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Realizations of kinetic differential equations
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Abstract

The induced kinetic differential equations of a reaction network endowed with mass action
type kinetics is a system of polynomial differential equations. The problem studied here is: Given
a system of polynomial differential equations, is it possible to find a network which induces these
equations; in other words: is it possible to find a kinetic realization of this system of differential
equations? If yes, can we find a network with some chemically relevant properties (implying also
important dynamic consequences), such as reversibility, weak reversibility, zero deficiency, detailed
balancing, complex balancing, mass conservation, etc.? The constructive answers presented to a
series of questions of the above type are useful when fitting differential equations to datasets, or
when trying to find out the dynamic behavior of the solutions of differential equations. It turns
out that some of these results can be applied when trying to solve seemingly unrelated mathe-
matical problems, like the existence of positive solutions to algebraic equations.

Keywords: kinetic equations, reversibility, weak reversibility, mass action kinetics,

reaction networks, realizations

1 Introduction

Our goal here is to find reaction networks inducing a given system of polynomial differential equations
(or classes of equations with coefficients as symbolic parameters) with as many good properties (e.g.
weak reversibility, reversibility, small deficiency, small number of linkage classes or reactions, mass
conservation, etc.) as possible.

It has been shown that, under mass action kinetics, a necessary and sufficient condition for re-
alizability is a sign structure in the system of polynomial differential equations [24] (see Lemma 1
below). Once we know that a system can arise from a mass action system, the question still lies: can
the system arise from a mass action system with good properties? This is what this present work
looks at. There exist similar works outside the realm of mass action kinetics. For example, [4] finds
mass action systems that generate the same differential equation as a given S-system or generalized
mass action system. The approach allows recent results from Chemical Reaction Network Theory to
be applied in Biochemical Systems Theory.

There are several sources of motivation for this problem.

1. Having fitted a system of differential equations to data, one may wonder whether the obtained
equations can be interpreted as the mass action type deterministic model of an appropriate
reaction network.
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Eötvös Loránd University, Budapest, Hungary
‖Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706-1325, USA

1

http://arxiv.org/abs/1907.07266v2


2. There is an internal requirement within this branch of science: One should like to know as much
as possible about the structure of differential equations that arise from modelling a chemical
system.

3. Given a system of polynomial differential equations in any field of pure or applied mathematics,
one may wish to have statements on stability or oscillations, similar to those offered by the
Horn-Jackson Theorem [26], Zero Deficiency Theorem [21], Volpert’s theorem [50], or the Global
Attractor Conjecture, where several cases have been proven [3, 12, 23, 35]1. Then it comes in
handy to see that the system of differential equations of interest belongs to a well behaving class.

4. Lastly, results of formal reaction kinetics (to use an expression introduced in [5, 6]), e.g. on the
existence of stationary points, may offer alternative methods for solving problems in algebraic
geometry [17, 32]. For instance, one might be able to show the existence of positive roots of
a polynomial if the system of polynomial equations is known to be the right hand side of the
induced kinetic differential equation of a reversible or weakly reversible reaction network [7].

The structure of our paper is as follows. Section 2 introduces the essential concepts of reaction
networks and mass action systems. Section 3 formulates the problem we are interested in, that of
realizability of kinetic differential equations. Section 4 treats two special cases: finding realizations
for compartmental models (defined later) and weakly reversible networks. Section 5 focuses on the
general problem of realizability. We first review existing algorithms available. Then we outline several
procedures that modify a reaction network while preserving the system of differential equations, in-
cluding adding and removing vertices from the reaction graph. Section 6 explores the relation between
weakly reversible and complex balanced realizations. Here we work with families of symbolic kinetic
differential equations. In Section 7, we prove the geometric meaning of zero deficiency, and discuss
when is a realization unique. We also pose several conjectures that may be of interest to the reader.
An Appendix contains a very large number of enlightening examples. The present paper intends to
be a review of the realizability problem, while containing some new results.

A few remarks on notation and the use of words are in order.

1. The set of vectors in R
M with strictly positive coordinates is denoted by R

M
>0. Also

xy := xy1

1 xy2

2 · · ·x
yM

M

for any xi > 0 and yi ≥ 0. If Y = (y1,y2, . . . ,yN ), then

xY = (xy1 ,xy2 , . . . ,xyN )T .

2. We use differential equation to mean a system of ordinary differential equations. In the same
vein, we use polynomial to usually mean a system of polynomial equations, i.e. a vector-valued
function on R

M
>0. By monomial we mean a scalar-valued function on R

M
>0.

3. We say a reaction network induces a differential equation, if we formulate the mass action type
differential equation with given reaction rate coefficients, and a differential equation is realized

by a reaction network, if the network induces the given differential equation.

2 Chemical reaction networks and mass action systems

Here we recapitulate some concepts of the mathematical description of reaction networks; for more
details, see e.g. [14, 21, 49].

1A proof in full generality has been proposed in [9].
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A reaction network consists of a set of R reaction steps among the chemical species X(1),
X(2), . . . ,X(M):

M∑

m=1

α(m, r)X(m)→
M∑

m=1

β(m, r)X(m) (r = 1, 2, . . . , R) (1)

with nonnegative integer stoichiometric coefficients α(m, r), β(m, r). Its induced kinetic differen-
tial equation assuming mass action type kinetics (and disregarding the change of temperature, pressure
and reaction volume) is

dxm

dt
=

R∑

r=1

(β(m, r) − α(m, r))kr

M∏

p=1

xα(p,r)
p (m = 1, 2, . . . ,M). (2)

The positive number kr is the rate coefficient2 for the r-th reaction.

On the two sides of arrows in (1), which represent a reaction step, one has formal linear combi-
nations of the species, called complexes, the left one being the reactant complex , and the right
one being the product complex . Associated to each complex is the vector of the coefficients of these
linear combinations. By an abuse of notation, we will refer to this vector as a complex. The difference
between the product complex and the reactant complex is the reaction vector . These vectors form
the columns of the stoichiometric matrix . The stoichiometric space S is the linear span of the
reaction vectors, where S = dimS. (This number can also be interpreted as the number of indepen-
dent reaction steps.) The stoichiometric compatibility class of x0 ∈ R

M
>0 is the forward-invariant

set (x0 + S)> := (x0 + S) ∩ R
M
>0. The number of complexes is denoted by N .

With sets of reactions and complexes as described above, each reaction network is naturally asso-
ciated to a directed graph.

Definition 1. The reaction graph (or Feinberg-Horn-Jackson graph) of a given reaction net-
work is a finite directed graph with no self-loops, where the vertices are the complexes of the reaction
network, and the edges are precisely the reactions.

The connected components of a reaction graph are also called linkage classes, and L denotes
the number of linkage classes in a reaction network. The deficiency of the reaction network is
δ := N − L − S, where N is the number of complexes (i.e., number of nodes in the reaction graph),
and S = dimS. The strong components of the reaction graph are also called strong linkage classes.
An ergodic component (or strong terminal class) is a strong component with no reaction step
such that the reactant complex is in the component while the product complex is outside of it, i.e., an
ergodic component is a strongly connected component of the reaction graph. The number of ergodic
components will be denoted by T .

Definition 2. A reaction network is reversible if its reaction graph as a relation is symmetric, i.e.,
i→ j is a reaction if and only if j → i is a reaction. It is weakly reversible, if the transitive closure
of its reaction graph is symmetric; or if all the reaction arrows are edges of a directed cycle in the
reaction graph; or all of its strong components are ergodic.3

Definition 3. A reversible reaction network (with rate coefficients kr+, kr− for the r-th pair of
reversible reactions)

M∑

m=1

α(m, r)X(m) ⇋

M∑

m=1

β(m, r)X(m) (r = 1, 2, . . . , P := R/2) (3)

2Instead of rate constants we use the term rate coefficients, because they do depend on everything (pressure, temper-
ature, volume), except concentrations, although we know that there is a heated argument about this question amongst
reaction kineticists, see [31, p. 115].

3Weak reversibility implies T = L, but the converse is false [22].
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is detailed balanced at the positive stationary concentration x∗ if for each pair of reversible reactions,
the forward step proceeds at the same rate as the backward step; in other words, x∗ is detailed balanced
if

kr+(x
∗)αr = kr−(x

∗)βr , (r = 1, 2, . . . , P ).

The induced kinetic differential equation can be written in many different forms, see e.g. [49, Sec.
6.3]. We introduce the form that will be used frequently below.

For a reaction graph with N complexes, let their associated vectors be columns of the matrix
Y := (y1,y2, . . . ,yN ). Implicitly we are imposing an ordering on the set of complexes. For a reaction
i→ j (from the i-th complex to the jth complex), assume that the rate coefficient is kji > 0. Define
the matrix K to be

[K]ij =

{
kij if j → i is a reaction in the graph
0 otherwise

(4)

so that K is a matrix with nonnegative entries, and 0 along the diagonal. Then the column-conserving
matrix Ak := K − diag(K⊤1) is the (weighted) Laplacian of the reaction graph. A matrix with
nonnegative off-diagonal entries, and is column-conserving is also called Kirchoff .

With these matrices defined, the induced kinetic differential equation (2) of the reaction network
can be rewritten in the following form:

dx

dt
= Y ·Ak · x

Y, (5)

where xY is the vector of monomials (xy1 ,xy2 , . . . ,xyN )T .
Note that the differential equation (5) is completely determined by the complexes (columns of Y)

and the connectivity and rate coefficients of the reaction graph (given by Ak).

Definition 4. The reaction system (5) is complex balanced at the positive stationary concentration
x∗, if all the complexes are destroyed and formed with the same rate at this concentration:

∑

q 6=n

kqn(x
∗)yn =

∑

q 6=n

knq(x
∗)yq

for all n = 1, 2, . . . , N . Equivalently, x∗ is complex balanced if Ak(x
∗)Y = 0.

If one remains within the framework of mass action kinetics – as we do here – then the Deficiency
Zero Theorem provides a necessary and sufficient structural condition for complex balancing [19,25,26]:

Theorem 1. A mass action system is complex balanced for all choices of the rate coefficients if and
only if it is weakly reversible and its deficiency is zero.

One might notice that in the Deficiency Zero Theorem, it is the mass action system that is
described as complex balanced, not one of its stationary concentrations. This is because complex
balancing implies a host of good structural and dynamical properties, including:

1. If one of the stationary concentrations is complex balanced, then all stationary concentrations
of the system is complex balanced.

2. There is exactly one stationary concentration within every stoichiometric compatibility class.

3. Let x∗ be any complex balanced stationary concentration. The function

L(x) :=

M∑

m=1

(lnxm − lnx∗
m − 1)

defined on R
n
>0 is a Lyapunov function, with global minimum at x = x∗.
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4. Every positive stationary concentration is locally asymptotically stable within its stoichiometric
compatibility class.

5. The set of complex balanced stationary concentrations Zk satisfies the equation lnZk = lnx∗ +
S⊥.

3 Formulation of problems

In defining the system of differential equations for a mass action system, note that given a set of
reactions and rate coefficients (or equivalently, given a reaction graph and positive weights for each
edge), it is straightforward to write down the differential equation. Unfortunately, given a differential
equation (satisfying a mild sign condition introduced below), there is in general no unique reaction
graph that is associated to it [13].

A natural question arises: given a differential equation, what are the possible reaction graphs that
could generate it if we assume mass action kinetics. All the information about a reaction graph is
contained inside (Y,Ak).

Definition 5. A realization of a differential equation (5) is the pair (Y,Ak), where Y ∈ Z
M×N
≥0 and

Ak is the weighted Laplacian of a reaction graph. Equivalently, a realization is a set of complexes and
a Feinberg-Horn-Jackson reaction graph. Two different realizations (Y,Ak) and (Y′,A′

k) are said
to be dynamically equivalent if they give rise to the same differential equation under mass action
kinetics.

Dynamical equivalence is written as linear relations in [11]. In other words, the question we are
asking in this work is: what are the possible dynamically equivalent realizations (Y,Ak) of a given
system of differential equations?

Before searching for dynamically equivalent realizations, we must first ask whether or not a given
differential equation can arise from mass action kinetics. In other words, is it even possible to find
one realization? We provide a necessary and sufficient condition for realizability in Lemma 1 below.

Assume that we are given a system of differential equations of the form

ẋ = Z · xY =
N∑

n=1

znx
yn =




∑N

n=1 z
1
nx

yn

...∑N
n=1 z

m
n xyn

...∑N

n=1 z
M
n xyn




, (6)

where Z := (z1, z2, . . . , zN ), and Y := (y1,y2, . . . ,yN ), and xy := xy1

1 xy2

2 · · ·x
yM

M for any xi > 0.

Definition 6. We say that a system of differential equations (6) is kinetic if

zmn < 0 implies (yn)
m = ymn > 0. (7)

A system being kinetic reflects the physical assumption that in order to lose a chemical species via
a reaction, that species must participate as a reactant. For example, the system

ẋ = y − x

ẏ = x− xz − y

ż = xy − z

is not kinetic because the term −xz in ẏ does not involve the variable y.
It turns out that a differential equation can arise from mass action kinetics if and only if it is

kinetic in the sense of Definition 6. This has been shown in [24] using a constructive method.
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Lemma 1 (Hungarian Lemma). A polynomial system of differential equations of the form (6) can be
realized by a mass action system if and only if the system of differential equations is kinetic.

One realization (the canonical realization) is the collection of reactions

yn

|zm
n |
−−−→ yn + sign(zmn )em (m = 1, 2, . . . ,M ;n = 1, 2, . . . , N), (8)

where em is the m-th vector of the standard basis of RM . Here the product complex vector has
nonnegative integer coordinates because of the assumption in (7).

Example 1. Given the differential equation

ẋ = k1x− k2x
2 (9)

(with k1, k2 > 0), it is possible to find an inducing reaction network with only two complexes defined
by the exponents of the monomials present in the right hand side:

X
k1−−⇀↽−−
k2

2X.

The right hand side contains two monomials, and there exists a realization with two complexes, and
is also reversible, and has deficiency zero. This also happens to be the canonical realization.

However, in general, the canonical realization is quite complicated, contains too many complexes
and reactions (see Supplementary Example 13). Its main advantage is that it can be automatically
constructed and used as a starting point for finding different realizations.

Now we present the set of problems we are interested in (also posed earlier in [18, Section 4.7]).

List of Problems.

1. Given a kinetic differential equation ẋ = Z · xY, find Ak such that Y ·Ak = Z.

2. Find reversible or weakly reversible; complex balanced or detailed balanced; or mass conserving
realizations. Decide if such a realization exists.

3. Find realizations with minimal deficiency, with minimal number of reactions, or with minimal
number of complexes.

4. Without further restrictions, the question about uniqueness of Ak arises at all levels.

5. In all of the above problems, we may add more columns to Y [41]. For example, if the first
problem has no solution, we may consider the following: find Y whose first N columns form

precisely Y and find Ak such that Y ·Ak · xY = Z · xY. In this case we can also ask what is
the minimum number of columns that must be added.

We will answer partially the questions above, especially pertaining to reversible, weakly reversible,
complex balanced and detailed balanced realizations. We also consider uniqueness in Section 7 and
mass conserving realizations in the Supplementary.

In considering the uniqueness question, the concepts of sparse and dense realizations have been
useful [42]. The aim is to find an M ×N matrix of nonnegative integer components Y and a Kirchoff
matrix Ak giving the product Z = Y ·Ak. The pair (Y,Ak) is a realization of the matrix Z. Since
(Y,Ak) uniquely identifies the reaction graph, when we refer to a subgraph of the realization, we
mean a subgraph of the reaction graph corresponding to (Y,Ak).

6



Definition 7. Suppose the set of complexes is fixed, i.e., the matrix Y is given. If the number of
zeros in the above setting in Ak is maximal, then a sparse realization has been obtained. If the
number of zeros in Ak is minimal then a dense realization has been obtained.

Suppose Z is given and fix the matrix Y, i.e., fix the set of complexes (both the reactant and
product complexes) from which we will search for realizations. The following properties of dense and
sparse realizations of a given chemical reaction network were proved in [45]:

Theorem 2.

1. The reaction graph of the dense realizations is unique.

2. The reaction graph of any dynamically equivalent realization is a subgraph of the dense realiza-
tion.

3. The reaction graph of a system of differential equations is unique if and only if the reaction
graph of the dense and sparse realizations are identical.

The above statements hold when the word “realization” is replaced by weakly reversible realiza-

tion [1]. The above results were extended to the case of constrained realizations, where the rate
coefficients fulfil arbitrary polytopic constraints [2]. An important special case of this is when a
subset of possible reactions is excluded from the network.

We have seen that the canonical representation may be the sparse realization. Later, we shall give
a complete solution to a generalization of part 1 of Problem 3 for the case when the numerical values
of the components of the matrices Z and Y are known. We also review results for the solution of the
other related problems in Section 5.1.

To date, the problem of finding a realization has used tools and techniques from different mathe-
matical disciplines, ranging from graph theory, combinatorics, linear algebra, to optimization.

4 Realizations of compartmental models and reversible sys-

tems

In this section, we consider two classes of examples: compartmental models and weakly reversible
networks. Because of the simpler mathematical structure of compartmental models, the realization
problem can be solved even if the rate coefficients are unspecified parameters, i.e., symbolic. Then we
will look at an ad hoc method to find reversible realizations.

4.1 Compartmental Models

A compartmental system is built using a subset of reactions of the form

X(m) −−→ X(p), X(n) −−→ 0, 0 −−→ X(q).

It is closed if it only contains reactions of the first type, it is half-open if reactions of the second
type are also allowed, and it is open if reactions of the third type may occur. A generalized
compartmental system only consists of the reactions

ymX(m) −−→ ypX(p), ynX(n) −−→ 0, 0 −−→ yqX(q)

with fixed positive integer numbers y1, y2, . . . , yN . (It is understood that all the complexes contain a
single species, and every species appear in a single complex.) It is closed , if it only contains reactions
of the first type, it is half-open if reactions of the second type are also allowed, and it is open , if
reactions of the third type also may occur.

First we give a complete, although ineffective solution of the first task of Problem 3 in a slightly
modified form. Modification means that the empty complex will be dealt with separately, because in
some calculations this implies simplification. First, we need two definitions.

7



Definition 8. [47, pp. 142–143] A matrixB ∈ R
N×N is a compartmental matrix , if its off-diagonal

elements are nonnegative, while its diagonal elements are smaller than or equal to the negative of the
corresponding column sums: bnn ≤ −

∑N
p=1 bpn. It is a Kirchhoff matrix if it is a compartmental

matrix and its diagonal elements are equal to the negative of the corresponding column sums: bnn =
−
∑

p6=n bpn.

For example, the weighted Laplacian matrix of a reaction graph is Kirchoff.
Let M,N ∈ N; and suppose the vectors y1,y2, . . . ,yN ∈ Z

M
≥0 are arbitrary nonzero vectors. Let

us write the reaction network we are interested in, in the form of

M∑

m=1

ymq X(m)→
M∑

m=1

ymn X(m) (n, q = 1, 2, . . . , N ;n 6= q), (10)

M∑

m=1

ymq X(m)→ 0 (q = 1, 2, . . . , N), (11)

0→
M∑

m=1

ymn X(m) (n = 1, 2, . . . , N). (12)

Let us introduce the notation (slightly different from the usual)

K :=
(
knq

)N
n6=q=1

, u :=




k01
k02
...

k0N


 , v :=




k10
k20
...

kN0


 ,

where Ak := K − diag(KT1) is the weighted Laplacian of the reaction network. Note that knq ≥ 0.
Then, the induced kinetic differential equation of the reaction network (10)–(12) is

ċ = Y(K− diag(K⊤1− u))cY +Yv with (Y = (y1,y2, . . . ,yN )). (13)

Upon denoting Z := Y(K − diag(K⊤1− u)),b := Yv one can say that (13) is of the form

ċ = ZcY + b (14)

so that there exists a compartmental matrix B ∈ R
N×N and a nonnegative vector v ∈ R

M
≥0 so that

Z = YB, b = Yv (15)

hold. If u = 0, then B is a Kirchhoff matrix. (One may call (11) outflow, (12) inflow, and they are
missing if u = 0 or v = 0, respectively.)

A partial answer to the realization problem follows.

Theorem 3. Suppose that the differential equation

ẋ = ZxY + b (16)

where Y = (y1,y2, . . . ,yN ),Z ∈ R
M×N (with M,N ∈ N) has the property that there exist a com-

partmental matrix B and a nonnegative vector v ∈ R
M
≥0 so that (15) holds. Then the equation has a

realization of the form (10)–(12).

Proof. First we prove that the conditions of the theorem imply the differential equation is kinetic.
Suppose Zm

n < 0 for some indices m,n. Then,

Zm
n =

N∑

q=1

ymq Bq
n =

N∑

q 6=n

ymq Bq
n + ymn Bn

n ,

8



and the last sum being nonnegative, ymn Bn
n should be negative, thus ymn > 0.

The components of Y and v are nonnegative, thus the components of b = Yv are nonnegative,
as well.

Next, we construct the inducing realization in the following way. Let the reaction rate coefficients
of the reaction network (10)–(12) be defined as follows:

kqn := Bq
n (n, q = 1, 2, . . . , N ;n 6= q),

kn0 := vn (n = 1, 2, . . . , N),

k0n := −Bn
n −

N∑

q=1

Bq
n (n = 1, 2, . . . , N).

Then simple verification proves the statement.

It may happen that a given kinetic differential equation has zero, one or an infinite number of
realizations with complexes, or columns of Y, determined by the exponents of its monomials, see
Supplementary Examples 11, 12 and 15 and Example 2, respectively.

For some nonlinear differential equations one can provide a zero deficiency realization. Additional
conditions may allow to have a realization which is also reversible or weakly reversible. One of the early
approaches to this problem was [48, Theorem 9], see also [49, Theorem 11.12] providing a necessary
and sufficient condition that a generalized compartmental system induces a given differential equation.
If the coefficients of the kinetic polynomial ODEs are known, then a deficiency zero realization can
be determined via mixed integer linear programming, if it exists [33]. Moreover, weakly reversible
deficiency zero realizations can be determined using simple linear programming [43].

Theorem 4. Let M ∈ N;Z ∈ R
M×M ,Y ∈ N

M×M ,b ∈ R
M
≥0. The differential equation

ẋ = ZxY + b (17)

is the induced kinetic differential equation of a

1. closed,

2. half open,

3. open

generalized compartmental system if and only if the following relations hold: all the columns of Y are
positive multiples of different elements of the standard basis:

Y =
[
y1e1 y2e2 . . . yMeM

]
; y1, y2, . . . , yM ∈ N;

and

1. bm = 0;−zmm, zmp , βm :=
∑M

p=1
zp
m

yp
≥ 0; zmm = −βmym;

2. bm = 0;−zmm, zmp , βm ≥ 0; zmm ≤ −βmym, ∃m : zmm < −βmym;

3. −zmm, zmp , βm ≥ 0; zmm ≤ −βmym, ∃m : bm > 0;

respectively, where throughout m, p ∈ {1, 2, . . . ,M},m 6= p.

Proof. Necessity is obvious. Instead of direct calculations sufficiency can be learned from the appli-
cation of Theorem 3, as in this case Y – being diagonal with positive components – is invertible, and
its inverse can easily be calculated.

9



Remark 1.

1. A necessary and sufficient condition of reversibility in the closed case is sign symmetry of the
coefficient matrix. Similar conditions can be formulated for the other two cases, as well.

2. Once we have a zero deficiency reversible realization, it is easy to check detailed balancing: only
the circuit conditions [20] are to be checked.

4.2 Finding reversible realizations

Let us study reversibility, another relevant property, in more detail, applying different methods—
without taking care of the value of deficiency.

An equivalent and useful characterization of the induced kinetic differential equation of reversible
reaction networks seems to be missing. What we only have is a heuristic algorithm without the proof
that it leads to a reversible realization if there exists one, and the realization is independent from the
order of the steps.

Example 2.

1. Consider the polynomial equation

ẋ = b + s− gx+ sz − gxz (18)

ẏ = b + s+ sx− gy − gxy (19)

ż = b + s+ sy − gz − gyz (20)

with b, g, s > 0 (a transform of the first repressilator model in [17]). The canonical representation
of this equation is shown in Figure 1. It is a reversible reaction network with exactly those seven
complexes which are given as exponents of the monomials. It consists of a single linkage class
and has a three-dimensional stoichiometric space, and it is also a sparse realization. Reversibility
allows us to deduce the existence of a positive stationary point by the theorems of [7, 34]. In
the third part below a more systematic approach to this example will show an infinite number
of realizations (not necessarily reversible), actually we shall receive the dense realization.

X + Z X +Y

Z X

0

Y

Y + Z

g

g

g

s

g

s

b+s

b+s

b+s

s

g

g

Figure 1: A reversible single linkage class reaction network of deficiency 3 to induce Eq. (18)-(20).
This realization is sparse as opposed to the dense realization shown in Figure 2.
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2. To find a reversible realization one can also use a heuristic: one tries to collect pairs of reactant
and product complex vectors. Suppose our goal is to find a reversible reaction network inducing
(18)–(20). Let us rewrite it in the following form




b+ s− gx+ sz − gxz
b+ s+ sx− gy − gxy
b+ s+ sy − gz − gyz


 = gxz



−1
0
0


+ . . . . (21)

Now we consider the exponent of the monomial as a reactant vector α and the vector with
which this monomial has been multiplied, as the reaction vector β − α, then one should have

β =



−1
0
0


 +




1
0
1


 =




0
0
1


 , thus we need a term where the exponent of the monomial

is β, and it is multiplied by a positive constant and α− β. Thus we get:




b+ s− gx+ sz − gxz
b+ s+ sx− gy − gxy
b+ s+ sy − gz − gyz


 = gxz



−1
0
0


 + sz




1
0
0


+ . . . . (22)

Repeating steps of this kind we arrive at the decomposition

gxz



−1
0
0


+ sz




1
0
0


 + gyz




0
0
−1


+ sy




0
0
1


+

gxy




0
−1
0


+ sx




0
1
0


+ gx



−1
0
0


+ (b + s)




1
0
0


+

gy




0
−1
0


+ (b + s)




0
1
0


+ gz




0
0
−1


+ (b + s)




0
0
1




which again leads to the network in Figure 1.

Conjecture 1. If there exists a reversible realization then the above process (independently
from the order of actions) ends and necessarily provides one of them which may or may not
depend on the order of steps.

3. Finally, one can apply Theorem 3 to get all the realizations (with the exponents as complexes
only) and choose from them the reversible one(s). Suppose again that the Eqs. (18)–(20) are
given, and our goal is to find a reaction network inducing it using Theorem 3. In this case we
have

Z =



−g 0 s −g 0 0
s −g 0 0 −g 0
0 s −g 0 0 −g


 , b =




b + s
b + s
b + s


 , Y =




1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1




(23)
and we have to find a compartmental solution in B of the equation Z = YB, or

−g = −b21 − b31 − b61 − u1 s = b21 + b51 + b61 0 = b31 + b41 + b61
0 = b12 + b42 + b52 −g = −b12 − b32 − b42 − u2 s = b32 + b42 + b62
s = b13 + b43 + b53 0 = b23 + b53 + b63 −g = −b13 − b23 − b53 − u3

−g = −b24 − b34 − b64 − u4 0 = b24 + b54 + b64 0 = −b14 − b24 − b54 − u4

0 = −b25 − b35 − b65 − u5 −g = −b15 − b35 − b45 − u5 0 = b35 + b45 + b65
0 = b16 + b46 + b56 0 = −b16 − b36 − b46 − u6 −g = −b16 − b26 − b56 − u6.
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which for the coordinates has the following consequences.

b31 = 0 b41 = 0 b61 = 0 b12 = 0 b42 = 0 b52 = 0 b23 = 0 b53 = 0 b63 = 0
b24 = 0 b54 = 0 b64 = 0 b35 = 0 b45 = 0 b65 = 0 b16 = 0 b46 = 0 b56 = 0

and then the equations reduce to

−g = −b21 − u1 s = b21 + b51 −g = −b32 − u2 s = b32 + b62
s = b13 + b43 −g = −b13 − u3 −g = −b34 − u4 0 = −b14 − u4

0 = −b25 − u5 −g = −b15 − u5 0 = −b36 − u6 −g = −b26 − u6

having the solution

b21 = g − u1 b51 = s− g + u1 b32 = g − u2 b62 = s− g + u2

b13 = g − u3 b43 = s− g + u3 b34 = g − u4 b14 = −u4

b25 = −u5 b15 = g − u5 b36 = −u6 b26 = g − u6

implying that
u4 = u5 = u6 = 0.

Now the kinetic matrix of the dense realization (without inflow) is



−s− u1 0 g − u3 0 g 0
g − u1 −s− u2 0 0 0 g
0 g − u2 −s− u3 g 0 0
0 0 −g + s+ u3 −g 0 0
−g + s+ u1 0 0 0 −g 0
0 −g + s+ u2 0 0 0 −g




under the conditions that

s− g ≤ u1 ≤ g s− g ≤ u2 ≤ g s− g ≤ u3 ≤ g

hold. To have no indices let us introduce α := u1, β := u2, γ := u3. Now consider two cases:

(a) If g ≥ s, take α, β and γ such that 0 ≤ α, β, γ ≤ s.

(b) If s ≥ g, take α, β and γ such that s− g ≤ α, β, γ ≤ s.

As to the inflow: the components of the solution v to Yv = b should fulfil

v1 + v4 + v5 = b+ s v2 + v5 + v6 = b+ s v3 + v4 + v6 = b + s,

which means that any v defines a solution for which

0 ≤ v4, 0 ≤ v5, 0 ≤ v6, v4 + v5 ≤ b+ s, v5 + v6 ≤ b+ s, v4 + v6 ≤ b+ s

hold; and then v1 := b+ s− v4 − v5, v2 := b+ s− v5 − v6, v3 := b+ s− v4 − v6.

Summing up, Figure 1 shows a sparse realization, while Figure 2 shows the dense realization.
We also obtain the condition of reversibility: α = β = γ = s and v4 = v5 = v6 = 0, and that it
is exactly the sparse realization which is reversible.

In this example we were lucky to receive a canonical realization with so many nice properties. The
reader can easily verify that this is the case with the second three dimensional repressilator model
and with the six dimensional one of [17]: the canonic realization is again reversible thus assures the
existence of a positive stationary point.

Let us emphasize that via a known result in reaction kinetics we were able to assert the existence
of a positive solution to a second degree polynomial (in three variables), or to put it another way, we
could apply formal reaction kinetics in mathematics.

As to uniqueness of the stationary point: it does not follow from the mentioned theorems. One
may try several methods, see e.g. [30]. However, uniqueness of the reversible realization itself does
follow (in this special case) from the method based on Theorem 3.
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X+ Y X+ Z

X Z

0

Y

Y + Z

g

g

g−s+α

α

s−α

g−s+γ

γ

s−γ

b+s−v4−v5

b+s−v5−v6

b+s−v4−v6

v4

v6

v5

β

g−s+β
s−β

g

Figure 2: A weakly reversible single linkage class realization of deficiency 3 to induce Eq. (18)-(20).
This realization is dense as opposed to the sparse realization shown in Figure 1.

5 On computing realizations of kinetic equations

In the previous section, we looked at two classes of systems with certain network properties, namely
that of (generalized) compartmental models (i.e., complexes consisting of a single species) and that
of reversible networks. In this section, we will provide an algorithmic approach to the realizability
problem when the coefficients in the ODE are given. To date, there are algorithms based on linear
programming (LP) and mixed integer linear programming (MILP) techniques. These are reviewed in
Section 5.1.

In the previous section, we only use the complexes that show up as exponents of monomials in
the kinetic differential equation. This may not necessarily be the case for more general examples [41].
However, once a set of complexes has been decided on (and must include the exponents of monomi-
als), the algorithms presented below can be used to compute realizations with desirable structural
properties.

In Section 5.2, we consider ways to modify an existing realization while preserving dynamical
equivalence, including adding to/subtracting from the set of complexes. Finally, we consider cases
when a realization with certain properties (e.g., complex balanced) is independent of the choice of the
set of complexes.

5.1 Review of algorithms

Qualitative properties can be rewritten in terms of a mixed integer linear programming (MILP) prob-
lem [45]. The works [27, 46] determine weakly reversible realizations, while [43] provides reversible
and detailed balanced realizations. The paper [40] finds detailed balanced subnetworks in reactions.

Recall the discussion about possibly enlarging the set of complexes (Problem 5) from Y to Y. We
write the dynamical equivalence conditions for finding a realization using linear programming method
with this predetermined complex set Y. Note that the columns of Y must also be columns of Y. We
want to find a realization of the kinetic differential equation ẋ = Z · xY with the complex set Y. In
other words, we want to find a Kirchoff matrix Ak such that

Y ·Ak · x
Y = Z · xY. (24)

We may add columns of 0 to the matrix Z and obtain Z, where the number of columns added is the
number of additional columns in Y compared to Y. Then Eq. (24) becomes

Y ·Ak · x
Y = Z · xY. (25)

13



Therefore, kinetic realizability using Y is equivalent to the feasibility of the following convex
constraint set

Y ·Ak = Z (dynamical equivalence) (26)

[Ak]ij ≥ 0 for i 6= j (nonnegativity of rate coefficients) (27)

1⊤ ·Ak = 0 (column conservation in Ak) (28)

Next, we review algorithms for finding realizations with certain structural properties, namely,
reversible, weakly reversible, or complex balancing realizations. In Eq. (26)-(28) above, the matrices
Y and Z do not show up explicitly. Hence, to simplify notation, in what follows below, we let Y

denote the complexes to be considered, some of which may not appear explicitly in the differential
equation, and Z defines a kinetic differential equation (with possibly columns of 0 so that Z is the
same size as Y).

To find a reversible realization, consider the following feasibility problem [28]:

Y ·Ak = Z (29)

[Ak]ij ≥ 0 for i 6= j (30)

1T ·Ak = 0 (31)

[Ak]ij ≥ ε ⇐⇒ [Ak]ji ≥ ε for i 6= j. (32)

The statement (32) is the condition that the reaction step i → j is present if and only if reaction
j → i is present. This feasibility problem can be solved in the framework of mixed integer linear
programming (MILP).

To find a weakly reversible realization, consider the following feasibility problem [29]:

Y ·Ak = Z (33)

[Ak]ij ≥ 0 for i 6= j (34)

1T ·Ak = 0 (35)

ε[Ak]ij ≤ [A′
k]ij , ε[A

′
k]ij ≤ [Ak]ij for i 6= j (36)

A′
k · 1 = 0. (37)

The inequalities (36) ensure that the structure of Ak and A′
k are the same, i.e., a reaction is present in

one if and only if it is present in the other. Since every weakly reversible network is complex balanced
for some choice of parameter, the algorithm searches for a complex balanced A′

k (in Eq. (37)), which
shares the network structure we want but there is no relations in terms of the rate coefficients we seek.

In this MILP problem, the decision variables are the off-diagonal entries of Ak, the off-diagonals
entries of another Kirchoff matrix A′

k, while Z,Y are given matrices, and ε ≪ 1 is a fixed small
constant. We will explore the relationship between finding weakly reversible and complex balanced
realizations in Section 6. More efficient methods to compute weakly reversible realizations are avail-
able; for example, a polynomial time algorithm can be found in [38].

To find a detailed balanced realization, supposed we have the numerical value of one stationary
concentration x∗ and consider [43]:

Y ·Ak = Z (38)

[Ak]ij ≥ 0 for i 6= j (39)

1T ·Ak = 0 (40)
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[Ak]ji(x
∗)yi = [Ak]ij(x

∗)yj for each i 6= j. (41)

Finally, to find a complex balanced realization, supposed we have the numerical value of one
stationary concentration x∗ and consider [43]:

Y ·Ak = Z (42)

[Ak]ij ≥ 0 for i 6= j (43)

1T ·Ak = 0 (44)

−[Ak]ii(x
∗)yi =

∑

j 6=i

[Ak]ij(x
∗)yj for each i. (45)

5.2 Modifying network while preserving dynamical equivalence

In this section, we introduce several modifications to an existing realization while preserving dynamical
equivalence. These include:

1. positive or convex combinations of realizations,

2. adding new reactions, and

3. eliminating complexes.

This list is non-exhaustive, but we hope that some of the ideas presented in this section will motivate
other types of modifications that preserve dynamical equivalences.

5.2.1 Positive and convex combinations of realizations

Suppose we have found several realizations (Y,A1
k), (Y,A2

k), . . . , (Y,AI
k) to the kinetic differential

equation ẋ = Z · xY. Then we can easily produce other realizations which may be simpler, or fulfil
some further properties [16].

Theorem 5. Suppose that A1
k,. . . ,A

I
k are realizations of a kinetic differential equation, with complex

set Y, and let Ak :=
∑I

i=1 αiA
i
k for some αi > 0, i = 1, . . . , I.

1. Ak is a Kirchhoff matrix, and realizes the equation ẋ = (
∑

i αiY ·A
i
k)x

Y.

2. If
∑I

i=1 αi = 1, then (Y,Ak) realizes the same kinetic differential equation ẋ = Z · xY.

3. If for all i = 1, . . . , I, the matrix Ai
k defines a reversible realization of some kinetic equation,

then Ak defines a reversible realization of some kinetic equation.

4. If for all i = 1, . . . , I, the matrix Ai
k defines a weakly reversible realization of some kinetic

equation, then Ak defines a weakly reversible realization of some kinetic equation.

Proof.

1. Obviously, the off-diagonal terms of Ak are nonnegative. Also the column sums of Ak are
conserved. Thus Ak is Kirchoff. We see that

Y ·Ak · x
Y =

I∑

i=1

αiY ·A
i
k · x

Y.

2. This trivially follows from the calculation above.
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3. For any p 6= q, if [Ak]pq > 0, then [Ai
k]pq > 0 for some 1 ≤ i ≤ I. Since Ai

k defines a reversible
realization, it must be the case that [Ai

k]qp > 0, hence [Ak]qp > 0, i.e., Ak defines a reversible
realization.

4. The proof is similar to the above. For any p 6= q, if [Ak]pq > 0, there must be some [Ai
k]pq > 0.

Since Ai
k defines a weakly reversible realization, the reaction q → p must be part of a cycle, i.e.,

the off-diagonal terms in Ai
k corresponding to the edges in this cycle are positive, hence those

positions in Ak are also positive. In other words, this particular cycle appears in the graph
defined by Ak as well.

5.2.2 Adding new reactions to a realization

Now we look at modifying an existing realization by adding new reactions. Suppose that Ak defines
a realization with complexes y1, y2, . . . , yN , and suppose that y is a convex combination of the
remaining complexes, i.e., y =

∑N
n=1 vnyn where vn ≥ 0 for n = 1, 2, . . . , N and

∑N
n=1 vn = 1.

Then we can add the following reactions: for every n such that vn 6= 0, add a reaction from y to
the complex yn, with rate coefficient vn. These reactions together contributes 0 to the differential
equation.

We wonder if we can add reactions in the opposite direction, i.e., reactions of the form yn → y.
There are cases when it is possible and cases when it is not. While we do not have an answer to this
question, we illustrate the complexity using two examples.

Example 3. First we show an example where adding a complex situated in the convex cone of the
original complexes seems to be superfluous: its effect on the induced kinetic differential equation can
be expressed only using reactions among the original complexes. Consider the system

0 2X

2X + 2Y2Y

To add the reaction step 2X→ X+ Y to get the network

0 2X

2X + 2Y2Y

X +Y

one must borrow from the reactions 2X→ 0 and 2X→ 2X + 2Y in the sense that

k1x
2

(
−2
0

)
+ k2x

2

(
0
2

)

︸ ︷︷ ︸
in first network

= (k1 − ε)x2

(
−2
0

)
+ (k2 − ε)x2

(
0
2

)
+ 2εx2

(
−1
1

)

︸ ︷︷ ︸
in second network

where 0 < ε < min{k1, k2}.

The example above may lead us to believe that it is always possible to add a reaction from some
yn on the boundary of the convex hall to some complex y in the interior of the convex hull of other
complexes. The example below illustrates that this is not always the case, and further work is needed
to explore when it is possible to add such a reaction.
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Example 4. If one takes the system

0 2X

2X + 2Y2Y

and tries to add the reaction step 2X → X+ Y (note that the new complex X + Y is a convex
combination of the old ones), there is no way of choosing the rate coefficients so as to get the induced
kinetic differential equation of the extended one.

5.2.3 Eliminatin complexes from a realization

Perhaps instead of adding or removing reactions from an existing realization, one may want to add or
remove complexes from an existing realization. As noted in [41], it is always possible to add a complex
that has not appeared in the current realization, as long as the weighted sum of reaction vectors is 0.

For example, one can always add the reactions 0
k
←− X

k
−→ 2X without changing the induced kinetic

differential equation. The question lies, then, on when it is possible to eliminate a complex from your
realization.

Theorem 6. Suppose that (Y,Ak) is a realization with N+1 complexes y1, . . . ,yN ,yN+1, where the
complex yN+1 participates in at least one reaction as a reactant complex. Suppose that the monomial
xyN+1 does not appear explicitly in the kinetic differential equation. Then the differential equation
can also be realized using only the complexes y1, . . . ,yN .

Proof. We can write the complex matrix and Kirchoff matrix as

Y =
[
Y′ yN+1

]
, and Ak =

[
A′

k v
]
,

where u,v ∈ R
N
≥0. Then the kinetic differential equation can be written as

dx

dt
= Y′A′

kx
Y′

+Y′vxyN+1 + yN+1u
⊤xY′

−

(
N∑

n=1

vn

)
yN+1x

yN+1 .

Since the complex yN+1 admits some outgoing reactions, we have that
∑N

n=1 vn 6= 0, and, using the
fact that the coefficient of xyN+1 is zero, we find yN+1 = 1∑

N
n=1

vn
Y′v, and

dx

dt
= Y′

(
A′

k +
1

∑N

n=1 vn

vu⊤

)
xY′

.

We conclude that yN+1 is a convex combination of the remaining complexes. More importantly, the
Kirchoff matrix A′′

k = A′
k + 1∑

N
n=1

vn
vu⊤ gives a realization of the same kinetic equation with only

the complexes y1, . . . ,yN .

Remark 2. If xy appears explicitly as a term in the kinetic differential equation, then that complex
cannot be removed.

After seeing the procedure of eliminating extraneous complexes, one may be tempted to remove all
complexes that do not appear as exponents of monomials without ruining desirable properties (e.g.,
weak reversibility, complex balanced).

Indeed, if one is interested in finding a reversible, or weakly reversible, or detailed balanced, or
complex balanced realization, any complex that does not appear in the differential equation (after
simplification) can be eliminated from the network [11]:
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Theorem 7. A kinetic differential equation ẋ = f(x) has a complex balanced realization if and only
if it has a complex balanced realization where the complexes (the columns of Y) are precisely the
monomials in f(x). Analogous results hold for detailed balanced, weakly reversible, and reversible
realizations.

As a consequence, the algorithms described in Section 5.1 can be used to determine whether a
given system of kinetic differential equations admits a complex balanced (or detailed balanced, weakly
reversible, or reversible) realization. This is a finite calculation as there is no need to compute using
different sets of complexes.

6 Relation between weakly reversible and complex balanced

realizations for symbolic kinetic equations

When we discussed the algorithm for computing weakly reversible realizations, the reader may have
noticed that we introduced an additional Kirchoff matrix A′

k that does not appear in the realization
(Y,Ak). This reflects the fact that there is a subtle algebraic relation between weak reversibility and
complex balancing. In this section, we explore this relationship.

In order to study the possible network structures that can arise from kinetic differential equation
to those with unspecified coefficient, we make the following definition:

Definition 9. For a matrix Y ∈ Z
M×N
≥0 we say that a sign matrix Zσ ∈ {0,+,−}M×N is kinetically

compatible with Y if Ymr = 0 implies Zσ
mr ∈ {0,+}. In such a case, let

Z(Y,Zσ) :=
{
Z ∈ R

M×N : sign(Z) = Zσ
}
, (46)

where sign(·) is the componentwise sign function.

For any Y ∈ Z
M×N
≥0 and kinetically compatible Zσ, the set Z(Y,Zσ) is an unbounded convex cone

in R
M×N . According to [24], the differential equation ẋ = Z · xY is kinetic if Z ∈ Z(Y,Zσ) for any

kinetically compatible Zσ.

Example 5. The Lotka-Volterra equations

ẋ = αx− βxy

ẏ = δxy − γy

(with α, β, γ, δ > 0) can be written in this framework. Let

Y =

(
1 1 0
0 1 1

)
and Zσ =

(
+ − 0
0 + −

)
,

where clearly Zσ is kinetically compatible with Y. The matrix corresponding to the Lotka-Volterra

equations is Z =

(
α −β 0
0 δ −γ

)
, which belongs to the set Z(Y,Zσ).

We defined Z(Y,Zσ) in order to study possible behaviours a kinetic differential equation may
exhibit for some choice of rate coefficients.

Definition 10. Let Zσ be kinetically compatible with the matrix Y. We say that Z(Y,Zσ) has
the capacity to be complex balanced (or capacity to be weakly reversible) if there exists
Z ∈ Z(Y,Zσ) such that ẋ = Z · xY has a complex balanced (or weakly reversible) realization.

Theorem 8. Let Zσ be kinetically compatible with the matrix Y. The set Z(Y,Zσ) has the capacity
to be complex balanced if and only if it has the capacity to be weakly reversible.
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Proof. It is known that complex balancing implies weak reversibility. Suppose there is some Z ∈
Z(Y,Zσ) with a weakly reversible realization (Y,Ak). Then there is a positive vector p in the kernel
of the Kirchoff matrix Ak. Fix an arbitrary positive state x∗. Consider the following scaled Kirchoff
matrix

A′
k = Ak · diag

(
p

(x∗)Y

)
(47)

where the division p

(x∗)Y is componentwise. Then

A′
k(x

∗)Y = Ak · diag

(
p

(x∗)Y

)
· (x∗)Y = Ak · p = 0,

i.e., A′
k defines a complex balanced realization with stationary concentration x∗.

7 On deficiency zero realizations and uniqueness

Recall that the deficiency of a reaction network is the nonnegative integer δ = N − L − S, where
N is the number of complexes, L is the number of linkage classes, and S is the dimension of the
stoichiometric subspace S. A network with lower deficiency tends to have nicer dynamical properties;
for example, by the Deficiency Zero Theorem or Deficiency One Theorem. Let us formulate a necessary
and sufficient condition on network structure for zero deficiency [21].

We say that the vectors y0,y1, . . . ,yN ∈ R
M are affinely independent if y1−y0, . . . ,yN−y0 are

linearly independent. Note that in this case y0−yn, . . . ,yi−yn, . . . ,yN −yn are linearly independent
for any n = 1, 2, . . . , N and i 6= n. Also, linearly independent vectors are affinely independent.

Theorem 9. A reaction network is deficiency zero if and only if

1. the complex vectors within each linkage class are affinely independent, and

2. the stoichiometric spaces belonging to the linkage class are linearly independent.

Proof. Consider the ℓ-th linkage class. Let Nℓ be the number of complexes in this linkage class, and
let Sℓ be the stoichiometric space belonging to this linkage class. Let δℓ := Nℓ − 1 − dimSℓ be the
deficiency of the ℓ-th linkage class. Finally, let S be the full stoichiometric space.

The deficiency of the entire network can be related to the deficiencies of the linkage classes:

δ = N − L− S =

L∑

ℓ=1

(Nℓ − 1− dimSℓ) +
L∑

ℓ=1

Sℓ − dimS

=

L∑

ℓ=1

δℓ +

L∑

ℓ=1

dimSℓ − dimS ≥
L∑

ℓ=1

δℓ.

Equality holds if and only if the stoichiometric spaces belonging to the linkage classes {Sℓ}Lℓ=1 are
linearly independent. Moreover, δ = 0 if and only if all δℓ = 0. Finally, δℓ = 0 implies dimSℓ = Nℓ−1,
i.e. the complexes in any given linkage classes are affinely independent.

If we restrict ourselves to weakly reversible realizations, the deficiency δ is minimized if the set
of complexes are precisely the exponents of monomials [11]. Each additional complex that does not
appear as exponents of monomials increases the deficiency δ. It has been shown that any deficiency
zero realization with one strong terminal class is unique if the set of complexes is fixed [16]. Combining
these two facts, we have the following Proposition.

Proposition 1. Any weakly reversible deficiency zero realization with a single linkage class is unique.
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The hypotheses of weakly reversible and deficiency zero in Proposition 1 are required as the
following examples illustrate.

Example 6. The reaction networks Y
k
←− 0

k
−→ X and 0

k
−→ X+Y are two different deficiency zero

realizations with one linkage class, although they are not weakly reversible.

Example 7. The reaction network 0 ⇋ X ⇋ 2X (with any rate coefficients) and the reaction network

0 X 2X

(for wisely chosen rate coefficients) are dynamically equivalent. Both are weakly reversible and with
one linkage class, but δ = 1.

Example 8. Two dynamically equivalent weakly reversible realizations where one has δ = 1 are

0 X

Y X+ Y

and

0 X

Y X+ Y

with all rate coefficients are taken to be 1.

Nonetheless, Proposition 1 naturally leads us to the following conjecture, for which a proof has
been proposed [10]:

Conjecture 2. Any weakly reversible deficiency zero reaction network has a unique realization.

Throughout this work, we have seen over and over again that realizability (more precisely, iden-
tifying the network structure) is an underdetermined problem. Is it possible to use this flexibility in
network structure to get more out information about a kinetic differential equation?

An idea comes to mind; we will formulate a conjecture following an example.

Example 9. Consider the mass action system

0 2X

X +Y X

k2

k4

k3

k1

for any rate coefficients k1, k2, k3, k4 > 0. This system has a weakly reversible, deficiency zero
realization:

0 2X

X +Y

k2
k1/2

k4

k3
k1/2
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The induced kinetic differential equation of both systems is

ẋ = k2 − x2(k3 + 2k4), ẏ = k2 − k1xy + k3x
2.

In particular, the latter mass action system is complex balanced for all choice of rate coefficients. This
implies that the kinetic differential equation enjoys all the dynamical properties of complex balanced
systems, although we could have been looking at the network that is not weakly reversible.

Conjecture 3. Consider a reaction network N1, and assume that there exists a weakly reversible
reaction network N2 of deficiency δ such that any differential equation induced by N1 and positive k

values can also be induced by N2 and positive k̂ values, and viceversa. Then, the set of rate coefficient
values of N1 for which N1 induces systems that have complex balanced realizations contains an
algebraic variety of codimension not larger than δ.

8 Discussion

We have been talking about finding realizations (with certain network properties) of kinetic differen-
tial equations. Starting with a system of polynomial differential equations (possibly with symbolic
parameters), one could try to find a (Feinberg-Horn-Jackson) reaction graph that induces the dif-
ferential equation under mass action kinetics. After fixing a set of complexes, algorithms exist to
find realizations (Section 5.1). Furthermore, conditions on the resulting reaction graph (e.g., weakly
reversible, complex balanced, omit certain reactions) can be incorporated into the algorithms.4

We also considered graph operations on the reaction network that will preserve the kinetic differ-
ential equation. For example, in certain cases reactions can be added, and complexes can be removed.
Our discussion in Section 5.2 is far from complete; it would be interesting to further explore the
allowed operations while preserving dynamical equivalence.

In Section 6, we explored the relationship between weakly reversible and complex balanced real-
izations. Hidden inside the proof of the main theorem in that section is the scaling equation (47). We
believe there is information hidden about the manifold in parameter space that decides whether or
not a kinetic differential equation can be complex balanced.

Finally, in our discussion of deficiency zero realizations and uniqueness, we posed two conjectures.
The first is that weakly reversible deficiency zero networks have unique realization. The latter is
more complicated; it asks for what rate coefficients is the reaction network dynamically equivalent to

complex balanced.
As the reader can see, a theoretical understanding of the relationships between network structure,

the sign structure of the differential equation, and dynamical property is lacking. We hope to see
further studies exploring the realizability problem.
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[2] G. Ács, G. Szlobodnyik, and G. Szederknyi, A computational approach to the structural analysis of uncertain
kinetic systems, Computer Physics Communications 228 (2018), 83–95.

[3] D.F. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM Journal on Applied
Mathematics 71 (2011), no. 4, 1487–1508.

[4] C.P.P. Arceo, E.C. Jose, A. Marin-Sanguino, and E.R. Mendoza, Chemical reaction network approaches to bio-
chemical systems theory, Mathematical biosciences 269 (2015), 135–152.

[5] R. Aris, Prolegomena to the rational analysis of systems of chemical reactions, Archive for Rational Mechanics
and Analysis 19 (1965Jan), no. 2, 81–99.

[6] , Mathematical aspects of chemical reaction, I&EC Fundamentals 61 (1969), no. 6, 17–29.

[7] B. Boros, On the existence of positive steady states for weakly reversible mass-action systems, SIAM Journal on
Mathematical Analysis 51 (2019), no. 1, 435–449.

[8] L. Cardelli, M. Tribastone, and M. Tschaikowski, From electric circuits to chemical networks, arXiv:1812.03308
(2018).

[9] G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, arXiv:1501.02860 (2016).

[10] G. Craciun, J. Jin, and P.Y. Yu, Uniqueness of kinetic realizations for weakly reversible deficiency zero networks.
To be submitted.

[11] , An efficient characterization of complex-balanced, detailed-balanced, and weakly reversible systems,
arXiv:1812.06214 (2018).

[12] G. Craciun, F. Nazarov, and C. Pantea, Persistence and permanence of mass-action and power-law dynamical
systems, SIAM Journal on Applied Mathematics 73 (2013), no. 1, 305–329.

[13] G. Craciun and C. Pantea, Identifiability of chemical reaction networks, Journal of Mathematical Chemistry 44

(2008), 244–259.

[14] G. Craciun and P.Y. Yu, Mathematical analysis of chemical reaction systems, Israel Journal of Chemistry 50

(2018).
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[41] G. Szederkényi, Comment on “identifiability of chemical reaction networks” by G. Craciun and C. Pantea, Journal
of Mathematical Chemistry 45 (2009), no. 4, 1172–1174.
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Supplementary

Examples: Realizations with a minimal number of complexes

Simple examples can be treated directly, without detailed application of Theorem 3.

Example 10. If the differential equation ẋ = kx is given (no matter what the sign of k is), then
we might try to look for an inducing reaction network consisting of the single complex X and find
it impossible the minimal reason being that one cannot have a reaction network with less than two
complexes. The right hand side contains a single monomial, but the realization should contain more
than one complexes.
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Example 11. If the differential equation

ẋ = −k1x+ 2k2y, ẏ = 3k1x− k2y (48)

is given with k1, k2 > 0, then at least four complexes are needed to realize the equation. How do we
prove this?

Two complexes are not enough. With the notations of Theorem 3 we have

Z =

(
−k1 2k2
3k1 −k2

)
,Y =

(
1 0
0 1

)
,b = 0 ∈ R

2.

As Y is invertible, v = Y−10 = 0 should hold. However, YB = B = Z cannot hold, because Z

is not a compartmental matrix.

Three complexes are not enough either. Include ( α1 α2 )⊤ among the complex vectors with
unknown nonnegative integers α1 and α2 so that this vector is different from the other two we
have as yet included. Then our task is to find nonnegative rate coefficients k21, k31, k12, k32, k13, k23
(at least two of them positive) so that

(

1 0 α1

0 1 α2

)





−k12 − k13 k21 k31
k12 −k21 − k23 k32
k13 k23 −k31 − k32









x

y

xα1yα2





=

(

−(k12 + k13 − k13α1)x+ (k21 + k23α1)y + (k31 − (k31 + k32)α1)x
α1yα2

(k12 + k13α2)x− (k21 + k23 − k23α2)y + (k32 − (k31 + k32)α2)x
α1yα2

)

.

First of all, one should have zero coefficients before xα1yα2 , thus α1 = k31

k31+k32
α2 = k32

k31+k32
,

should hold, therefore 1−α1 = α2 1−α2 = α1. Equating the coefficients of x and y here with
those of the right hand side gives an equation without solution for k12, . . . , α2 so that α1 and
α2 are nonnegative integers, and among the nonnegative numbers knq at least two are positive.
The equations are as follows.

k12 + k13(1− α1) = k12 + k13α2 =k1, (49)

k21 + k23α1 =2k2, (50)

k12 + k13α2 =3k1, (51)

k21 + k23(1− α2) = k21 + k23α1 =k2. (52)

Obviously, (49) and (51) could only hold if k1 = 0, which cannot happen. Similarly, (50) and
(52) could only hold if k2 = 0, which cannot happen either.

Four complexes are enough. Finally, one can easily calculate that the complex vectors in the
complex matrix (

1 0 0 2
0 1 3 0

)

are enough, Eq. (48) is the induced kinetic differential equation of the reaction network

X
k1−−→ 3Y, Y

k2−−→ 2X.

Note that this realization has the minimal number of reactions, (one reaction step is not enough),
and is of deficiency zero, as well.

Summing up: here the right hand side of (48) contains two monomials, still there exists no realization
with two complexes, more are needed.

Furthermore, three complexes are enough if we allow complexes in R
M
≥0 instead of ZM

≥0. In par-

ticular, α1 = 4
5 , α2 = 3

5 is an appropriate choice. In the pioneering paper [26] this generalization
to non-negative real coefficients for complexes is allowed, although here we restrict ourselves to non-
negative integer coefficients.
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8.1 More examples

Example 12. Invertibility of the complex matrix Y is not sufficient to have a realization with the
exponents of the monomials as complex vectors, as the following example shows.

ẋ = x3 − xy2, ẏ = 2x3

implies that

Y =

(
3 1
0 2

)
, Z =

(
1 −1
2 0

)

and the (unique) solution to

(
3 1
0 2

)(
−b21 − u1 b12

b21 −b12 − u2

)
=

(
1 −1
2 0

)

is
b12 = −1/3, b21 = 1, u1 = −1, u2 = 1/3,

with some negative numbers. We are forced to formulate a problem: Characterize those matrices with
nonnegative (integer) components the inverse of which multiplied with a matrix without negative cross
effect gives a compartmental matrix. As this problem again requires finding the feasible solutions of
a linear programming (more precisely, MIL) problem, there is not too much hope to find an explicit
symbolic solution, but at the same time one can have numerical solution(s) using LP-solvers.

Example 13. Consider the polynomial equation

ẋ = k1x
2y5z − k−1x

3y4z ẏ = −k1x
2y5z + k−1x

3y4z ż = 0 (53)

with k1, k−1 > 0. The canonical representation of this equation is

2X + 5Y + Z
k1−−→ 3X + 5Y + Z, 3X + 4Y + Z

k−1

−−→ 2X + 4Y + Z,

2X + 5Y + Z
k1−−→ 2X + 4Y + Z, 3X + 4Y + Z

k−1

−−→ 3X + 5Y + Z,

a weakly reversible reaction network with N = 4 complexes, L = 1 linkage class and a S = 2-
dimensional stoichiometric space, thus it has a deficiency 1 = N − L− S.

Direct calculation shows that the only positive stationary point is

x∗ =
x0 + y0
1 +K

y∗ =
K(x0 + y0)

1 +K
z∗ = z0,

however, its existence directly follows from weak reversibility [7].

Example 14. The canonical realization of the differential equation

ẋ = −4x+ 2y + 3z ẏ = x− 5y + z + 1 ż = 2x+ 3y − 4z (54)

is the irreversible, deficiency three reaction network consisting of a single linkage class of Figure 3.
However, it is ”obviously” the induced kinetic differential equation of the zero deficiency weakly re-
versible reaction network in Figure 4. (Here again, the unique positive stationary point can explicitely
be determined.)

Let us see a nonlinear example.

Example 15. The canonical realization of the differential equation

ẋ = −12x3 + 6y2, ẏ = 2x3 − 4y2 + 2 (55)
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Figure 3: The canonical realization of Eq. (54)
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Figure 4: A weakly reversible compartmental realization of Eq. (54)

3X 2Y

0

1
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2

1

Figure 5: A weakly reversible, zero deficiency reaction network inducing Eq. (55)

is the irreversible, deficiency 3 reaction network consisting of two linkage classes

0
2
−−→ Y 2Y

4
−−→ Y 2Y

6
−−→ X+ 2Y

3X
2
−−→ 3X + Y 3X

12
−−→ 2X.

However, it is (much less) ”obviously” the induced kinetic differential equation of the weakly reversible,
zero deficiency reaction network in Figure 5 consisting of a single linkage class. To show this in a
formal way, we apply Theorem 3.

With the notations of Theorem 3 we have

Z =

(
−12 6
2 −4

)
,Y =

(
3 0
0 2

)
,b =

(
0
2

)
.

As Y is invertible, v = Y−1b =

(
0
1

)
should hold. The unique solution of

(
3 0
0 2

)(
−b21 − u1 b12

b21 −b12 − u2

)
=

(
−12 6
2 −4

)

under the conditions b12, b21, u1, u2 ≥ 0 is calculated with or without the direct use of Y−1. Thus, the
unique reaction network to induce Eq. (55) (only having the complexes defined by the monomials on
the right hand side) is seen in Figure 5. How to write the linear equation for the coefficients and why

does it tells us that the solution exists and is unique? Here we have four unknowns and four equations,

in general we have N2 = M2 equations and the same number of unknowns.
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Contrary to what the title suggests, here we show a network with thee complexes inducing a
differential equation having two terms on the right hand side.

Example 16. The induced kinetic differential equation of the network

α1X
k1−−⇀↽−−−
k−1

β1X
k2−−⇀↽−−−
k−2

β2X

with α1 < β1 < β2 and
k2(β2 − β1) = k−1(β1 − α1) (56)

only has two terms on its right hand side:

ẋ = k1x
α1(β1 − α1) + k−2x

β2(β1 − β2).

No wonder, as the condition (56) implies that β1 is the convex combination of α1 and β2.

Example 17. The induced kinetic differential equation of the reaction network

2X + 5Y + Z
k1−−⇀↽−−−
k−1

3X + 4Y + Z (57)

is (53) which we repeat here:

ẋ = k1x
2y5z − k−1x

3y4z ẏ = −k1x
2y5z + k−1x

3y4z ż = 0 (58)

This is of the form

ẋ = k1x
2y5z




1
−1
0


+ k−1x

3y4z



−1
1
0


 , (59)

therefore an inducing reaction network is just the one in (57).

Mass conserving realizations

The reaction (1) is mass conserving , if there exists a vector ̺ ∈ R
M
>0 such that for all r = 1, 2, . . . , R

M∑

m=1

α(m, r)̺m =

M∑

m=1

β(m, r)̺m (60)

holds. Note that to ensure mass conservation the existence of a positive vector in the left kernel of
the span of the range of the right hand side is necessary but not sufficient, [22, p. 89].

Consider again the differential equation

ẋ = ZxY. (61)

According to the definition (60) the existence of a vector ̺ ∈ R
M
>0 such that

̺⊤Z = 0 ∈ R
R (62)

is a necessary condition of mass conservation. However, it is only sufficient with some restrictions.

Theorem 10. If (61) has a realization such that the number of linkage classes is equal to the number
of ergodic components (terminal strong linkage classes) and there exists a vector ̺ ∈ R

M
>0 such that

(62) holds, then this realization is mass conserving.

It is shown in [39] that the same kinetic model may have both mass conserving and non-mass
conserving realizations.
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