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ABSTRACT

In the scope of this research, we aim to give an overview of the currently existing solutions for machine
translation and we assess their performance on the English-Hungarian language pair. Hungarian is
considered to be a challenging language for machine translation because it has a highly different gram-
matical structure and word ordering compared to English. We probed various machine translation systems
from both academic and industrial applications. One key highlight of our work is that our models
(Marian NMT, BART) performed significantly better than the solutions offered by most of the market-
leader multinational companies. Finally, we fine-tuned different pre-finetuned models (mT5, mBART,
M2M100) for English-Hungarian translation, which achieved state-of-the-art results in our test corpora.
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1. INTRODUCTION

Nowadays, machine translation constitutes a part of our everyday life. Recently, neural network-
based solutions, especially transformer models, reached the highest performance in the area of
various natural language processing tasks. The neural network-based machine translation
provides significantly better quality translated texts compared to formerly existing technologies,
which opens up a way to use them as a pre-translation, which could increase the effectiveness of
a human translator. International publications tend to center around the English language trying
to achieve the best possible translation outcomes with different model architectures. Our
research has Hungarian language in its focus and we assess the performance of the different
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models on Hungarian as a target language. Our research question is how these different models
differ from each other in terms of translation to Hungarian and we use quantitative methods to
identify distinctive features between these models. All our models and corresponding scripts
presented in the scope of this publication can be found on our Github and Hugging Face
websites.

2. SHORT HISTORY OF MACHINE TRANSLATION

The science of machine translation is as old as the appearance of the first computers, and is still
one of the most researched areas of computational linguistics. One of the very first translation
systems is the electromechanical system created by Alan Turing and his team, with the help of
which it was possible to crack the most advanced encryption algorithm of the time, the so-called
Enigma developed and used by the Germans during World War II (see Figure 1 (Mau�cec and
Donaj, 2019)).

In the 1970s and 1980s, advances in computer technology made it possible to create more
serious program codes. This is when Rule-Based Machine Translation (RBMT) systems emerged
in the field of machine translation. Their basic idea is to use the most information possible from
the text to be translated (e.g. syntactic or semantic information). The simplest early imple-
mentations were the so-called direct translation systems. The method consists of translating the
text to be translated word by word based on a dictionary and then sorting it into the correct
order. The advantage is that it is relatively easy to implement. However, it has the disadvantage
of not being able to handle complex grammatical structures and as a consequence, it achieves
poor translation quality. Later, more sophisticated systems that use parsing to produce an in-
termediate representation of the text to be translated, which is then transformed into an abstract
target language representation using pre-defined translation rules. Finally, the target language
word forms are generated from this representation. These systems can be classified according to
the depth of parsing and generation, and the location of the transfer. A rule-based machine
translation system with precisely written rules can produce highly accurate translations, but the
generation of translation rules requires a high-quality syntactic and/or semantic parser, which is
available for very few languages. Furthermore, since these rules are language-specific, they have
to be defined separately for each language pair, which makes it difficult to extend the system
with new languages.

In the 1990s, the advent of the internet made large amounts of digitised texts available
to researchers. Further developments in computing technology have enabled our computers to

Figure 1. The different types of machine translators (Mau�cec & Donaj 2019)
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perform complex statistical calculations on these documents in real time. This was exploited by
the Statistical Machine Translation (SMT) system, which was the leading technology in the field
of machine translation until the mid-2010s. The method consists of using parallel bilingual
training material to learn the term transition probabilities required for translation in a super-
vised manner. The advantage of this method is that it offers a language-independent and easy-
to-implement solution, which, depending on the size of the training material, can outperform
rule-based systems.

In the 1990s, researchers tried to exploit the potential of neural networks in the field of
machine translation. As early as 1997, researchers created neural network-based translation
(NMT) systems with translation quality approaching that of existing dominant systems.
However, since the resources available at the time were not yet suitable for handling large data
sets, none of these models could be trained adequately to achieve significant results. Around the
turn of the millennium, the development and proliferation of GPU technology gave researchers
the opportunity to physically implement solutions that had previously only existed on paper.
NMT technology has taken the lead in machine translation in a short time since 2015. Unlike
SMT, the neural architecture does not work with surface word forms, but with so-called word
embedding vector representations. The essence of vector representation is to have representa-
tions of words with the same meaning close to each other, while those with different meanings
are far apart. This allows the system to have some world knowledge representation instead of the
character form of the words.

The examples in Figure 2 show1 an example of a few words embedding representations.
Notice that words used in similar contexts are plotted next to their direct synonyms.

3. TRANSFORMER-BASED NEURAL MACHINE TRANSLATION
ARCHITECTURE

Over the course of the past decade, more and more architectures of NMT systems have been
established, and the transformer architecture, introduced by Google in 2017, has proven to be
the most successful and is still the market leader in practically all areas of language technology.
The core of the model is the encoder-decoder architecture (see Figure 3 (Vaswani et al., 2017)).

The encoder part is responsible for producing the linguistic representation of the source
language model. The transformer architecture has the advantage of being able to process several
words (100, 512, 1,024 or 2,048) at the same time, so that it can take into account not only the
words of a given sentence, but also larger contexts. The output of the encoder is essentially a
vector representation of the sentence to be translated. The second component is the decoder,
which is responsible for generating the words of the target sentence. To do this, it takes into
account the representation of the source language sentence (which is the output of the encoder)
as well as the words that are already generated. The end-of-sentence signal indicates to the
generator that it has finished the translation. To teach the model, as in the SMT system, only a
training set of concurrently translated sentences is required, but at least an order of magnitude
more material than the set used there is needed.

1https://medium.com/@hari4om/word-embedding-d816f643140 (Last seen: 07/09/2022)
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Figure 3. Transformers architecture (Vaswani et al. 2017)

Figure 2. Example of word embedding representation

504 Acta Linguistica Academica 69 (2022) 4, 501–520

Unauthenticated | Downloaded 01/20/23 10:33 AM UTC



The biggest advantage of NMT over SMT systems is that the translation produced by NMT
is much more fluent for the human reader. Facilitated by the word embedding model, a much
better translation can be achieved for agglutinating languages (such as Hungarian) since the
different conjugated forms of words are not competing translations, but have become coexisting
entities in the vector space thanks to the representation. Altogether this resulted in an increased
willingness by human translators to use machine pre-translated text in their work.

4. AVAILABLE PRE-TRAINED MACHINE TRANSLATION MODELS AND
FRAMEWORKS

In this article we provide an overview of the currently existing machine translation systems with
academic or industrial purposes. As for the industrial solutions, it was not always possible to
decipher the exact underlying architecture and parameters of the model. In this chapter all
the systems in question are presented in detail. The following descriptive part can be considered
as an in-depth literature review, since it covers all machine translation systems related to
Hungarian.

4.1. Machine translation systems with research focus

Marian NMT: The Marian NMT (Junczys-Dowmunt et al. 2018) is a framework that is written
in C language, which is an easy-to-install, well-documented, memory- and resource-optimized
implementation. Due to these previously described characteristics, Marian NMT is the most
commonly used machine translation tool by academic users and developers (Barrault et al.
2019). Marian NMT is based on an attention model supported by an encoder-decoder archi-
tecture. It is based on a neural machine translation model. Its main advantage over other
methods is that it uses pre-trained language models. It can reach the fastest runtime learning
without the use of pre-training language models. Transformers in two different sizes can be
trained:

– Marian base (transformer-base task): 6 encoder layers and 6 decoder layers; 8 heads of
attention; words embedding dimension: 512; input length: 512; pre-attached mesh size: 2,048

– Marian large (transformer-big task): 6 encoder layers and 6 decoder layers; 16 heads of
attention; words embedding dimension: 1,024; 1,024 input length: 1,024; pre-attached mesh
size: 4,096

BART, mBART: BART (Lewis et al. 2020) is a Transformer-based denoising autoencoder
that can be used for the pre-training of sequence-to-sequence models. It has an encoder-decoder
architecture. It uses a ‘noised’ source text as input, then it reconstructs the original text by
predicting the corrupted parts. BART has a similar setup to BERT (Devlin et al. 2019), however,
with characteristic differences in its architecture. Notably, one such difference is the additional
cross-attention of the layers over the final hidden layer, which is present in BART, but not in
BERT. Moreover, BART lacks the extra feed-forward network that can be found in BERT before
word-prediction. The application of BART offers a high degree of flexibility regarding the usage
of noising schemes, which is illustrated by the fact that any type of document corruption is
compatible with the system as opposed to other denoising autoencoders. The BART practically
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combines a BERT type model with a GPT type model. The difference from BERT model is that
the denoising tasks are different:

– Token Masking: random tokens are sampled and replaced with [MASK] elements.
– Token Deletion: random tokens are deleted from the input.
– Text Infilling: a number of text spans (Joshi et al. 2020) are sampled, with span lengths drawn

from a Poisson distribution. Each span is replaced with a single [MASK] token.
– Sentence Permutation: a document is divided into sentences based on full stops, and these

sentences are shuffled in a random order.
– Document Rotation: a token is chosen uniformly at random, and the document is rotated

so that it begins with that token.

Additionally, BART can be fine-tuned to be optimal for various downstream tasks, including
sequence and token classification, sequence generation and machine translation. Experimen-
tation revealed that BART performance can be especially high in large-scale pre-training, for
instance, in discriminative tasks like SQuAD (Rajpurkar et al. 2016) and GLUE (Wang et al.
2018) it is comparable with RoBERTa. Furthermore, BART outperforms all previously estab-
lished models in summarization tasks. Accumulating evidence suggests that BART performs the
best when applied for Natural Language Generation (NLG), but achieves remarkable results in
translation and comprehension tasks as well. In the recent research, we did experiments with
BART base models. Two different BART models were trained for English by the Meta Research:

– BART base: 12 layer; hidden layer size: 768; 139M parameters.
– BART large: 24 layer; hidden layer size: 1,024; 406M parameters.

In our research we did experiments with our own pre-trained BART base model.
The mBART (Liu et al. 2020) is a denoising autoencoder model pre-trained on multiple

languages and it is based on the seq2seq concept. It is usually applied to improve the perfor-
mance of both supervised and unsupervised machine learning. The mBART follows the BART
scheme in its architecture. The authors of the model put an emphasis on multilinguality during
pre-training, then the model was fine-tuned for a bilingual setting. As for the pre-training, the
CC25 (Wenzek et al. 2020; Conneau et al. 2020) corpus was used, which contains 25 languages
and the texts are extracted from the CommonCrawl database (Kúdela et al. 2017). The multi-
lingually pre-trained model was used for both sentence- and document-level machine trans-
lation. It is particularly important to point out that only with the application of the seq2seq
concept could improve the quality of document-level machine translation, this is a significant
step forward compared to previous research work (Miculicich et al. 2018; Li et al. 2019).
The experimental results with the mBART model highlight the true potential of multilingual
pre-training with an applicability for transfer learning.

The mBART model has an extentended version, which is called mBART-50 (Tang et al.
2020). Using the original mBART model extra 25 languages were added to support multilingual
machine translation models of 50 languages.

mBART models, even the mBART-50 model, do not include Hungarian language capabil-
ities, but taken the advantage of sentencepiece tokenization (Kudo & Richardson 2018), we
could adopt this model for Hungarian. In our hypothesis, the more machine translation
and different language knowledge it has, the more knowledge can be adopted for our
English-Hungarian. Thus, we used the mbart-large-50-many-to-many-mmt model checkpoint
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in our research. This model is a fine-tuned checkpoint of mBART-large-50 that is trained for
multilingual machine translation tasks. The model can translate directly between any pair of 50
languages.

T5, mT5: The T5 (Text-To-Text Transfer Transformer) (Raffel et al. 2020) is a model and
framework developed by the Google research team, which offers a new perspective to solve
natural language processing tasks. Transfer learning constitutes an important part of the natural
language processing toolbox. In the course of transfer learning the language model is trained on
a data-rich task followed by a fine-tuning step for a subsequent specific task.

In an ideal case, the model can acquire general knowledge during the pre-training phase that
is transferable and it can be further applied to the specific tasks. The T5 project applies transfer
learning principles in the context of the seq2seq approach. The initial idea was that all language
processing tasks (translation, question answering, classification) should be considered as a text-
to-text issue, therefore the input is a text and the output will be another text. The great
advantage of the text-to-text paradigm is their wide range of applicability, since it can be used
for practically any natural language processing task, for example machine translation, summary
generation, question answering or sentiment analysis.

Such large-scale experiments require special corpora. For this aim, the Colossal Clean
Crawled Corpus (abbreviated as C4) was created, which is an English language extract of
hundreds of gigabytes of the World Wide Web, collected and cleaned. The C4 corpus is based on
the CommonCrawl 5 database. Another important feature of transfer learning methods is that
non-labelled datasets are required for their pre-training. Additional requirements for such
corpora are to be designated as large enough, diverse and high-quality. As an example, the
C4 corpus used is two times the size of Wikipedia, therefore, it contains significantly more data.
In the case of T5, based on the number of parameters 5 different models have been created:

– Small (300 million parameters), Base (580 million parameters), Large (1.2 billion parameters),
XL (3.7 billion parameters), XXL (13 billion parameters)

As a result of the T5 project a highly efficient framework has been created, which produces
excellent results. One of the models with 11 billion parameters reached outstanding performance
at several benchmarks including GLUE, SuperGLUE, SQuAD and CNN/Daily Mail reference
tasks.

The mT5 (Xue et al. 2021) extends the above detailed T5 to several languages. The authors
attempted to preserve the structural features of T5, which previously proved to be successful in
several experiments. In line with this strategy, mT5 inherited the text-to-text problem approach
and the general pre-learning process with the application of large corpora.

In order to train mT5, the mC4 corpus was used. mC4 is the multilingual version of C4 with
texts from 101 different languages. A common problem with multilingual models is the unequal
representation of languages. If a certain language is underrepresented in the corpus, inappro-
priate fitting by the model can occur due to a higher sampling rate. To address this issue the
authors applied a frequency-based sampling procedure, which has already been used in previous
work as well (Devlin et al. 2019; Aharoni et al. 2019). Considering the fact that the mT5 model
was trained on a corpus of more than 100 languages it was therefore necessary to use a larger
dictionary consisting of 250,000 word pieces.

To evaluate the performance of the mT5, 6 tasks from the XTREME multilingual reference
system (Hu et al. 2020) were applied. Several tasks are included in this reference framework,
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e.g. sentence pairing, noun recognition and question answering. In terms of question answering
tasks, mT5-XXL (largest model in the mT5 framework) achieved the highest performance. The
mT5 project revealed that the framework in question can be successfully applied in a multi-
lingual context and the models can achieve outstanding results in various reference tasks.

mT5 includes Hungarian language as well, therefore, we applied the mT5 small and mT5
base models for machine translation in our research.

M2M100: M2M100 (Aharoni et al. 2019) is a project in the Fairseq multilingual machine
translation pipeline. The aim of multilingual machine translation is to create a comprehensive
model that can translate from any language to any other languages. For a long time, machine
translation was considered to be rather English-centric, i.e. the majority of language models have
been created that translate from English to other languages and vica versa. However, translation
in real life is not used in such an exclusive manner. Translation from and to many other lan-
guages other than English is required and there is great demand for these types of translation
services. The M2M100 project resulted in a translation tool and dataset for 100 languages, which
is a highly diversified machine translation by shifting from an English-centered approach to
multilinguality and paves the way towards novel methodological breakthroughs. In the case of
machine translation from multiple languages to multiple languages, the creation of large datasets
is necessary. The generation of such a large volume of multilingual data requires data mining
(Artetxe & Schwenk 2019) and reverse translation (Sennrich et al. 2016).

M2M100 includes Hungarian language knowledge, therefore, we also applied it in our research
and assessed its performance. Furthermore, we further fine-tuned the model on our corpora.
There are two versions of M2M100 are available: M2M100_418M (418 million parameters) and
M2M100_1.2B (1.2 billion parameters).

Helsinki Marian NMT: The HNMT (Helsinki Neural Machine Translation) (Tiedemann &
Thottingal 2020) is based on (base) Marian NMT (Junczys-Dowmunt et al. 2018), which is
currently the best performing translation method from English to Finnish, moreover, it reached
the highest BLEU values for this language pair. The performance of HNMT was tested on
English-to-Latvian, English-to-Chinese and Chinese-to-English language pairs and directions,
however, it achieved only moderate results. The HNMT machine translation system works
particularly well in the case of morphologically rich languages, such as Finnish. One major goal
of the team from the University of Helsinki was to create machine translation models for as
many languages as possible. The group created several base models for English-Hungarian as
well, which were tested in our research.

4.2. Machine translation systems developed by the industry

DeepL: DeepL Translate is a freely available online translation system (DeepL GmbH, Cologne,
Germany). The company behind the translator tool is Linguee. The company launched a search
engine in 2009, which specializes in translation (deepl.com). The DeepL Translate uses con-
volutional neural networks (Kim 2014), and thanks to its architecture it can produce more
polished and naturally sounding translations compared with the solutions by other competitors
on the market. Launched in 2018, DeepL Pro is a further optimized version of the company’s
proprietary artificial intelligence solutions and it provides even higher quality machine trans-
lation. In 2021, 13 European languages, including Hungarian, were added to the DeepL
repertoire.
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Google Translate: The Google Translate (Wu et al. 2016) was launched in 2003. During the
first phase, it operated based on a statistical machine translation principle, which was replaced
by neural network-based machine translation in 2016. The introduction of the neural network-
based approach has significantly improved the quality of the translation by providing inferences
on a broader context and thus more authentic translations. The Google Translate lists several
types of different translated versions, for example in the case of languages with female and male
distinction (e.g. French or Spanish) first the feminine and then the masculine version appears
(Rescigno et al. 2020). Google Translate can handle 109 different languages. Since 2020, there
has been an additional feature that enables translating spoken text as well.

Yandex: Yandex is a Russia-based technology company that provides machine translation
solutions on the market of digital products. The translation system consists of two separate
machine translation systems: a statistical machine translation tool, which contains hundreds of
thousands of texts with the same information but written in different languages. The Yandex
Statistical Translator is a three-component machine translation system: the translation model,
the language model, and the decoder. The actual translation process is done by the decoder.
It uses the different translated versions by the translation model, and creates a frequency-based
ranking, which is then determined by the language model. The other main component is a
neural machine translation system with an encoder-decoder architecture, which has specifically
an RNN architecture according to the available information (Cho et al. 2014). Finally, the system
compares the translation output from the two translation subsystems by the CatBoost algorithm
(Prokhorenkova et al. 2018) and then outputs the best translation as the final output.

Bing Translate –Microsoft Translate: The Bing Translator constitutes a part of the Microsoft
Cognitive Services product family. It is capable of translating texts into more than 100 different
languages. Since 2021, it provides a solution for translating entire documents. Initially, it was based
on statistical machine translation, which was replaced by a neural network-based approach in 2018.
Microsoft is dedicated to the development of advanced solutions in multilingual machine trans-
lation and the company heavily invests in research to improve efficiency and accuracy. Xu Tan et al.
have developed a tool (Tang et al. 2020) to overcome the difference in the accuracy between
multilingual and monolingual models, which is based on the knowledge distillation principle
(Bucila et al. 2006). Knowledge distillation was initially used to develop more effective models by
making them ‘slimmer’. The core principle behind knowledge distillation is that there is a ‘student
model’, that can achieve the performance of a ‘teacher model’ or a set of models. The imple-
mentation of this idea to machine translation means that there are teacher models that are
specialized for each language pair and train the student model, which will be capable of handling all
the language pairs as a result of the training. Two different procedures have been developed: one is
selective distillation, where the use of distillation is based on a performance threshold, and the other
is Top-K distillation, which uses the probability distribution provided by the teacher models, and
only the models with the best coefficient are loaded into the memory. The effectiveness of this
methodology is highlighted by its superior performance in the translation of TED talk transcripts
from 44 languages to English: it could reach a BLEU-score improvement of 1 or even higher.

eTranslation: eTranslation is an automated translation tool that can be used to translate
texts or entire documents into official languages of the Member States of the European Union, as
well as Icelandic, Norwegian, Russian and simplified Chinese. The translation tool is provided by
the European Commission with the intention to support small and medium-sized companies in
the European Union, moreover to facilitate smooth and effective communication between public
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service providers, administrative officials, and SMEs. The eTranslation tool can be easily inte-
grated with other digital solutions if translation capability is required. Several processing steps
and text filtering options are also available under the CEF eTranslation Building Block project
to make the machine translation easier. For example, long sentences are first divided into
smaller parts before translation and then reassembled to a coherent text. The eTranslation
system has been trained on texts with specialized content, such as tenders, legal and medical
texts, etc. The model has been trained on more than 1 billion sentences in 24 different languages.

Baidu Translate: In 2019, Baidu published a paper (Sun et al. 2019) in which state-of-the-art
results were achieved in a case-sensitive Chinese-English task and second in an English-Chinese
task. The Baidu translation system is based on neural transformer model, which uses a
monolingual pre-trained encoder. To increase the performance of the system, a deeper and
bigger transformer was used. For the better representation of the source sentences, the number
of encoder layers was increased (from 6 to 30 for the base version and from 6 to 15 for the big
version) and the dimension of feed-forward network was increased from 4,096 to 15,000 for the
big version. During the pre-training process, reverse-translation mechanism, joint training, data
augmentation, and knowledge distillation approaches were applied. To gain the best output
performance, model ensemble and re-ranking techniques were integrated into the architecture.
The online application supports 201 different languages.

4.3. Training and test corpora

We generated our own English-Hungarian parallel corpus for machine translation purposes.
To build the corpus, we took English-Hungarian (en-hu) parallel sub-corpora from the
OPUS corpus (Tiedemann 2012) and the Hunglish corpus Varga et al. (2007). Here we list the
subcorpora of OPUS that we used to generate our corpus: OpenSubtitles, Tatoeba, WikiMatrix,
EUbookshop, PHP manual, TED2020, KDEdoc, KDE4. The sizes of the corpora are shown in
Table 1 (on not tokenized text).

For testing our models, we used two corpora. The first one is from our OPUS corpus. We chose
10,000 randomly selected segments that our training corpus does not contain. The second test
corpus is the official devtest subcorpus of Hunglish from Shared Task of WMT 2009 (WMT09).2

4.4. Proprietary trained machine translation models

During our research, two Marian, one BART, one MBart and two mT5 machine translation
models were trained for the English-Hungarian language pair. To date, we pioneered to train an
English-Hungarian bilingual BART base model for the first time. The model is available on our
Hugging Face site. For the training, the WikiText-103 (Merity et al. 2017) and Hungarian
Wikipedia part of Webcorpus 2.0 (Nemeskey 2020) were used. In the original setting, only those
paragraphs were included that contained at least one punctuation mark. The dimensions of the
corpora are shown in Table 2 (on tokenized text).

For the pre-training of our English-Hungarian BART-base model, we used 4 pieces of
GeForce GTX 1080 Ti (12 GB) video cards with the following parameters: batch size/GPU: 12;

2https://www.statmt.org/wmt09/translation-task.html
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dictionary size: 40,000; learning rate: 2e�8; number of learning steps: 170,000. For the pre-
training the Seq2SeqTrainer and the BartForCausalLM functions were used that can be found in
Hugging Face Transformers library. We further fine-tuned our BART model for machine
translation with the English-Hungarian language pair. For fine-tuning, we used 4 GeForce GTX
1080 (12 GB) video cards with the following parameters: batch size/GPU: 26; maximum text
length (input and output): 128; warmup: 15,000; fp16; epoch: 10; learning rate: 5e�5. The
example code available in Hugging Face Transformers library was used for fine-tuning. In our
machines translation fine-tuning experiments, we were working with two variants: BART-128
and BART-512. The only difference is the input sequence length.

In the case of Marian NMT we applied the default parameter settings defined by the
framework. First, we used a base model (Marian base), in the second case we applied twice as
many parameters (Marian big). The models are available on Hugging Face. As for the subword

Table 2. Corpora sizes of BART pre-training task

English WikiText-103 Hungarian Wikipédia

Segment 707,391 1,098,156

Token 96,534,563 90,349,849

Type 596,820 3,137,980

Avg. sentence/paragraph 5 4

Avg. sentence/paragraph 125 69

Table 1. Size of training subcopora

Segment

Token Type
Avg. token/
sentence

en hu en hu en hu

OpenSubtitles 42,655,519 272,571,665 209,481,645 2,382,239 6,519,406 6.39 4.91

ParaCrawl 12,681,746 196,278,983 172,671,171 3,555,484 5,713,776 15.48 13.62

WikiMatrix 488,319 8,978,943 7,673,323 627,814 1,057,487 18.38 15.71

TED2020 308,341 5,194,871 3,982,056 158,210 495,452 16.85 12.91

EUbookshop 438,264 9,406,548 7,847,111 360,311 648,778 21.46 17.90

KDE4 120,657 622,959 649,457 62,257 98,940 5.16 5.38

Tatoeba 109,041 639,834 505,838 30,759 84,570 5.86 4.64

PHP 35,423 169,610 157,583 17,215 25,854 4.79 4.45

KDEdoc 861 10,904 9,474 2,402 2,987 12.66 11.00

Hunglish 1,520,610 26,784,043 21,565,337 483,581 1,192,213 17.61 14.18

SUM 58,358,781 520,658,360 424,542,995 5,309,559 8,350,079 16.22 14.62

Acta Linguistica Academica 69 (2022) 4, 501–520 511

Unauthenticated | Downloaded 01/20/23 10:33 AM UTC



tokenization the built-in Sentence Piece (Kudo & Richardson 2018) tokenizer was used. Size of
the dictionary: 32,000.

In our experiment, with M2M100, mBART and mT5 we fine-tuned a pre-trained M2M100,
mbart-large-50-many-to-many-mmt (mBART-mmt), a mT5 small and a mT5 base model to
English-Hungarian translation:

– mBART-mmt: In our experiment, we fine-tuned the facebook/mbart-large-50-many-to-
many-mmt (Tang et al. 2021) model. This model is a fine-tuned mBART-large-50 multi-
lingual Sequence-to-Sequence model, which is created using the original mBART model and
extended to add extra 25 languages to support multilingual machine translation models of 50
languages. The 50 languages do not contain Hungarian, thus we added the “hu_HU” language
code as a special token to the vocabulary. This experiment shows that despite the fact that
there was no Hungarian language knowledge in the model, it is still can be fine-tuned for
Hungarian, since the 50 languages could contain Hungarian text fragments. For machine
translation, the MBartTokenizer and MBartForConditionalGeneration from the Hugging
Face Transformers library were used.

– M2M100: Two models are available, a smaller (418M) and a larger (1.2B). For machine
translation, the M2M100Tokenizer and M2M100ForConditionalGeneration from the Hug-
ging Face Transformers library were used. In our research we tested the models on our
Hungarian corpus, then we further fine-tuned the large (1.2B) model on it.

– mT5: We have fine-tuned a mT5 small and a mT5 base model for English-Hungarian ma-
chine translation. For fine-tuning, the MT5Tokenizer and MT5ForConditionalGeneration
from the Hugging Face Transformers library were used.

To train the mT5 small model we used 4 3 GeForce GTX 1080 (12 GB) video card with the
following parameters: batch size: 6; prefix: “translate English to Hungarian: ”, maximum text
length (input and output): 128; epoch: 1; learning rate: 5e�5. Unfortunately, the epoch number
was set to 1 only, which resulted in a running time of almost a month. In the case of M2M100,
mBART and mT5 base models, we used 4 x NVIDIA A100 (80 GB) video card with the
following parameters: batch size: 12 (mBART), 22 (mT5); maximum text length (input and
output): 256; epoch: 1; learning rate: 5e�5; prefix (mT5): “enhu: ”. To fine-tune these models the
same library was used as in the case of BART fine-tuning.

In Table 3, you can see the most important technical information and training parameters
of our models. Since, the detailed technical information of machine translation systems for
industries is usually not published, or we cannot be sure about the architecture of the currently
available version, we could not present them in our comparison. In Table 3, the first block
shows the information of our custom-trained models. In the second block, you can see the
information on fine-tuned models. As you can see the details, the different models were trained
in different environments. In the parameters column, you can see the approximated (∼)
parameter numbers.

4.5. Applied and tested machine translator systems and models

In our research we probed a range of different methods applied for various research and in-
dustrial applications that include the capability to perform machine translation from English
into Hungarian. In our experiments, we tested the following systems and models:
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– Helsinki Marian NMT: several of their models include English-Hungarian translation ca-
pabilities: English-Hungarian (en-hu); English-Finnugorese (en-fiu); English-Urish (en-urj);
English-multi (310 languages) (en-multi). For translation, we used the MarianTokenizer and
MarianMTModel from the Hugging face Transformers library.

– eTranslation: it provides free service opportunity for academic scholars. Followed registra-
tion, we submitted our test file. The translated version was sent by e-mail.

– deepL: We translated using the online file translation function. Each file contained 500
sentences.

– Google: Translated using the online website translation function. We inserted the source
sentences into a website.

– Microsoft: We translated using Azure Translator, a cloud-based document translator module
of the Microsoft Bing services.

– Yandex: Translated using the online document translation function. Each document con-
tained 500 sentences.

– Baidu: Translated using the online website translation function. We inserted the source
sentences into a website, each site contained 1,500 sentences.

5. RESULTS

The SacreBLEU (Papineni et al. 2002) (Post 2018) and chrF (Popovi�c 2015) metrics were used to
evaluate the different models and systems. In addition to the BLEU metrics, we chose the chrF
metrics due to its character-based feature, which results in a more accurate evaluation in the case
of agglutinating languages such as Hungarian. For the chrF evaluation, the default 6-gram
character precision and the 3-gram precision was calculated as well. We have chosen this metric,
because in this case a successful translation of the stem will be taken into account even if its
suffix is not translated correctly.

Table 5 shows the results in the case of the different machine translators. First of all, the bottom
section contains the result of the commercial solutions. We know that these systems are constantly
evolving, therefore, we present our results that reflect the performance state of 2022 August.

Table 3. Technical and training information of our models

batch/device epoch time machine Parameters (∼)

Marian big 99 23 3 weeks 4 3 GTX 1080 (12 GB) 530 million

Marian base 146 15 5.5 day 4 3 GTX 1080 (12 GB) 240 million

BART-512 4 1 3 weeks 4 3 GTX 1080 (12 GB) 139 million

BART-128 26 10 6 weeks 4 3 GTX 1080 (12 GB) 139 million

M2M100_1.2B ft 16 2 1 week 4 3 A100 (80 GB) 1.2 billion

mBART-mmt ft 24 2 1 week 4 3 A100 (80 GB) 680 million

mT5 base ft 22 1 4 days 4 3 A100 (80 GB) 580 million

mT5 small ft 5 1 4 weeks 4 3 GTX 1080 (12 GB) 300 million
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Among the industrial applications, in our test corpora, Baidu can be seen as a winning so-
lution. After that, eTranslation and deepL performed the best and the difference between them
is not statistically significant. The systems developed by large companies (Google, Microsoft)
fall into the second quality category, while Yandex is far behind. In the Hunglish corpus, the
ranking is different. The winner is the deepL, then Microsoft and Google achieved the highest
performance. After them, Baidu and eTranslation followed, and Yandex finished in last place
here as well.

In the next section of the table above the open-source solutions can be seen. Out of the
models used in our research is clearly the Helsinki en-hu model, which is not surprising, given
the high level of overlap in the used training material, as well as the fact that the model is
bilingual and not multilingual. On the other hand, the multi-lingual decoder Helsinki model has
the worst result in our comparison. This is an interesting experiment of ours, because we intend
to do research in the field of multi-lingual models.

The considerably larger pre-trained M2M100 model – despite being capable of translation to
100 languages – finished slightly behind the commercial solutions. The biggest difficulty with the
model is that it requires huge technical resources to be able to fine-tune it. An 8 GPU server with
video card drivers (Nvidia GTX 1080 Ti) is not enough to start a single fine-tuning on it.

The second section of the table contains our fine-tuned pre-trained language model-based
translators. As expected, most of our models significantly outperform the previous ones from
the sections below them. The common feature of these trainings is that these require special
GPUs for deep learning, which have much larger memory capacity. Secondly, the models, which
were basically trained as a translator (mBART-mmt, M2M100) outperform the ones, in which

Table 4. Comparison examples of the translator outputs

Source – Oh, no. If you think you’re tucking me away somewhere, you’ve got another think
coming.

Reference Ha azt tervezi, hogy bedug valahová, akkor terveljen ki valami mást.

Google – Óh ne. Ha azt hiszed, hogy elrejtesz valahova, akkor más gondolat jön.

– Oh no. If you think you’re going to hide it somewhere, you’ll have another thought.

M2M100 ft Ha azt hiszed, hogy elrejthetsz valahová, akkor másképp is gondolhatod.

If you think you can hide it somewhere, you may think otherwise.

mBART ft Ha azt hiszed, hogy elrejthetsz valahol, akkor nagyon tévedsz.

If you think you can hide it somewhere, you are very wrong.

mT5 base ft Ha azt hiszed, hogy elrángatsz valahol, akkor jön egy másik gondolat.

If you think you pulls me away somewhere, another thought will come.

BART Ha azt hiszed, hogy el akarsz dugni valahova, akkor másra is gondolhatsz.

If you think you want to hide somewhere, you can think of something else.

Marian big Ha azt hiszed, hogy eldughatsz valahova, akkor tévedsz.

If you think you can hide somewhere, you are wrong.
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pre-training was only a common task (BART, mT5). Our mT5 models were only fine-tuned at
1 epoch due to the lack of available resources, so these could not achieve as high results as
expected. However, it still performed competitively, outperforming most of the industrial and
research applications, despite the fact that the mT5 was originally trained for mixed tasks and
the training material was only presented to it once. In our test corpora, M2M100_1.2B and
mBART-mmt could achieve state-of-the-art results among all systems, but in the case of
Hunglish corpus, these models could not outperform the deepL solution listed amongst the
industrial systems. Taken together, all these solutions achieved higher results than most of all
other (not proprietary) industrial and academic models.

Finally, in the top section of the results, our “from the scratch trained” models can be seen.
The Marian big and BART-128 models were in the best quality class with almost identical
results. As expected, the Marian big model achieved the best performance among our own

Table 5. Results of the different MT systems and models. The best results are highlighted with bold
characters.

OPUS Hunglish (WMT09)

BLEU chrF-3 chrF-6 BLEU chrF-3 chrF-6

Marian big 35.54 60.12 55.64 25.09 56.81 51.33

Marian base 33.03 58.32 53.58 19.49 53.05 46.97

BART-128 34.73 59.16 54.67 21.13 54.30 48.49

BART-512 33.11 58.01 53.30 17.75 51.64 45.45

M2M100_1.2B ft 37.84 61.47 57.31 21.64 54.97 49.13

mBART-mmt ft 37.44 61.07 56.82 22.38 55.33 49.51

mT5 base ft 33.33 58.22 53.57 11.64 49.24 42.84

mT5 small ft 27.69 53.73 48.57 7.34 45.60 38.62

Helsinki en-hu 27.21 55.03 49.82 18.08 52.34 46.06

Helsinki en-fiu 24.23 52.68 47.16 15.46 49.96 43.39

Helsinki en-urj 24.16 52.56 47.09 15.60 50.02 43.45

Helsinki en-multi 14.39 43.69 36.74 8.30 41.72 33.93

M2M100_1.2B 21.62 50.93 45.73 17.76 51.88 45.73

M2M100_418M 18.75 48.40 42.72 15.22 49.50 42.88

Baidu 30.57 57.25 52.60 18.99 53.04 47.06

eTranslation 28.29 56.00 51.27 18.37 52.71 46.77

deepL 26.54 56.06 51.01 22.90 56.40 50.70

Google 25.30 54.09 49.06 20.29 53.62 47.81

Microsoft 25.22 53.02 48.00 20.47 54.75 48.70

Yandex 19.22 49.78 43.94 8.66 45.84 38.84
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models, due to the fact that it works with a network comprising the highest number of pa-
rameters. In the competition of the fine-tuned models, on OPUS corpus, the fine-tuned
M2M100 could gain the highest results (among all models as well). But on Hunglish corpus, our
Marian big could achieve state-of-the-art results.

The most prominent advantage of the Marian model is that it can be used without GPU,
therefore it needs less resources and technical requirements. But since this model was trained
from scratch, that is why it needed much more epoch and time during the training phase. In
contrast, the pre-trained mBART or M2M100 needed only 2 epoch to achieve higher results
than our Marian big model, but these models need high-performance GPUs for fine-tuning and
also for the translation generation. On Hunglish corpus the Marian big model has higher

Table 6. Second comparison examples of the translator outputs

Source This may not make much sense to you, sir, but I’d like to ask your permission to date
your daughter.

Reference Szeretném megragadni az alkalmat uram, hogy az engedélyét kérjem, hogy
találkozhassak a lányával.

Google Lehet, hogy ennek nem sok értelme van, uram, de szeretném engedélyét kérni a
lányával való randevúzáshoz.

(This may not make much sense, sir, but I would like to ask your permission to date
your daughter.)

M2M100 Talán nem sok értelme van, uram, de szeretném az engedélyét kérni, hogy
randizhassak a lányával.

It may not make much sense, sir, but I would like to ask your permission to date your
daughter.

mBART Lehet, hogy önnek nem sok értelme van, uram, de szeretnék engedélyt kérni, hogy
randizhassak a lányával.

You may not be making much sense, sir, but I would like to ask permission to date
your daughter.

mT5 Talán nem sok értelme van, uram, de szeretném kérni az engedélyét, hogy randizzon a
lányával.

It may not make much sense, sir, but I would like to ask your permission to date your
daughter.

BART Lehet, hogy önnek nincs sok értelme, uram, de szeretném az engedélyét kérni, hogy
randizhassak a lányával.

You may not be making much sense, sir, but I would like to ask your permission to
date your daughter.

Marian big Ennek talán nincs sok értelme, uram, de szeretném az engedélyét kérni, hogy
randizhassak a lányával.

This may not make much sense, sir, but I would like to ask your permission to date
your daughter.
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performance, this may be related to the training epoch number. The fine-tuned models only
“saw” the Hunglish corpus twice, while the Marian big “saw” it 23 times (since it was trained
from scratch).

In the second quality category of the first block, we could find Marian-base, BART-512
models. It was an interesting observation for us that there is only a 2% performance difference
between Marian-big and Marian-base models, while the other common paired models have a
much wider gap. Secondly, the base model size (300 MB) is half of the big ones (750 MB) and
the training took only 90 h instead of 500 h of the big model. For a commercial company this
price for only 2% performance gain would be clearly a no-go.

In Tables 4 and 6 we demonstrate example sentences, in which the translations of the most
interesting systems are highlighted. After having examined the translations, we could conclude
that the outputs by the systems were readable texts, and that the differences between the
translations were mainly grammatical structural differences. This phenomenon was also re-
flected in the example sentences: the main reason for the erroneous translations was usually
the alterations in content due to conjugation. In the presented examples, we observed that
the translations made by BART, mBART, M2M100, and Marian big models had the best
capability to capture the meaning of the source sentences, despite the fact that it did not
correspond to the reference sentence at the character level.

6. CONCLUSION

In our current research we trained and tested different neural machine translation models and
systems for the English-Hungarian language pair. We experimented with machine translation
methods and systems from both academic and industrial sources. In addition to the existing
models, our own machine translation systems were trained as well. We have trained two Marian
NMT systems, one base and one large model. We also trained our proprietary BART model,
which was then fine-tuned for machine translation. Finally, pre-trained M2M100, mBART and
mT5 models were fine-tuned for English-Hungarian machine translation. The results of custom
pre-trained models demonstrated that the trained large Marian NMT model and the BART
model achieved significantly higher performance compared to all other models. In a compar-
ative assessment of the two models, BART performance was surpassed by the Marian Big model
by only a minimal value, which is an interesting result, since BART was able to achieve this fairly
competitive performance with fewer parameters. In the experiments of fine-tuned models,
M2M100 and mBART models could achieve state-of-the-art results on the OPUS corpora.
A noteworthy result is that the multilingual pre-trained models can be adapted for Hungarian,
even without Hungarian knowledge, as it is in the case of mBART.
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