≤ n. The vertices vi,j with a fixed i form an independent set that we call
a class. The parts of Km×n are the complete bipartite graphs connecting two classes.

Let K be the subgraph of K∗ induced by the m vertices vi,1. It is an edge-ordering of the
complete graph Km. We claim that K satisfies the conditions in the lemma, namely it also avoids
Dn and the auxiliary graphs Gx are all bipartite.

As a subgraph of K∗, K avoids Dn. We need to prove that the auxiliary graphs are bipartite.
So let x = vi,1 be a fixed vertex of K. Consider another vertex y of K and the order of the edges
yvi,j. As on K∗ the edge-order is canonical, this is either monotone increasing in j or monotone
decreasing in j. We call the vertex y increasing or decreasing accordingly. We claim that Gx is
bipartite because all its edges connect an increasing vertex with a decreasing vertex. Assume for
a contradiction yz is an edge of Gx with both y and z being increasing (or both being decreasing).
Now consider the subgraph of K∗ induced by the vertices y, z and n − 2 of the vertices in the
class of x. This subgraph is isomorphic to Dn contradicting the assumption that K∗ avoids Dn.
The contradiction proves the “only if” part of the lemma.

For the “if” part let K be an edge-ordering of Km satisfying the conditions of the lemma.
We need to find a canonical edge-ordering K∗ of Km×n avoiding Dn. We identify the vertices
of K with the classes in Km×n. This way the parts of Km×n correspond to the edges of K.
In our canonical edge-ordering no pair of parts are interleaved and one part precedes another
if the edge in K corresponding to the former part is smaller than the edge corresponding to
the latter part. Now we consider the bipartite auxiliary graphs Gx and fix a bipartition to
“increasing” and “decreasing” vertices. Note that the same vertex can be designated increasing
in one auxiliary graph and decreasing in another. To specify the canonical edge-order of K∗ we
have to further specify one of the eight canonical orders for each of the

(
m
2

)
parts. Assume the

classes Vi1 = {vi1,j | 1 ≤ j ≤ n} and Vi2 = {vi2,j | 1 ≤ j ≤ n} correspond to vertices x and y in K.
We choose the canonical order of the part between these two classes such that the order of the
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edges vi1,j1vi2,j2 is increasing or decreasing in j2 (for fixed j1) according to whether x is increasing
or decreasing in Gy. That is, if x is increasing in Gy, then vi1,j1vi2,1 < vi1,j1vi2,2 < . . . < vi1,j1vi2,n,
while if x is decreasing, then vi1,j1vi2,1 > vi1,j1vi2,2 > . . . > vi1,j1vi2,n. Similarly, we choose the
canonical order of the part of K∗ induced by Vi1 ∪ Vi2 such that the order of these edges is
increasing or decreasing in j1 (for a fixed j2) according to whether y is increasing or decreasing
in Gx. For any of the four possible cases above, we still have two canonical edge-orders to choose
from; we can choose any of these two options arbitrarily.

We claim that K∗ avoids Dn. Assume for a contradiction that K∗ contains Dn. If the n
vertices of the isomorphic copy of Dn come from n different classes in K∗, then this subgraph of
K∗ would correspond to an isomorphic subgraph of K. This contradicts our assumption that K
avoids Dn.

Now assume that two vertices a and b of the subgraph of K∗ isomorphic to Dn come from the
same class. As any class is independent in K∗, a and b must correspond to two non-adjacent
vertices in Dn. Let c and d be the vertices in the subgraph corresponding to the full degree
first and last vertex of Dn. As c and d are connected to every vertex, a, b, c, d are four different
vertices. Clearly, a, c and d must come from three distinct classes of Km×n. Let x, y and z be
the corresponding vertices in K. The subgraph of K∗ induced by the four vertices a, b, c and d
must be isomorphic to D4 and this implies that yz is an edge in Gx. So one of y and z must be a
decreasing vertex in Gx, the other an increasing vertex. But that means that either ac < bc and
ad > bd in K∗ or vice versa: ac > bc and ad < bd in K∗. Both cases contradict the isomorphism
of the induced subgraph to D4. The contradiction finishes the proof of the lemma. �

Now we are ready to prove the exponential lower bound on χ<(Dn).

Theorem 2.14. χ<(Dn) >
(
2n−4
n−2

)
= Ω(4n/

√
n).

Proof. Using Lemma 2.13, it is enough to give an edge-ordering K of K(2n−4
n−2 ) that avoids Dn

such that the auxiliary graphs Gx are bipartite for all vertices x of K. Each vertex of K will
correspond to a binary sequence {0, 1}2n−4 containing n − 2 0’s and n − 2 1’s. We write u < v
if u comes before v in the lexicographic order. It is convenient to think about these sequences
as root to leaf paths in a (partial) binary tree of depth 2n − 4, which is drawn in the “usual
way”, i.e., its leaves are on a line in lexicographic order. When referring to the position where
“u diverges from v” we mean the first position where the two sequences differ.

To order the edges we consider for an edge uv where u and v diverge: longer common prefix
makes for a larger edge. If these longest common prefixes have the same length for two edges,
then these edges are ordered by the distance of their endpoints in the lexicographic ordering:
larger distance makes for a larger edge. Finally, edges having a tie in both values are ordered
arbitrarily.

Now we need to prove that the edge-ordered complete graph we have just constructed avoids
Dn and each auxiliary graph Gx is bipartite.

We start with the latter claim. Among any three vertices there is one that diverges from the
other two at the same position. In this case the other two vertices diverge later and therefore the
edge connecting them is the largest in the triangle induced by these three vertices. The auxiliary
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graph Gx consists of the edges uv satisfying xu < uv < xv. In this case v and x must diverge
from u at the same position. But then they are on the same side of u and xu < uv implies that
x is closer to u than v, so u and v are on different sides of x. Thus, every edge of Gx connects
vertices from opposite sides of x making Gx bipartite, as claimed.

Now suppose that K contains a Dn, that is, it has vertices x1, . . . , xn satisfying x1x2 < x1x3 <
· · · < x1xn < x2xn < · · · < xn−1xn. For 1 < i < n the largest edge spanned by x1, xi and xn is
xixn, so x1 must diverge from xi and xn at the same position. Therefore, x1 must diverge from
x2, . . . , xn at the same position. Therefore, the relative order of the edges x1xi (1 < i ≤ n) is
determined by the distance of their endpoints, and all of the xi are on the same side of x1, so
we have either x1 < x2 < · · · < xn or x1 > x2 > · · · > xn in the lexicographic order. If for some
1 ≤ i < j < n, xi and xj diverge from xn at the same place, then we would have xixn > xjxn,
which is not the case in Dn. Thus, for i < n each xi diverges at a different place from xn, and
(as all xi are on the same side of xn) xn must have the same digit in all these n − 1 positions.
But this is not possible because xn has only n− 2 digits of either type. �

Note that the bound of Theorem 2.14 is trivially sharp if n ≤ 3, but the proposition below
shows that it is not sharp for n = 4.

Proposition 2.15.

10 ≤ χ<(D4) <∞

Proof of Proposition 2.15. We have already seen in Proposition 2.12 that χ<(D4) is finite.
For the lower bound we use Lemma 2.13. The edge labeling KL

9 satisfies the conditions of
that lemma, where the vertices of K9 are v1, v2, . . . , v9 and the label of the edge vivj is given as
the j’th entry in the i’th row of the following symmetric matrix. The entries in the diagonal are
left blank. A short case analysis is enough to verify that KL

9 satisfies the properties required in
Lemma 2.13, but we found the labeling itself by computer search.

1 2 3 4 33 34 35 36
1 26 25 29 30 5 27 8
2 26 24 15 7 20 18 17
3 25 24 11 31 22 23 9
4 29 15 11 10 12 13 16
33 30 7 31 10 32 28 6
34 5 20 22 12 32 21 14
35 27 18 23 13 28 21 19
36 8 17 9 16 6 14 19


�

With some simple observations combined with a computer search we could also prove χ<(D4) ≤
31. More precisely, we checked by computer that the edges of a K6 on v1, . . . v6 cannot be ordered
to avoid D4 if v1vi < v1vj for i < j, and for each i the bipartite Gvi is empty on {vj | j > i}, and
this can always be guaranteed for some 6 vertices of K32 using that each Gx has an independent
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set of size 16, since Gx is bipartite. With similar tricks the bound 31 can be certainly reduced,
but proving the conjectured χ<(D4) = 10 is out of reach with such methods.

A strongly related question is that whether in a vertex- and edge-ordered complete graph on
N = 2n vertices, can we always find an n vertex subgraph where the left going edges from any
vertex are all smaller than the right going edges from the same vertex, or vice versa? Note that
N ≤ R3(n) ≤ 22n follows from a simple Ramsey argument: just two-color each triple u < v < w
depending on whether uv < vw or not.

2.3. The best and worst edge-orders of a graph. For a non-empty finite graph G, let
χ−(G) = minL χ<(GL), where the minimum is taken over all labelings L of G. Similarly, let
χ+(G) = maxL χ<(GL). In this subsection we determine χ+(G) for all graphs G, and prove the
following simple result concerning χ−(G).

Proposition 2.16. χ−(G) ≥ χ(G) for any graph G.
χ−(G) = 2 if and only if χ(G) = 2.

Proof. If a graph H does not contain the graph G as a subgraph, then clearly all labelings of H
avoid all labelings of G. This proves the first statement and also the only if part of the second
statement.

If G is bipartite, then it is contained in the complete bipartite graph Kn,n for an appropriate
n. The canonical labeling Kcan

n,n induces a labeling GL of G that is contained in Kcan
n,n , so by

Corollary 2.6 we have χ<(GL) = 2. This finishes the proof of the proposition. �

The following proposition shows that even the “minimal order chromatic number” χ− can be
infinite for small simple graphs:

Proposition 2.17. χ−(K4) =∞.

Proof. Consider a labeling L of K4. If the three largest edges of KL
4 do not form a star, then

neither endpoint of the largest edge in KL
4 is close, so KL

4 is not contained in the max-labeling
or inverse max-labeling of a complete graph by Proposition 2.9. If the three largest edges in KL

4

do form a star, then the three smallest ones do not form a star, so (again by Proposition 2.9)
KL

4 is not contained in the min-labeling or inverse min-labeling of a complete graph. Therefore,
an appropriate edge-ordering of Kn always avoids KL

4 . This finishes the proof.
A closer inspection reveals that every labeling of K4 is avoided by at least three of the four

canonical labelings of Kn. Indeed, a subgraph induced by four vertices of a canonical labeling
of Kn is always isomorphic to the corresponding canonical labeling of K4 and the four canonical
labelings of K4 are pairwise non-isomorphic. �

We call a simple non-empty graph a star forest if all connected components are stars. We
will study the Turán numbers of edge-ordered star forests in more detail in the next section.
As isolated vertices do not affect the order chromatic number we only consider simple graphs
without isolated vertices.
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Theorem 2.18. If the simple graph G is a star forest or a 3-edge path, then χ+(G) = 2. If G is
a triangle, then χ+(G) = 3. All remaining finite simple graphs G without isolated vertices satisfy
χ+(G) =∞.

Proof. We prove the first statement using Proposition 2.9. Any star forest has a proper 2-coloring
with all vertices in one color class having degree one. These vertices are close in all labelings.
Both color classes of P4 contain a degree 2 vertex, but at any edge-ordering of P4 makes one of
them close, so the last statement of Proposition 2.9 applies again.
K3 is not bipartite, so χ<(KL

3 ) ≥ 3 for all labelings L. But all labelings of K3 yield isomorphic
edge-ordered graphs, so K3 cannot avoid KL

3 for any L. This makes χ−(K3) = χ+(K3) = 3.
Any remaining non-empty graph G without an isolated vertex contains an edge e1 = uv such

that both u and v have degree more than 1. We find a labeling of G that is avoided by both the
max-labeling and the inverse max-labeling of any complete graph by making e1 the maximal edge
and ensuring neither u nor v is close, see Proposition 2.9. If there exists an edge not adjacent to
e1 we are done by making it the second largest. If all edges are adjacent to e1, then one of u or
v must have degree at least 3 as G has at least 4 edges. Say e2 and e3 are both incident to u.
Making e2 the second largest we ensure v is not close and making e3 the smallest we ensure u is
not close either. �

Another natural question to study is how ex<(n,GL) behaves for the best and worst edge-
orderings of a given graph G. By Theorem 2.1, ex<(n,GL) is asymptotically determined by
χ<(GL) if χ<(GL) > 2. Proposition 2.17 and Theorem 2.18 imply that for many graphs χ−(G) =
χ+(G) = ∞, so even for the best edge-order, ex<(n,GL) =

(
n
2

)
because of Theorem 2.5. We

have also seen in Section 2.2 that even χ−(Dk) can grow exponentially in k, while χ(Dk) = 3.
In fact, if we denote by K+

2,3 the graph obtained by adding an edge connecting two vertices on

the larger side of K2,3, then we have χ(K+
2,3) = 3, but χ−(K+

2,3) =∞. (This can be proved with
a case analysis similar to the proof of Proposition 2.17.)

Proposition 2.16 shows that χ(G) = 2 implies χ−(G) = 2. Is it in fact possible that for every
bipartite G there an edge-ordering L such that ex<(n,GL) = O(ex(n,G))? As we have discussed
in the Introduction, this is true when G is a path, because we can pick the monotone increasing
edge-labeling for which ex<(n, P inc

k ) = O(n). It, however, fails for most trees.

Proposition 2.19. If a tree T has a vertex from which 3 paths of length 3 start, then ex<(n, TL) =
Ω(n log n) for any edge-ordering TL of T .

The proof of Proposition 2.19 follows from a simple case analysis which shows that such
trees TL always contain a path P5 of length 4 such that the restriction of the edge-ordering of
TL to this path, yields an edge-ordered path PL

5 for which ex<(n, PL
5 ) = Ω(n log n). (For the

characterization of length 4 paths, see Section 4.2.)

3. Star forests

Recall that a star is a simple, connected graph in which all edges share a common vertex and
a star forest is a non-empty graph whose connected components are all stars. In this section
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we study the Turán numbers ex<(n, F ) for edge-ordered star forests F . We will show that this
problem is closely related to Davenport-Schinzel theory, so let us recall the basic definitions. For
a more thorough introduction on Davenport-Schinzel theory see e.g., [25].

A word is a finite sequence. We will refer the elements of the sequence as letters, but we are
not interested in what the actual letters are, we only care about where the same letters repeat.
Accordingly, we say that the words u = a1 . . . an and v = b1 . . . bm are equivalent if n = m and
for all 1 ≤ i, j ≤ n we have ai = aj if and only if bi = bj. We denote the length of the word u
by |u|, so we have |u| = n in this example. We write ||u|| for the number of distinct letters in u.
A word u is k-regular (for some positive integer k) if every k consecutive letters in u are distinct
(in case |u| < k we require all letters of u to be distinct). A subword is obtained by deleting any
number of letters from a word and considering the word formed by the remaining letters in their
original order. We say that a word u contains another word f if f is equivalent to a subword of
u. If this is not the case we say that u avoids f . For a non-empty word f and a positive integer
n we write exDS(n, f) for the length |u| of the longest ||f ||-regular word u on at most n letters
(that is ||u|| ≤ n) avoiding f . The central problem of Davenport-Schinzel theory is to calculate
or estimate this extremal function.

To apply the results of Davenport-Schinzel theory we need to relate edge-ordered graphs to
words. We do this in two different ways. First, let F be an edge-ordered star forest. We
represent each component of F with a unique letter. We define the corresponding word w(F ) to
be w(F ) = a1 . . . am, where m is the number of edges in F and ai is the letter representing the
component of F containing the i’th edge in the edge-ordering of F . We obtain the longer word
w′(F ) = a2m1 . . . a2mm by repeating each letter in w(F ) 2m times. (Here we use exponentiation to
denote repetitions.) For our second connection between graphs and words consider an arbitrary
edge-ordered graph G. We build a corresponding word over the set of vertices of G as letters
by listing the two end vertices of each edge. We list the edges according to their edge-order but
we choose the order of the two end vertices of the same edge arbitrarily. We write u(G) for the
family of words one can obtain this way. For example, if G is a graph with edges ab, ac, bc, ad
with the edge-order ab < ac < bc < ad, then u(G) contains the word abaccbda among 15 other
words. The length of any word in u(G) is twice the number of edges in G.

The main connection between the containments in these two different contexts is provided by
the following lemma.

Lemma 3.1. Let F be an edge-ordered star forest and let G be an edge-ordered graph. If a word
in u(G) contains w′(F ) and G has at least as many vertices as F , then G contains F .

Proof. Let w(F ) = a1 . . . am. Let u be the subword of an element u0 of u(G) equivalent to
w′(F ) = a2m1 . . . a2mm . We have u = b2m1 . . . b2mm with bi = bj if and only if ai = aj. Each of the
letters in u were inserted in u0 as an end vertex of an edge in G, thus b2mi must come from 2m
distinct edges of G, each incident to the vertex bi. For each i = 1, . . . ,m we select one of these
edges, ei = bici such that the vertices ci are pairwise distinct and none of them coincides with any
of the vertices bj. We can achieve this (even in a greedy manner) as out of the 2m possibilities
for the choice of ci, less than 2m are forbidden.
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It is easy to see that the subgraph of G consisting of the vertices bi, ci (for i = 1, . . . ,m) and
the edges ei for i = 1, . . . ,m is isomorphic to the edge-ordered graph obtained from F by deleting
its isolated vertices. The isomorphism can be extended to the isolated vertices of F as G has
enough vertices. �

Davenport-Schinzel theory bounds the length of the ||f ||-regular words avoiding a forbidden
word f . We will use this bound for f = w′(F ) together with Lemma 3.1 to bound the length of
any word in u(G) (and with that the number of edges in G) for edge-ordered graphs G avoiding
the edge-ordered star forest F . The only obstacle here is that elements of u(G) do not have to
be ||w′(F )||-regular. In fact, they do not even have to be 2-regular. The next lemma helps us
overcome this difficulty.

Lemma 3.2. Let k > 1 be an integer and let G be an edge-ordered graph with m edges. Any
word in u(G) has a k-regular subword of length larger than m/(k − 1).

Proof. Recall that a word in u(G) can be written as u = a1a2 . . . a2m, where a2i−1a2i is the i’th
edge of G. We apply the following (standard) greedy procedure to obtain a k-regular subword.
We start with the empty word u0 and for 1 ≤ i ≤ 2m define ui = ui−1ai if ui−1ai is k-regular, or
ui = ui−1 otherwise. Clearly v = u2m is a k-regular subword of u.

Consider any edge e = a2i−1a2i of G. Both of the endpoints a2i−1, a2i must appear among the
last k letters of u2i, either because we inserted a2i−1 or a2i (or both) after u2i−2 or because we
did not insert them, so they were already among the last k− 1 letters in u2i−2. Thus e connects
two vertices that appear in v at distance at most k− 1 from each other. As there are fewer than
(k − 1)|v| pairs of this type, we have m < (k − 1)|v| and |v| > m/(k − 1) as needed. �

Theorem 3.3. Any edge-ordered star forest F with k > 1 components satisfies

ex<(n, F ) ≤ (k − 1)exDS(n,w′(F )).

Proof. Let G be an edge-ordered graph with n vertices and m = ex<(n, F ) edges that does not
contain F . By Lemma 3.1, any word in u(G) avoids w′(F ). Any subword of an element of
u(G) must also avoid w′(F ), among them the k-regular subword of length at least m/(k − 1)
guaranteed by Lemma 3.2. Note that k = ||w′(F )|| and ||u(G)|| ≤ n. By the definition of the
extremal function exDS(n,w′(F )) this means that m/(k − 1) ≤ exDS(n,w′(F )) as required. �

We use this last theorem to prove an almost linear upper bound on ex<(n, F ) for an arbitrary
edge-ordered star forest F and linear upper bound for certain special edge-ordered star forests.

Corollary 3.4. Any edge-ordered star forest F satisfies

ex<(n, F ) ≤ n2(α(n))c ,

where α(n) is the extremely slow growing inverse Ackermann function and the exponent c depends
on F , but not on n.

Further, if w(F ) is of the form aibjakbl for two distinct letters a and b and non-negative
exponents i, j, k and l, then

ex<(n, F ) = O(n).
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Proof. We apply Theorem 3.3 for both bounds. The first bound follows because the stated upper
bound holds for exDS(n,w) for any word w, see [25].

The second bound follows from the fact if w(F ) has the form claimed, then w′(F ) must also
have this form (with different exponents) and by the paper [1] exDS(n,w) is linear for such words
w.

Note that Theorem 3.3 does not apply if F is a single star, but in this case an edge-ordered
graph avoids F if and only if its maximal degree is below the number m of edges in F , so we
have ex<(n, F ) = b(m− 1)n/2c = O(n). �

Note that the Turán number of a graph with at least two edges – even without an edge-ordering
– is at least bn/2c. So the linear upper bound in Corollary 3.4 is tight. It applies to every star
forest with two star components and at most four edges. We finish the section by showing that
a linear upper bound does not hold for a certain edge-ordering of the star forest consisting of a
2-edge star and a 3-edge star. The result is closely connected to the celebrated result of Hart
and Sharir [22] that we can state as exDS(n, ababa) = Θ(nα(n)). It is simpler for us, however,
to derive our lower bound from a related result of Füredi and Hajnal [18].

Theorem 3.5. The edge-ordered star forest F consisting of five edges such that the first, third
and fifth edges form a star component and the second and fourth edges form another component
satisfies

ex<(n, F ) = Ω(nα(n)),

where α(n) is the inverse Ackermann function.

Proof. Füredi and Hajnal proved in Corollary 7.5 of [18] that there exists an n by n 0-1 matrix

An with Θ(nα(n)) 1-entries that does not contain a submatrix of the form

[
1 1

1 1

]
, where

the positions left blank could be arbitrary.
We build a bipartite graph Gn such that An is its adjacency matrix. Gn has 2n vertices, n of

them (the row vertices) corresponding to the rows of An, and another n (the column vertices)
corresponding to the columns. The edges of Gn correspond to the 1 entries in An, so Gn has
Θ(nα(n)) edges.

We order the edges of Gn left to right according to the column where the corresponding 1
entry appears. More precisely, an edge e is less than another edge e′ if the 1 entry corresponding
to e is in a column that is to the left of the column containing the 1 entry corresponding to e′.
We order the edges within the same column arbitrarily. We claim that the edge-ordered graph so
obtained does not contain F . Assume for a contradiction that it contains F , so a subgraph of Gn

(as an edge-ordered graph) is isomorphic to F . We denote the vertices of F by a, b, c1, c2, c3, c4
and c5 as depicted in Figure 1.

We denote the corresponding vertices in the subgraph of Gn by the corresponding upper case
letters A,B,C1, C2, C3, C3, C4 and C5. Notice that the column vertices of Gn are close, but
neither central vertex a or b of F is close, therefore A and B must be row vertices. The vertices
Ci are adjacent to A or B, so they are column vertices. As the isomorphism preserves the edge-
ordering, these columns Ci must appear left to right in order of increasing indices. Rows A and
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Figure 1. The edge-ordered star forest F

B can be in either order. If row A is below row B, then consider the 2 by 4 submatrix of An
formed by the rows A and B and the columns C1, . . . , C4. It is easy to see that this submatrix
has a 1 entry in the four specified positions, contradicting the defining property of An. In case
row A is above row B, a similar contradiction comes from the 2 by 4 submatrix of An formed by
the rows A and B and the columns C2, . . . , C5.

The contradiction proves our claim that Gn does not contain F and thus shows that ex<(2n, F )
is at least the number of edges in Gn, so ex<(2n, F ) = Ω(nα(n)). Using the monotonicity this
implies the stated lower bound on ex<(n, F ). �

4. Paths

Let us start with introducing avoidance in an asymmetric bipartite context. It will play an
important role in several of our results in this section.

By edge-ordered bipartite graphs we mean an edge-ordered graph whose underlying graph is
bipartite with a specified bipartition to left vertices and right vertices. If the edge-ordered graph
H has a specified root x ∈ V (H), then we can distinguish if an edge-ordered bipartite graph
G contains H with the root of H being a left vertex or a right vertex. Accordingly, we say
that G left-contains H if a subgraph of G is isomorphic to H and the vertex corresponding to
the root of H is a left vertex in G. Otherwise we say, G left-avoids H. Similarly, we say G
right-contains (or right-avoids) H, according to whether G has a subgraph isomorphic to H in
which the vertex corresponding to the root of H is a right vertex. For this definition we consider
the starting vertex of an edge labeled paths PL

k to be its root. Note that this definition depends
on the presentation of PL

k , for example P 132
4 and P 231

4 are isomorphic, but have different roots,
so left-avoiding P 132

4 is the same as right-avoiding P 231
4 .

As we have mentioned in the introduction, known results on the altitude of graphs imply a
linear upper bound on the number of edges if a monotone labeling of the path Pk is forbidden.
First we prove a similar statement for any trees. We will use this to prove Theorem 4.2, which
gives a useful upper bound for the Turán numbers of several edge-ordered paths.

We say that a labeling of a rooted tree T is decreasing if the labels are decreasing on every
branch (that is, on every path starting at the root). We call the labeling increasing if the labels
are increasing along every branch.

Note that in the next lemma we forbid all increasing (or all decreasing) labelings of a tree,
rather than a specific one.
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Lemma 4.1. Let T be a rooted tree of height h with t vertices. If an edge-ordered graph on n
vertices does not contain any decreasing labeling of T , then it has fewer than htn edges. Moreover,
if an edge-ordered bipartite graph G does not left-contain any decreasing labeling of T , then it
also has fewer than htn edges.

The same bounds hold for edge-ordered graphs avoiding (or edge-ordered bipartite graphs left-
avoiding) all increasing labelings of T .

Proof. By symmetry, it is enough to deal with graphs avoiding the decreasing labelings of T . Let
G be an edge-ordered graph (or edge-ordered bipartite graph, respectively) with n vertices and
htn edges. We will prove that G contains (left-contains, respectively) a decreasing labeling of T
by induction on h. In case h = 1, the average degree is larger than t, so G contains the star T
with some labeling, but every labeling is decreasing. In the bipartite case the average degree of
left vertices is larger than t, so G left-contains T as well.

For h > 1 we delete the t edges with smallest labels incident to every vertex v of G and let G′

be the resulting edge-ordered graph. In case a vertex of G has degree less than t, we delete all
incident edges. Let us delete the last level from T (the vertices farthest from the root x) and let
T ′ be the resulting tree of height h− 1.
T ′ has fewer than t vertices and G′ has at least htn− tn = (h− 1)tn edges. By induction, we

can find a decreasing copy of T ′ in G′ (with the root being a left vertex in the bipartite case).
We extend this copy of T ′ to obtain a copy of T in G. At every vertex where we need to add
an edge, we select an edge from the t lowest edges at that vertex. These were deleted from G,
so the monotonicity will be maintained. We add the edges one by one making sure we do not
create cycles: this is possible because at most t − 1 of the smallest edges lead to a vertex of G
already used. �

Remark. A more careful analysis of the proof gives that if we have ti vertices on level i, then
the upper bound on the number of edges in G can be improved to n

∑
i(h− i+ 1)ti.

Using the above lemma, we give a weaker bound for a couple specific orderings of paths. We
call a labeling of a path P monotone if it is increasing or decreasing when considered with a root
at one of the degree 1 vertices.

Theorem 4.2. Let P be an edge-ordered path with a vertex v that cuts it into two monotone
paths P ′ and P ′′, such that all labels of P ′ are smaller than all labels of P ′′. Then ex<(n, PL

k ) =
O(n log n).

Proof. Let us set c = 4k3, where k is the number of vertices in P . We use induction on n to
prove that any edge-ordered graph G with n vertices and more than cn log n edges contains P .

Assume that our statement holds for smaller values of n and let G be an edge-ordered graph
on n vertices and more than cn log n edges. Our goal is to show that G contains P . Let G1 be
the subgraph of G formed by the set of the d c

2
n log ne smallest edges of G and let G2 be the

subgraph of G formed by the remaining edges.
We consider both P ′ and P ′′ as rooted trees with root v. Let T be the rooted tree obtained by

identifying the roots of k pairwise disjoint copies of the path underlying of P ′. We call a labeling
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of T appropriate if it is a decreasing labeling and the labeling of P ′ is also decreasing or if it is
an increasing labeling and the labeling of P ′ is also increasing.

Let V1 be the set of vertices that are roots of appropriately labeled copies of T in G1. We
designate them as right vertices and the rest of the vertices as left vertices. Observe that there
are at most 2k3n edges of G1 that are incident to a left vertex. Indeed, the subgraph of G1

induced by the left vertices avoids all appropriate labelings of T , so it has at most k3n edges by
Lemma 4.1, while the edge-ordered bipartite graph formed by the edges of G1 between left and
right vertices left-avoids all appropriate labelings of T , so it has also at most k3n edges by the
same lemma.

This implies that the subgraph of G1 induced by V1 has at least c
2
n log n − 2k3n edges. It

avoids P , so by induction it has at most c|V1| log |V1| edges. Therefore, we must have |V1| > n/2.
Let V2 be the set of vertices that are roots of an isomorphic copy of P ′′ in G2. A similar

argument shows that we must have |V2| > n/2. This implies there is a vertex x ∈ V1 ∩ V2.
Consider an isomorphic copy P ∗ of P ′′ in G2 rooted at x. Also, consider an appropriately labeled
copy T ∗ of T in G1 rooted at x. T ∗ has k branches, at least one of them does not meet P ∗

outside the common root. Clearly, the union of this branch with P ∗ is an isomorphic copy of P
in G. �

Remark. Let T be an edge-ordered tree with a single vertex v of degree larger than 2. We
call the maximal paths starting at v the branches of T . A similar proof shows that if the
branches are monotone and the edges of the branches form intervals in the edge-ordering, then
ex<(n, T ) = O(n log n).

4.1. Edge-ordered paths with three edges. The path P4 has three non-isomorphic labelings:
P 123
4 , P 132

4 and P 213
4 . This section is about their Turán numbers. We determine ex<(n, P 132

4 ) and
ex<(n, P 213

4 ) exactly and ex<(n, P 123
4 ) up to an additive constant. First we prove a simple graph

theoretical lemma that will be used for the proof of both results.

Lemma 4.3. Let G be a simple graph with n ≥ 1 vertices and m edges that does not contain a
cycle of length 4 or more. Then m ≤ 3

2
(n− 1).

Proof. We use induction by n. If there is no triangle in G, then G is a forest and therefore
m ≤ n− 1 and we are done. Otherwise, it has a triangle abc. Let G′ be the graph obtained by
removing the edges of this triangle from G. The vertices a, b and c fall in distinct components of
G′ as any path connecting them in G′ could be extended by two edges of the triangle to a cycle
of length at least four in G. Let Ga and Gb denote the connected component of the vertices a
and b in G′, respectively, and let Gc be the subgraph of G′ formed the remaining components.
By the inductive hypothesis on these graphs we have

m = |E(Ga)|+|E(Gb)|+|E(Gc)|+3 ≤ 3

2
(|V (Ga)|−1)+

3

2
(|V (Gb)|−1)+

3

2
(|V (Gc)|−1)+3 =

3

2
(n−1).

�

Theorem 4.4. ex<(n, P 132
4 ) = ex<(n, P 213

4 ) =
⌊
3
2
(n− 1)

⌋
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Proof. By symmetry (reversing the edge-order) it is enough to deal with P 132
4 .

Consider any labeling of a cycle of length at least four. The subgraph formed by the largest
edge in the cycle and its two adjacent edges is isomorphic to P 132

4 . Thus, if an edge-ordered
graph avoids P 132

4 , then its underlying simple graph has no cycle of length at least four. The
upper bound follows from Lemma 4.3.

Now we will show that for every n, there is an edge labeled graph G with
⌊
3
2
(n− 1)

⌋
edges

that avoids P 132
4 . Let us obtain G from an n-vertex star by adding to it a matching of size

⌊
n−1
2

⌋
connecting leaves of the star. We have |E(G)| = n − 1 +

⌊
n−1
2

⌋
=
⌊
3
2
(n− 1)

⌋
as needed. Label

the edges in such a way that the edges of the original star receive the smallest labels. It is easy
to check that the middle edge of any 3-edge path in G is from the original star but the path has
to also contain an edge outside this star. Therefore, G avoids P 132

4 . �

Theorem 4.5. ex<(n, P 123
4 ) ≤ 3n

2
holds for any n ≥ 1 and it holds with equality if and only if n

is divisible by 4.

Proof. We start by describing two classes of graphs that have a monotone path of length 3 in any
labeling. Odd cycles of length 5 or more are like that. Indeed, going around the cycle we can note
if the label increases or decreases going from one edge to the next. This two cannot alternate
because the cycle is odd, so we have two consecutive increases or two consecutive decreases. The
three edges involved form a monotone path.

Now assume that a graph G has four vertices A,B1, B2 and B3 such that A is connected to all
three of {B1, B2, B3} and all three of {B1, B2, B3} has a neighbor not in {A,B1, B2, B3}. (These
neighbors may or may not coincide.) Any labeling GL contains a 3-edge monotone path. Indeed,
we can assume by symmetry that L(AB1) < L(AB2) < L(AB3). Let C be a neighbor of B2 with
C /∈ {A,B1, B3}. If L(B2C) < L(AB2), then B3AB2C is a monotone path, otherwise B1AB2C
is.

We use induction on n to prove the upper bound. The statement is trivial for n ≤ 4. Now
assume that n ≥ 5. Let G be a graph with n vertices and m labeled edges with no monotone
path of length 3.

If there is no cycle of length at least 4 in G, then Lemma 4.3 implies m ≤ 3
2
(n− 1) < 3n

2
. So

G contains a cycle of length at least 4. Let C be a such a cycle of minimal length t. By our first
observation, t cannot be odd, so it is even.

First, assume that there is a vertex A ∈ C connected to some vertex B1 6∈ C. Let B2 and B3

be the neighbors of A in C. Then B1 cannot be connected to B2 or B3, since that would create
an odd cycle of length t+ 1. B1 cannot be connected to a vertex not in {A,B2, B3} either, since
this would create the other type of forbidden subgraph we described before. Therefore the only
neighbor of B1 is A. Let us delete B1 from G. By induction the remaining graph has at most
3
2
(n− 1) edges, therefore m ≤ 3

2
(n− 1) + 1 < 3n

2
.

Now assume that there is no edge connecting a vertex of C to a vertex not in C, that is the
vertices of C form a component of G. The rest of the graph contains at most 3

2
(n− t) edges by

induction. If t > 4, then C must be an induced cycle as a chord in C would create a shorter
cycle still of length at least 4, so we have m ≤ t + 3

2
(n − t) < 3

2
n. Finally if t = 4, then the
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component of C can contain at most 6 edges and we have m ≤ 6 + 3
2
(n− 4) = 3

2
m. We can only

have equality in this case and (by induction) only if all components of G are cliques of size 4.
To completely characterize the cases of equality in the theorem, it is enough to show that a

disjoint union of copies of K4 can be labeled in a way avoiding P 123
4 . Clearly, it is enough to

label one component. A labeling of K4 avoids P 123
4 if and only if both the two smallest and the

two largest labels are given to pairs of independent edges. �

Corollary 4.6. 6bn
4
c = ex<(4bn

4
c, P 123

4 ) ≤ ex<(n, P 123
4 ) ≤ 3n

2
, which determines ex<(n, P 123

4 ) up
to an additive constant.

We remark that the additive constant in the above corollary can be removed with a small
additional effort to obtain an exact result. We just sketch the proof here. The lower bound
in Corollary 4.6 comes from the edge-ordered graph which makes the bound in Theorem 4.5
tight on 4bn/4c vertices and up to 3 isolated vertices. We can add a complete graph instead of
the isolated vertices and this improves the lower bound by 1 or 3 if n = 4k + 2 or n = 4k + 3,
respectively. (The edge-order of the additional edges do not matter.) To prove that this improved
lower example is tight, it is enough to realize that the simple graph K+

4 consisting of a complete
graph K4 and a single additional edge connecting a vertex of K4 with a new leaf must contain
P 123
4 .

4.2. Edge-ordered paths with four edges. The labelings (or edge-orderings) of P5 are given
by permutations of {1, 2, 3, 4}. However, two reverse permutations (e.g., 1324 and 4231) yield
isomorphic labeled graphs. Also, the Turán number remains the same if we reverse the edge-
ordering. For example if G is a P 1243

5 -free labeled graph, then reversing the edge-ordering in G
gives a P 4312

5 -free graph. Therefore, the Turán numbers of the two or four labelings are equal
in each of the eight classes in the following table. For each of these equivalence classes, we
summarize the upper and lower bound we prove on ex<(n, PL

5 ).

Turán numbers of edge-ordered paths with four edges
Labeling Lower bound Upper bound Proved in
{1234, 4321} Ω(n) O(n) Prop. 4.7 (i)
{1243, 3421, 4312, 2134} Ω(n) O(n) Prop. 4.7 (ii)
{1324, 4231} Ω(n log n) O(n log n) Thm. 4.12
{1432, 2341, 4123, 3214} Ω(n log n) O(n log n) Thm. 4.10
{2143, 3412} Ω(n log n) O(n log n) Thm. 4.9 (ii)
{1342, 2431, 4213, 3124} Ω(n log n) O(n log2 n) Thms. 4.9 (i), 4.14
{2413, 3142}

(
n
2

) (
n
2

)
Prop. 4.8 (ii)

{1423, 3241, 4132, 2314}
(
n
2

) (
n
2

)
Prop. 4.8 (i)

Proposition 4.7. (i) ex<(n, P 1234
5 ) = Θ(n)

(ii) ex<(n, P 1243
5 ) = Θ(n)
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Proof. The lower bounds are obvious in both cases. We mentioned earlier the linear upper bound
for monotone paths of any length. That implies the upper bound in (i) but we prove it together
with (ii) to obtain the same upper bound of 9n/2 that is stronger than what follows from the
earlier proof.

Let us consider an edge-ordered graph G on n vertices with more than 9n/2 edges. Our goal is
to prove that G contains both P 1243

5 and P 1234
5 . For every vertex v of G, we remove the smallest

three edges incident to v (or all incident edges if the degree of v is less than 3). This way we
remove at most 3n edges, thus the resulting graph G′ has more that 3n/2 edges.

By Theorem 4.4, G′ contains P 132
4 . Let v1, v2, v3, v4 be the vertices of a subgraph of G′ isomor-

phic to P 132
4 , so v1v2, v3v4 and v2v3 are edges of G′ ordered in this order. Recall that we removed

the three smallest edges incident to v1 from G. The other endpoint of at least one of these three
edges is different from v3 and v4. Choosing such a vertex u as a starting vertex, we obtain the
path uv1v2v3v4 in G, and its labeling makes it isomorphic to P 1243

5 .
Observe that G′ also contains a P 123

4 by Theorem 4.5, and then the same reasoning as above
yields that G also contains P 1234

5 . �

Note that by Theorem 2.3 the next statement is equivalent to χ<(P 1423
5 ) = χ<(P 2413

5 ) =∞.

Proposition 4.8. (i) ex<(n, P 1423
5 ) =

(
n
2

)
(ii) ex<(n, P 2413

5 ) =
(
n
2

)
Proof. This follows directly from the fact that the max-labeling of Kn avoids both P 1423

5 and
P 2413
5 . This last statement follows from Proposition 2.9 as neither end vertex of the largest edge

is close in either of the edge-ordered paths P 1423
5 and P 2413

5 . �

We prove several of the lower bounds of the form ex<(n, P ) = Ω(n log n) by constructing
edge-ordered graphs Gi avoiding P such that Gi has 2i vertices and Ω(i2i) edges. This is enough
by the monotonicity of ex(n, P ). Indeed, if P has no isolated vertices than one can add isolated
vertices to any edge-ordered graph avoiding P to obtain an edge-ordered graph on more vertices
and the same number of edges, still avoiding P . So in the situation above we have ex<(n, P ) ≥
ex<(2blognc, P ) = Ω(n log n).

Theorem 4.9. (i) ex<(n, P 1342
5 ) = Ω(n log n)

(ii) ex<(n, P 2143
5 ) = Θ(n log n)

Proof. The upper bound of (ii) follows from Theorem 4.2.
To prove (i), we build the P 1342

5 -free edge-ordered graphs Gi recursively. Let G0 be a single
vertex. To construct Gi+1 we take two copies of Gi and add a perfect matching M between the
two copies. Note that we can take an arbitrary perfect matching. We keep the order of the edges
within both copies of Gi, but make all edges in one copy (the large copy) larger than any edge
in the other copy (the small copy). We further make all edges in the matching M larger than
any other edge. The order among the matching edges is arbitrary.

Clearly, Gi has 2i vertices and i2i−1 edges. It remains to prove that it avoids P 1342
5 . We do this

by induction on i. The statement trivially holds for G0, so assume it holds for Gi and assume
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for a contradiction that an isomorphic copy P 1342
5 shows up in Gi+1 formed by edges e1, e2, e3

and e4 with the edge-ordering e1 < e4 < e2 < e3. It cannot be completely inside a copy of Gi by
the inductive hypothesis, but it is connected, so it has to contain an edge from M . As e3 is the
largest of the four edges it must come from M and therefore e2 and e4 (being incident to distinct
end points of e3) must come from the two separate copies of Gi, e2 coming from the large copy
and e4 from the small copy. The edge e1 is adjacent to e2 from the large copy but smaller than
e4 from the small copy, a contradiction.

The lower bound of (ii) is given by a similar recursive construction. We construct the P 2143
5 -

free edge-ordered graphs G′i similarly. G′0 is a single vertex, and G′i+1 is obtained by connecting
two disjoint copies of G′i by a perfect matching M , but the edge-ordering is different. We still
keep the edge-orderings inside both copies of G′i and make all edges of one copy larger than any
edge of the other copy, but this time the edges of M will be intermediate: larger than the edges
in the small copy of G′i and smaller than the edges in the large copy. We can choose the perfect
matching M arbitrarily and the order of the edges inside M is arbitrary too.

We still have that G′i has 2i vertices and i2i−1 edges. For the inductive proof that these graphs
avoid P 2143

5 assume for a contradiction that G′i avoids it but G′i+1 has an isomorphic copy formed
by the edges e1, e2 e3 and e4 with the edge-ordering e2 < e1 < e4 < e3. Here G′i+1 consist of
two copies of G′i connected by a matching M . If e2 ∈M , then two adjacent edges e1 and e3 are
in different copies of G′i, thus one of them should be smaller than e1, a contradiction. Similarly,
if e3 ∈ M , then one of its adjacent edges e2 or e4 should be larger than e4, a contradiction. So
e2 and e3 are in one of the copies of G′i and as they are adjacent, it is the same copy. As the
other two edges are in between them in the ordering they should also be in the same copy of G′i
contradicting the inductive assumption that G′i avoids P 2143

5 . �

The edge-ordered graphs Gi and G′i in the proof above are not well defined as we made several
arbitrary choices in their constructions. But it is instructive to observe that if we choose the
connecting matchings in the most natural way in each step (namely, connecting the same vertex
in the two copies of Gi−1 or G′i−1), then the underlying simple graphs of both Gi and G′i are the
i-dimensional hypercube.

Theorem 4.10. ex<(n, P 1432
5 ) = Θ(n log n)

Proof. The upper bound follows from Theorem 4.2. It can also be derived from Lemma 4.1(c) in
[41]. To prove the lower bound we use a result of Füredi [17]: there exist n× n 0-1 matrices An

that do not contain the submatrix

[
1 1

1 1

]
(with arbitrary entries in the two places left blank)

and have Ω(n log n) 1 entries.
We build a bipartite graph Gn such that An is its adjacency matrix. Gn has 2n vertices, n of

them (the row vertices) corresponding to the rows of An, and another n (the column vertices)
corresponding to the columns. The edges of Gn correspond to the 1 entries in An, so Gn has
Ω(n log n) edges. Now we make Gn into an edge-ordered graph by ordering its edges according
to the corresponding 1 entries in An. If two 1 entries are in distinct columns, the one to the right
is larger. If they are in the same column, then the one lower in the column is larger.
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It remains to prove Gn avoids P 1432
5 . Assume for a contradiction that an isomorphic copy of

P 1432
5 shows up in Gn. Notice that column vertices are close, but the common vertex of the first

two edges in P 1432
5 is not close, so it must correspond to a row vertex. This means that two

rows and three columns corresponding to the five vertices of the copy of P 1432
5 form exactly the

forbidden type of submatrix, a contradiction. �

Our next lemma will be used in proving Theorem 4.12. Recall that we introduced edge-ordered
bipartite graphs as edge-ordered graphs whose underlying graph has a specified bipartition to left
and right vertices. When an edge-ordered bipartite graph G contains an edge-ordered graph H
with a specified root (in case of paths it is just the first vertex), we distinguish left-containment
or right-containment according to the position of the root of H in G.

Lemma 4.11. The maximal number of edges an edge-ordered bipartite graph on n vertices that
right-avoids both P 132

4 and P 213
4 can have is Θ(n log n).

Proof. The proof of the lower bound is similar to the recursive construction of the lower bounds
in Theorem 4.9. We build the edge-ordered bipartite graphs Gi recursively. The graph Gi will
have 2i−1 left vertices, 2i−1 right vertices and (i+ 1)2i−2 edges.

We start with G1 being (the only edge-ordering of) K2 and we designate one of the vertices
left, the other right. For i ≥ 1 we construct Gi+1 as follows. We take two disjoint copies of Gi

and connect them by a perfect matching M between the left vertices of the first copy and the
right vertices of the second copy. We keep the order of the edges within either of the two copies
of Gi and make the edges of M larger than the edges in the first copy of Gi and smaller than the
edges in the second copy of Gi. Note that the matching M and the order of edges within M is
arbitrary. A left vertex of either copy of Gi will also be a left vertex of Gi+1, while a right vertex
of either copy of Gi is also a right vertex of Gi+1.

We claim that Gi right-avoids P 132
4 for all i. We prove this by induction on i. It trivially holds

for G1. Assume that Gi right-avoids P 132
4 but we still find a copy P of P 132

4 in Gi+1 formed by
the edges e1, e2 and e3 ordered as e1 < e3 < e2. We need to prove it starts at a left vertex. If P
is contained in one of the copies of Gi, then it starts as a left vertex by the inductive hypothesis.
Otherwise one of the edges in P is in the matching M . Notice that M is an induced matching
(no edge of Gi+1 connects two edges in M), so exactly one edge of P is in M . It cannot be e2
as one of the other two edges of P would then be in the second copy of Gi and would be larger
than e2. The matching edge cannot be e3 either as then e1 and e2 (being smaller and larger than
e3, respectively) would be in different copies of Gi and could not be adjacent. So e1 must be in
M , and then then e2 and e3 (being larger than e1) are in the second copy of Gi, so P starts in
the left side of the first copy of Gi proving the claim.

A similar inductive proof shows that Gi right-avoids P 213
4 for all i. Indeed, if Gi right-avoids

P 213
4 but an isomorphic copy P of P 213

4 consisting of the edges e1, e2, and e3 in the edge-ordering
e2 < e1 < e3 shows up in Gi+1, then either P is contained in a single copy of Gi and then it
starts at a left vertex or exactly one of its edges is in the matching M . As above, the edge in M
cannot be e1 or e2, so it must be e3 with e1 and e2 from the first copy of Gi, but then P starts
at a left vertex again. This finishes the proof of the lower bound.
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For the upper bound we consider an edge labeled bipartite graph GL on n vertices that right-
avoids both P 132

4 and P 213
4 . That is, G is a bipartite graph with a given bipartition to left and

right vertices and L is an injective labeling L : E(G)→ R specifying the edge-ordering. As only
the relative order of the labels matters we can assume without loss of generality that the labels
are integers between 1 and |E(G)|. This assumption is needed because in the proof below we
compare not only the labels but also distances between labels.

For a non-isolated left vertex x in G we write m(x) for the minimal label L(e) of an edge e
incident to x. For a non-isolated right vertex y in G we write M(y) for the maximal label L(e)
for an edge e incident to y. For an edge e = xy of G with x a left vertex and y a right vertex we
call L(e) −m(x) the left-weight of e and M(y) − L(e) is the right-weight of e. Note that these
are non-negative integers less than |E(G)| < n2. We call the edge left-leaning if its left-weight is
larger than its right-weight, otherwise it is right-leaning.

Let xy1 and xy2 be two edges of G incident to the same left vertex x and assume L(xy2) >
L(xy1). Then the left weight of xy2 is larger than the left-weight of xy1. We must further have
M(y1) < L(xy2) as otherwise the path y2xy1 followed by the edge of label M(y1) would show
that G right-contains P 213

4 , contrary to our assumption. If we further assume that xy1 is right-
leaning, then we have L(xy2)−m(x) > M(y1)−m(x) ≥ 2(L(xy1)−m(x)), so the left-weight of
xy2 is more than twice of that of xy1. As all these left-weights are non-negative integers below
n2, this implies that there are O(log n) right-leaning edges of G incident to x. The total number
of right-leaning edges is therefore O(n log n).

To obtain a similar bound for left-leaning edges, let x1y and x2y be two edges of G incident to
the same right vertex y with L(x1y) < L(x2y). We have m(x2) > L(x1y) as otherwise the path
starting with the edge of label m(x2) continued by x2yx1 would show that G right-contains P 132

4 .
So if x2y is left-leaning, then we have M(y)− L(x1y) > M(y)−m(x2) ≥ 2(M(y)− L(x2y)), so
the right-weight of x1y is more than twice the right-weight of x2y. As before, this implies that
the number of left-leaning edges incident to y is O(log n) and the total number of left-leaning
edges in G is O(n log n). As every edge of G is either left- or right-leaning, G has O(n log n)
edges. This finishes the proof of the upper bound. �

Theorem 4.12. ex<(n, P 1324
5 ) = Θ(n log n)

Proof. Consider an edge-ordered bipartite graph G that right-contains P 1324
5 . The first three

edges of the isomorphic copy of P 1324
5 forms an isomorphic copy of P 132

4 , so G also right-contains
P 132
4 . Similarly, if G left-contains P 1324

5 , then the last three edges of the isomorphic copy of P 1324
5

is isomorphic to P 213
4 , so G right-contains P 213

4 . Therefore, if an edge-ordered bipartite graph
G right-avoids both P 132

4 and P 213
4 , then G both right- and left-avoids P 1324

5 , so it avoids P 1324
5 .

By Lemma 4.11 such edge-ordered bipartite graphs G exist with n vertices and Ω(n log n) edges
proving the lower bound in the theorem.

For the upper bound we will also use Lemma 4.11 but we need a more involved deduction. Let
GL be an edge-ordered graph with n vertices and m edges avoiding P 1324

5 . Our goal is to prove
m = O(n log n).
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First we partition the vertex set of G to left and right vertices and consider the bipartite
subgraph G′ of G formed by the edges between the left and the right vertices. We can do the
partition in such a way, that G′ contains at least m/2 edges. We remove the edge with the
minimal label incident to every vertex, and obtain the subgraph G′′ with the edge set E. We
clearly have |E| ≥ m/2−n. When saying that E or a subset of E avoids (or left- or right-avoids)
a pattern we mean the statement for the edge-ordered bipartite subgraph of G′ formed by those
edges. In particular, E avoids both P 1324

5 and C1324
4 . It avoids the former because the entire

edge-ordered graph G avoids it. Assume a copy of C1324
4 shows up in E. Let x be the vertex

incident with the edges with the smallest and third smallest label in this cycle. We have deleted
from G′ the edge xy with the minimal label incident to x. As G′ is bipartite, y is not on the
four-cycle, thus we can replace the edge with the lowest label in the cycle with xy to obtain a
copy P 1324

5 in G′, a contradiction.
For a non-isolated vertex x of G′′ let m(x) (respectively, M(x)) stand for the minimal (re-

spectively, maximal) label L(e) of an edge e ∈ E incident to x. For an edge xy ∈ E with
x a left vertex and y a right vertex we write S(xy) (respectively, T (xy)) for the set of edges
x′y ∈ E with m(x) < L(x′y) < L(xy) (respectively, with L(xy) < L(x′y) < M(x)). Let
S = {e ∈ E | |S(e)| ≤ 1} and T = {e ∈ E | |T (e)| ≤ 1}.

Let us form an auxiliary graph with the vertex set S by connecting e ∈ S to the at most one
element in S(e) ∩ S. Now e is connected to at most one other edge of label less than L(e), so
this auxiliary graph is a forest. Forests are bipartite, so we can partition S into the independent
sets S1 and S2. Note that if y′xyx′ is an isomorphic copy of P 132

4 starting at a right vertex y′,
then m(x) ≤ L(xy′) < L(x′y) < L(xy), therefore x′y ∈ S(xy). This means, that S1 and S2,
being independent sets in the auxiliary graph cannot contain such a path, so both S1 and S2

right-avoids P 132
4 .

Similarly, the auxiliary graph on the vertex set T , where e ∈ T is connected to the at most
one element of T (e)∩ T is a forest, so T can be partitioned into the independent sets S3 and S4.
As above, both S3 and S4 left-avoid P 213

4 because the first two edges of any left-starting copy of
P 213
4 in T are connected in this auxiliary graph.
Let y be a right vertex and let xy and x′y be edges in E with L(xy) < L(x′y). Extend the

path x′yx at x′ with the edge of label m(x′) and at x with the edge of label M(x). Unless
m(x′) > L(xy) or M(x) < L(x′y) we obtain a copy of P 1324

5 or (if the two edges added are
adjacent) a copy of C1324

4 . As E avoids both of these patterns we must have m(x′) > L(xy)
or M(x) < L(x′y). Let H = {x′′y ∈ E | L(xy) < L(x′′y) < L(x′y)}. If m(x′) > L(xy), then
S(x′y) ⊆ H, while if M(x) < L(x′y), then T (xy) ⊆ H. Assume now that |H| ≤ 1 (that is, xy
and x′y are neighbors or second neighbors in the ordering of the edges at y), and we conclude
that x′y ∈ S or xy ∈ T .

Arrange the edges in E incident to the right vertex y according to their labels. By the previous
paragraph, if two edges are consecutive or second neighbors in this list, then one of them must
be in S ∪T . As a consequence we have |S ∪T | ≥ 2|E|/3−n. Note that S ∪T can be covered by
four sets (namely S1, S2, S3 and S4), each of which either right-avoids P 132

4 or left-avoids P 213
4 .
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Notice that we kept the left-right symmetry when defining the edge set E, so the statements
in the last paragraph have their mirror images too. In particular, there exists a set U ⊆ E with
|U | ≥ 2|E|/3 − n such that U = U1 ∪ U2 ∪ U3 ∪ U4 and each set Ui either left-avoids P 132

4 or
right-avoids P 213

4 .
But now we have |(S∪T )∩U | ≥ |E|/3−2n and (S∪T )∩U =

⋃
i,j(Si∩Uj). Here 8 out of the

16 intersections satisfies that Si ∩ Uj (left- and right-avoids and therefore) avoids either P 132
4 or

P 213
4 , in which case |Si∩Uj| = O(n) by Theorem 4.4, while in another 8 cases Si∩Uj either right-

avoids both of P 132
4 and P 213

4 or left-avoids both of them. We have |Si ∩ Uj| = O(n log n) in the
right-avoiding case by Lemma 4.11 and the same bound holds by symmetry in the left-avoiding
case.

Summarizing, we must have |(S ∪ T ) ∩ U | = O(n log n) and therefore |E| = O(n log n) and
finally we must also have m = O(n log n) for the number m of edges in G. This finishes the proof
of the upper bound. �

To prepare for our final result about four edge paths, namely Theorem 4.14, we start with
the following lemma. Note that while we do not expect Theorem 4.14 to be tight, this lemma is
tight. Indeed, a slight modification of the construction given in the proof of Theorem 4.9(i) for
the edge-ordered graphs Gi avoiding P 1342

5 yields edge-ordered bipartite graphs avoiding P 1342
5

and also right-avoiding P 132
4 . One only has to maintain a bipartition of the constructed graph Gi

to an equal number of left and right vertices and (when constructing Gi+1 from Gi) to restrict
the matching to connect the right vertices in the smaller copy of Gi to the left vertices in the
larger copy.

Also note that this lemma follows directly from Lemma 4.1(b) in [41]. We include the proof
to be self contained.

Lemma 4.13. If an edge-ordered bipartite graph on n vertices avoids P 1342
5 and right-avoids

P 132
4 , then it has O(n log n) edges.

Proof. Let HL be the bipartite edge labeled graph on n vertices that avoids P 1342
5 and right-

avoids P 132
4 . Our goal is to bound the number of edges in H. As in the proof of the upper bound

in Lemma 4.11 we will compare differences between labels of edges, and to make this meaningful
we assume L takes integer values between 1 and n2.

First we delete the smallest labeled edge incident to each non-isolated vertex of HL to obtain
the subgraph H ′. We lose less than n edges and H ′ avoids C1342

4 . Indeed, if a copy of C1342
4

showed up in H ′ we could replace the smallest edge in the cycle with one of the edges not in H ′

to obtain a copy of P 1342
4 in HL, a contradiction. (Note, we did exactly the same thing in the

proof of Theorem 4.12 to obtain a large subgraph of a graph avoiding P 1324
5 that avoids C1324

4 .)
For each non-isolated right vertex y in H ′ we define m(y) to be the smallest label of an edge

of H ′ incident to y. When referring to an edge xy of H ′ we will always assume x is a left vertex
and y is a right vertex. With this notation we define the weight of an edge xy of H ′ to be
w(xy) = L(xy) −m(y). We call the edge xy of H ′ minimal if w(xy) = 0, otherwise we define
n(xy) to be the label of the “next smallest label at y”, that is n(xy) = maxL(x′y), where the
maximum is taken for edges x′y in H ′ with L(x′y) < L(xy). For a non-minimal edge xy of H ′
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we compare L(xy)− n(xy) and n(xy)−m(y). If the former is larger, then xy is light, otherwise
it is heavy.

The weight of light edge is more than twice of the weight of any other edge of smaller weight
incident to the same right vertex. Therefore, the number of light edges incident to any one right
vertex is O(log n) and the total number of light edges in H ′ is O(n log n). Clearly, the number
of minimal edges in H ′ is at most n, while the number of edges of H not in H ′ is also at most n.
To finish the proof of the lemma it remains to limit the number of heavy edges.

Take two heavy edges from the same left vertex x: xy and xy′ with L(xy) < L(xy′). Extend
the 2-edge path yxy′ at y′ with the edge labeled n(xy′). As HL right-avoids P 132

4 we must
have n(xy′) < L(xy). We further extend the 3-edge path at y with the edge labeled m(y). If
m(y) < n(xy′), we obtain an isomorphic copy of P 1342

5 or C1342
4 . As H ′ avoids both we must have

m(y) > n(xy′). As xy′ is heavy we have w(xy′) ≥ 2(L(xy′) − n(xy′)). But L(xy′) − n(xy′) >
L(xy)−m(y) = w(xy). So the weight doubles from one heavy edge incident to a given left vertex
x to the next heavy edge. Therefore, the number of heavy edges incident to x is O(log n) and
the total number of heavy edges in H ′ is O(n log n), proving the lemma. �

Theorem 4.14. ex<(n, P 1342
5 ) = O(n log2 n)

Proof. Let G be an edge-ordered graph avoiding P 1342
5 on n vertices with a maximal number of

m = ex<(n, P 1342
5 ) edges. Let L be the graph formed by the bm/2c smallest edges (lower half)

of G and let U be the subgraph formed by the remaining edges (upper half) of G. We call a
vertex a left vertex it has at least 3 incident edges in L, otherwise it is a right vertex. (Note that
neither L nor U must be bipartite though.)

Clearly, L has at most 3n edges not between two left vertices, so at least bm/2c − 3n edges
between left vertices.

We claim that U does not contain an isomorphic copy of P 132
4 that ends at a left vertex. Indeed,

such a copy could be extended at its end with an edge from L. We have at least three choices
for this last edge, so at least one yields a simple four edge path and that would be isomorphic to
P 1342
5 , a contradiction.
Let Ubip be the edge-ordered bipartite graph consisting of the edges in U between a left and a

right vertex. As a subgraph of G it avoids P 1342
5 and as shown above it also right-avoids P 132

4 , so
by Lemma 4.13, Ubip contains O(n log n) edges.

The edges of U between left vertices form an edge-ordered graph avoiding P 132
4 by the same

claim above. Thus, by Theorem 4.4 O(n) edges of U connect two left vertices.
By the previous two paragraphs, there are m/2 − O(n log n) edges of U connecting right

vertices. They form an edge-ordered graph avoiding P 1342
5 just as the m/2 − O(n) edges of L

between left vertices do. We have either at most bn/2c left vertices or at most at most bn/2c
right vertices, and in either case we must have ex<(bn/2c, P 1342

5 ) ≥ m/2 − O(n log n). We
can rewrite this as ex<(n, P 1342

5 ) ≤ 2ex<(bn/2c, P 1342
5 ) + O(n log n). This recursion solves to

ex<(n, P 1342
5 ) = O(n log2 n), as claimed. �

4.3. Longer paths. Some of our results above directly imply bounds for longer edge-ordered
paths as well. For example, we have a linear upper bound for the Turán numbers of monotone
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paths of any length and Theorem 4.2 gives an upper bound for the Turán numbers of some other
edge-orderings of longer paths. Some of our constructions in the previous section can be shown
to avoid more edge-ordered paths than what was shown. See more on this in Section 6.2.

Our results in the previous sections imply that all edge-orderings of P4 have order chromatic
number 2 and all edge-orderings of P5 have order chromatic number 2 or infinity. Here we show
that this does not remain the case for the edge-orderings of P6. By Theorem 2.3, our result below
implies that ex<(n, P 14325

6 ) = n2/4 + o(n2). This shows a very different asymptotic behaviour
compared to the Turán numbers for shorter edge-ordered paths.

Theorem 4.15. χ<(P 14325
6 ) = 3

Proof. The inequality χ<(P 14325
6 ) ≥ 3 follows directly from Proposition 2.9. Indeed P 14325

6 has a
single proper two-coloring and both color class contains a vertex that is not close.

For the inequality in the reverse direction we use Theorem 2.5. It is enough to show that
all canonical edge-orders of K3×3 contain P 14325

6 . As we have observed in Section 2.1, in all
canonical edge-orders for K3×3 either one of the three parts precedes the other two parts or one
of the three parts is preceded by the other two parts. (We have already used this fact in the
proof of Proposition 2.10.) In the former case we can find an isomorphic copy of P 1432

5 in the
minimal part and then we can extend it to P 14325

6 by an edge outside this part. In the latter case
we find an isomorphic copy of P 4325

5 in the maximal part and extend it to P 14325
6 using an edge

outside this part. �

5. 4-cycles

The four edge cycle C4 has three non-isomorphic edge-orderings. The only one which embeds
into a max-labeled clique is C1243

4 , therefore χ<(C1234
4 ) = χ<(C1324

4 ) =∞ and

ex<(n,C1234
4 ) = ex<(n,C1324

4 ) =

(
n

2

)
.

In this section we improve the upper bound ex<(n,C1243
4 ) = O(n5/3) proved in [20]. Our proof is

inspired by some ideas of [30]. Note the simple lower bound ex<(n,C1243
4 ) ≥ ex(n,C4) = Θ(n3/2).

Theorem 5.1. ex<(n,C1243
4 ) = O(n3/2 log n)

Proof. Let GL be an edge-ordered graph with n vertices and m edges avoiding C1243
4 . We assume

the edges are labeled with the integers 1 through m. Our goal is to bound m.
We call an edge-ordered subgraph of GL isomorphic to C1234

4 an increasing 4-cycle. Consider
an increasing 4-cycle on vertices a, b, c and d with L(ab) < L(bc) < L(cd) < L(da). We say that
the width of this increasing 4-cycle is w(abcd) = L(da)− L(cd) + L(bc)− L(ab). Note that 1 <
w(abcd) < m. We say that the increasing 4-cycle abcd contributes the value v = log(m/w(abcd))
to the pair {b, d} of vertices and the value −v to the pair {a, c}. For two distinct vertices x, y of
G, let V (x, y) be the total value the pair {x, y} received from the contributions of all increasing
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4-cycles in G. As each 4-cycle contributes a total of zero value we clearly have∑
x,y

V (x, y) = 0, (1)

where the summation runs over all unordered pairs of distinct vertices in G.
We will show that V (x, y) is strictly positive unless x and y have only a few common neighbors.

This will help us bound the codegrees and the eventually the number of edges in G.
For a pair of distinct vertices x and y of G, let N(x, y) stand for the set of common neighbors

of x and y in G. For z ∈ N(x, y) we write wxy(z) = L(xz)−L(zy). Note that wyx(z) = −wxy(z).
Any contribution to V (x, y) must come from an increasing 4-cycle xzyt with z, t ∈ N(x, y).

Consider first a pair of distinct vertices z, t ∈ N(x, y) with wxy(z) and wxy(t) having the same sign.
We claim that in this case xzyt is an increasing 4-cycle of width w = w(xzyt) = |wxy(z)−wxy(t)|
and it contributes log(m/w) to the pair x, y. By symmetry, it is enough to show this assuming
that both wxy(z) and wxy(t) are positive and L(xz) > L(xt). This implies L(yz) < L(yt) as
otherwise the 4-cycle xzyt would be isomorphic to the forbidden 4-cycle C1243

4 . So we have
L(zy) < L(yt) < L(tx) < L(xz) making a xzyt an increasing 4-cycle of width w = L(xz) −
L(tx) + L(yt)− L(zy) = wxy(z)− wxy(t) as claimed and contributing log(m/w) toward V (x, y).

Now consider a pair z, t ∈ N(x, y) with wxy(z) and wxy(t) having opposite signs, say wxy(z) <
0 < wxy(t). In this case the 4-cycle xzyt is not necessarily increasing, but if it is, its width is again
w = |wxy(z)−wxy(t)| and it contributes − log(m/w) toward V (x, y). Indeed, the 4-cycle xzyt is
only increasing if either L(yt) < L(tx) < L(xz) < L(zy) or L(xz) < L(zy) < L(yt) < L(tx) and
our assertions hold in either case.

We can calculate V (x, y) by summing the above values for all distinct z, t ∈ N(x, y):

V (x, y) ≥
∑
z,t

sign(wxy(z)wxy(t)) log

(
m

|wxy(z)− wxy(t)|

)
, (2)

where the summation is for unordered pairs of distinct vertices z, t ∈ N(x, y). We have inequality
and not equality because some of the pairs may yield non-increasing 4-cycles and thus do not
contribute to V (x, y), but as we saw this can only happen when sign(wxy(z)wxy(t)) is negative.

It will be easier to deal with max(|wxy(z)|, |wxy(t)|) in place of |wxy(z)− wxy(t)| in inequality
(2). The former is the larger of the two values if the signs of wxy(z) and wxy(t) agree, but the
latter is larger otherwise, so we always have

sign(wxy(z)wxy(t)) log

(
m

|wxy(z)− wxy(t)|

)
> sign(wxy(z)wxy(t)) log

(
m

max(|wxy(z)|, |wxy(t)|)

)
.

(3)
Further, the difference between the two sides of inequality (3) is at least 1 whenever

1

2
≤ wxy(z)

wxy(t)
≤ 2. (4)
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As 1 ≤ |wxy(z)| < m holds for any z ∈ N(x, y) we can partition N(x, y) into 2dlogme parts such
that whenever z and t are from the same part, condition (4) holds. This means that condition (4)
is satisfied for at least d2xy/(2dlogme) of the ordered pairs z, t ∈ N(x, y), where dxy = |N(x, y)|
is the codegree of x and y in G. Thus, (4) is also satisfied for at least d2xy/(4dlogme) − dxy
unordered pairs of distinct vertices z, t ∈ N(x, y). Substituting inequality (3) in our bound (2)
and using the slack in (3) whenever (4) is satisfied, we obtain

V (x, y) >
∑
z,t

sign(wxy(z)wxy(t)) log

(
m

max(|wxy(z)|, |wxy(t)|)

)
+

d2xy
4dlogme

− dxy, (5)

where the summation is for unordered pairs of distinct vertices z, t ∈ N(x, y).
Consider now the following integral

0 ≤
∫ m

1

1

u

 ∑
z∈N(x,y),|wxy(z)|<u

sign(wxy(z))

2

du

=

∫ m

1

1

u

∑
z,t∈N(x,y),max(|wxy(z)|,|wxy(t)|)<u

sign(wxy(z)wxy(t)) du

=
∑

z,t∈N(x,y)

∫ m

max(|wxy(z)|,|wxy(t)|)

sign(wxy(z)wxy(t))

u
du

=
∑

z,t∈N(x,y)

sign(wxy(z)wxy(t)) ln

(
m

max(|wxy(z)|, |wxy(t)|)

)
.

The summations here are for ordered pairs z, t and contains terms with z = t. We simply
bound these latter terms by lnm and switch to binary logarithm to obtain∑

z,t∈N(x,y)

sign(wxy(z)wxy(t)) log

(
m

max(|wxy(z)|, |wxy(t)|)

)
≥ −dxy logm/2,

where the summation is now for unordered pairs of distinct vertices z, t ∈ N(x, y). With our
bound (5) this means

V (x, y) >
d2xy

4dlogme
− dxy − dxy logm/2.

It remains to sum this last bound for all unordered pairs of distinct vertices x, y of G. On
the left hand side we obtain zero by equality (1). With the notation D =

∑
x,y dxy we clearly

have
∑

x,y d
2
xy > 2D2/n2 (both summations are for unordered pairs of distinct vertices of G). We

obtain:

0 >
2D2

4n2dlogme
− (logm/2 + 1)D,
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and therefore
D = O(n2 log2m). (6)

Bounding m from this bound on D is straightforward. Let dx denote the degree of the vertex
x of G, then we have

∑
x dx = 2m and

∑
x

(
dx
2

)
= D. By convexity and assuming m ≥ n we also

have

D =
∑
x

(
dx
2

)
≥ n

(
2m/n

2

)
= Ω

(
m2

n

)
.

We obtain the bound m = O(n3/2 log n) claimed in the theorem by combining this last well
known bound with our bound (6) on D. �

6. Concluding remarks

6.1. An application: number of unit distances among n planar points in convex
position. Turán theory for edge-ordered graphs is likely to have several applications in other
areas, especially in discrete geometry. As an example, we show a simple application of one of
our results concerning the Turán number of P 2143

5 (Theorem 4.9 (ii)). Erdős and Moser asked in
1959 to determine the maximum number of point pairs among n points in the plane in convex
position that can be exactly unit distance apart. If we denote this quantity by f(n), then the
best bounds known are 2n−7 ≤ f(n) = O(n log n), due to Edelsbrunner-Hajnal [12], and Füredi
[17]. (For a later, simpler proof of the upper bound, see [6].) Here we reprove the upper bound
using the theory of forbidden edge-ordered graphs. Füredi [17] used forbidden submatrices, and
our argument is inspired by his.

Proposition 6.1 ([17]). The number of unit distances among n points in the plane in convex
position is O(n log n).

Proof. Define a graph G with the n points in convex position in the plane as its vertices and
by connecting those points that are unit distance apart. Represent these edges as straight-line
segments of length one. Without loss of generality (rotating the plane if needed), we can assume
that at least half of these line-segments have slope between −1 and +1. Keep only these edges
to form a graph G1, thus we have |E(G1)| ≥ 1

2
|E(G)|.

Now add an infinite number of vertical lines (each of infinite length) to the plane such that
two neighboring vertical lines are 7

5
units apart. Keep only those edges of G1 that do not cross

any of these vertical lines to form the graph G2. A simple probabilistic argument shows that the

vertical lines can be placed in such a way that |E(G2)| ≥ 2/5
7/5
|E(G1)| = 2

7
|E(G1)| ≥ 1

7
|E(G)|.

We show that any path in G2 must consist of alternating steps to the left and to the right.
Indeed, since any edge of G2 is a unit line-segment with slope between -1 and +1, the horizontal
component (or the x-component) of any edge of G2 is at least 1√

2
, so two edges in the same

direction would not fit between two vertical lines of distance 7
5
<
√

2.
Order the edges of G2 by the slope of the respective line-segments, breaking ties arbitrarily.

Claim 1. G2 is P 2143
5 -free.
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Figure 2. Illustration for the proof of Claim 1

Proof. Suppose that we have a path u1v2u3v4u5 in G2 such that the slopes of its edges is in the
order v2u3 < u1v2 < v4u5 < u3v4. Draw a line ` parallel to v2v4 through u3, and denote the
points at distance |v2v4| from u3 on ` by u2 and u4, respectively, such that u2v2 is a translate of
u3v4 and u4v4 is a translate of u3v2. Due to the order of the slopes, looking from v2, u1 must lie
between u2 and u3, thus beyond the line `. Similarly, u5 must also lie on the other side of ` as
v4. Thus u3 is in the convex hull of {u1, v2, v4, u5}, contradicting our assumption that the points
are in convex position. �

Therefore, by Theorem 4.9 (ii), the number of unit distances among the points in V (G) is
|E(G)| ≤ 7|E(G2)| ≤ 7ex<(n, P 2143

5 ) = O(n log n). �

Remark. One may try to use that G2 is also P 3142
5 -free in the hope of getting a better upper

bound. Currently, the best known bound is n log2 n + O(n) due to Aggarwal [2]. It is a very
interesting question to determine whether a linear upper bound can be obtained by excluding
some other edge-ordered graph(s).

Remark. After the first preprint of this paper has appeared on arXiv, a new geometric applica-
tion of our results has been discovered by Keszegh and the fourth author [24]. They proved that
among n pairwise disjoint x-monotone red curves and n pairwise disjoint x-monotone blue curves
there can be at most O(n log n) red-blue tangencies, improving the earlier O(n log2 n) bound of
Pach, Suk, and Treml [37], who already gave a lower bound of Ω(n log n) for the problem. The
proof in [24] is based on a simple application of Theorem 4.12 to the graph G whose vertices
are the curves and whose edges are the tangencies in which the red curve is above the blue
curve, since G is P 1324

5 -free when the edges are ordered according to the x-coordinates of the
corresponding tangencies.
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6.2. Generalizations of our construction techniques. In the proof of Theorem 4.9 we gave
recursive constructions of edge-ordered graphs Gi and G′i, both with 2i vertices and i2i edges.
Gi was constructed to avoid P 1342

5 , G′i was constructed to avoid P 2143
5 . But the same argument

shows that they avoid other edge-ordered graphs too. We can formulate the following statement.

Proposition 6.2. Let H be an edge-ordered graph on more than one vertices that has no partition
of its vertex set into two non-empty parts A and B such that the edges between A and B form
a matching and are larger than any other edges in the graph, while edges within A are smaller
than the edges within B. In this case the graphs Gi in the proof of Theorem 4.9 avoid H.

Similarly, the graphs G′i in the proof of Theorem 4.9 avoid all edge-ordered connected graphs
on more than one vertices that have no partition of their vertex sets into two non-empty sets A
and B such that the edges between A and B form a matching and they are larger than any edge
within A and smaller than any edge within B.

Proof. We prove the statements of the proposition by induction on i. They trivially hold for
the single vertex graph G0. Assume for a contradiction that Gi avoids an edge-ordered graph H
but Gi+1 contains it. Recall that Gi+1 is constructed from two disjoint copies of Gi by adding a
perfect matching between them. So given an isomorphic copy of H in Gi+1 we can partition the
vertex set of H according to which copy the corresponding vertex in the copy of H belongs to.
By the way the edge-ordering of Gi+1 was defined, this partition violates the assumption on H
unless one of the parts is empty. But if one of the parts is empty, then H is contained in a single
copy of Gi violating the inductive assumption. The contradiction proves the first statement of
the proposition.

For the second statement the same proof works verbatim if we replace Gi and Gi+1 with G′i
and G′i+1. �

A similar generalized statement can be formulated about the edge-ordered graphs avoided,
left-avoided and right-avoided by the edge-ordered bipartite graphs Gi constructed in the proof
of Theorem 4.12.

We used a simple connection to the theory of forbidden matrix patterns in the proofs of
Theorems 3.5 and 4.10. In general we can make an edge-ordered bipartite graph G(M) from
any 0-1 matrix M by having a left vertex for every row, a right vertex for every column, an
edge between the corresponding vertices for every 1-entry in the matrix and ordering edges first
according to their column and within a column according to the row.

Recall that for 0-1 matrices M and P we say that M contains P if P is a submatrix of M
or P can be obtained from a submatrix of M by switching a few 1 entries to 0. If M does
not contain any pattern P with G(P ) isomorphic to a fixed edge-ordered graph H, then G(M)
clearly avoids H. In the proof of Theorem 4.10 we used the fact that there is exactly one 0-1

matrix P with G(P ) isomorphic to P 1432
5 , namely

(
0 1 1
1 0 1

)
. The same connection can be used

for other patterns as well.

6.3. Open problems.
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• In the first draft of this paper we asked whether ex<(n, T ) = n1+o(1) holds for every
edge-ordered forest T with χ<(T ) = 2. In a recent development, Gaurav Kucheriya and
the fifth author managed to prove this statement, [27]. This represents a characterization
as it is easy to see that such a bound never holds if T contains a cycle or its order
chromatic number is larger than 2. Our conjecture can be considered as the edge-ordered
analogue of a similar conjecture on vertex-ordered trees that is still open. The vertex-
ordered version originates from the work of Füredi and Hajnal, [18]. They formulated
their conjecture in terms of 0-1 matrices but it is equivalent to the statement that the
extremal function of a forbidden vertex-ordered forest with interval chromatic number 2
is always O(n log n). This conjecture has been refuted by Pettie [38], but the extremal
function of his counterexample is only slightly larger. An upper bound of O(n log2 n) is
still a possibility. An even weaker version of the conjecture was given in [36] with the
conjectured bound n1+o(1). This conjecture is still open. The best partial results appeared
in [26].

The bound proved in [27] for ex<(n, T ) where T is an edge-ordered forest of order

chromatic number 2 is n2O(
√
logn). They also conjecture that the much stronger n logO(1) n

bound also holds. Although we do not know of any edge-ordered forest T with order
chromatic number 2 that violates ex<(n, T ) = O(n log n), we conjecture that such an
edge-ordered forest T exists. Some of the techniques used to construct the counterexample
in [38] might be useful in resolving this problem.
• How large can χ<(H) be for a family of n-vertex edge-ordered graphs H if it is finite? It

would be interesting to decide whether it grows exponentially or double exponentially in
n. In Proposition 2.11 we proved that the optimal family to consider here is the family
Kn consisting of the four canonical edge-orderings of Kn and gave a doubly exponential
upper bound for its order chromatic number. We can, however, ask the same question
with respect to a single edge-ordered graph: How large can χ<(H) be for an n-vertex
edge-ordered graph H if it is finite? It is not clear which single n-vertex edge-ordered
graph has the largest finite order chromatic number. Theorem 2.14 states an exponential
lower bound in case of the edge-ordered graph Dn.
• Theorem 2.3 gives exact asymptotics for ex<(n,H) if χ<(H) > 2. Many of our results

give the exact order of magnitude of ex<(n,H) for some edge-ordered graphs H of order
chromatic number 2. But in a few cases our lower and upper bound do not coincide.
In all of these cases it would be interesting to narrow the gap. For instance, is it true
that ex<(n,C1243

4 ) = Θ(n3/2)? Theorem 5.1 shows an upper bound of O(n3/2 log n) but
the only lower bound we have comes from the classical extremal function of C4 which is
Θ(n3/2). Another interesting question is whether ex<(n, P 1342

5 ) = Θ(n log n)? Theorem
4.14 shows an upper bound of O(n log2 n). These are the only edge-orderings of C4 and
P5 for which we do not know the order of magnitude of the Turán number.
• We studied here the Turán numbers of some short paths and cycles, but did not go

beyond four edges except for exhibiting a single edge-ordering of P6 with order chromatic
number 3 in Theorem 4.15. It would be interesting to study the Turán numbers of longer
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paths. We expect that results in this direction would quickly find applications just as
Theorem 4.12 has already found an application in discrete geometry, see [24].

The order chromatic number of paths is also an interesting topic of research. We saw
here that edge-ordered paths up to 3 edges have order chromatic number 2, edge-ordered
paths with 4 edges have order-chromatic number 2 or infinity, but there exists an edge-
ordered 5-edge path with order-chromatic number 3. What is the situation for longer
paths? What is the maximum order-chromatic number of an edge-ordering of Pn if it is
finite? We expect that the answer grows significantly slower than in the case addressed
above, where the forbidden edge-ordered graph was arbitrary. Can the answer in this
case exceed n?
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The research of Gábor Tardos was supported by the Development and Innovation Office,
NKFIH projects K-132696 and SNN-135643 and by the ERC Advanced Grant “GeoScape.”
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TURÁN PROBLEMS FOR EDGE-ORDERED GRAPHS 43

[30] A. Marcus, G. Tardos. Intersection reverse sequences and geometric applications. Journal of Combinatorial
Theory, Ser. A 113 (4), 675–691, 2006.

[31] A. Marcus, G. Tardos. Excluded permutation matrices and the Stanley-Wilf conjecture. Journal of Combi-
natorial Theory, Ser. A 107, 153–160, 2004.

[32] A. Methuku, I. Tomon. Bipartite Turán problems for ordered graphs. Combinatorica, 2022. https://doi.
org/10.1007/s00493-021-4296-0

[33] K. G. Milans. Monotone paths in dense edge-ordered graphs. Journal of Combinatorics 8 (3), 423–437, 2017.
[34] D. Mubayi, O. Pikhurko. Constructions of non-principal families in extremal hypergraph theory. Discrete

Mathematics 308, 4430–4434, 2008.
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