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We perform an extensive study of the spin-configurations in a PdFe bilayer on Ir(111) in terms
of ab initio and spin-model calculations. We use the spin-cluster expansion technique to obtain
spin model parameters, and solve the Landau-Lifshitz-Gilbert equations at zero temperature. In
particular, we focus on effects of layer relaxations and the evolution of the magnetic ground state
in external magnetic field. In the absence of magnetic field, we find a spin-spiral ground state,
while applying external magnetic field skyrmions are generated in the system. Based on energy
calculations of frozen spin configurations with varying magnetic field we obtain excellent agreement
for the phase boundaries with available experiments. We find that the wave length of spin-spirals
and the diameter of skyrmions decrease with increasing inward Fe layer relaxation which is correlated
with the increasing ratio of the nearest neighbor Dzyaloshinskii-Moriya interaction and the isotropic
exchange coupling, D/J . Our results also indicate that the applied field needed to stabilize the
skyrmion lattice increases when the diameter of individual skyrmions decreases. Based on our
observations, we suggest that the formation of the skyrmion lattice can be tuned by small structural
modification of the thin film.

I. INTRODUCTION

The concept of skyrmions (Sk) was originally intro-
duced in nonlinear field theory1 and then generally used
as quasi-particle excitations in different fields of physics
and mathematics. Skyrmions were first measured in
quantum-Hall ferromagnets and the crystallization of
skyrmions was also realized.2,3 Magnetic skyrmions are
chiral spin structures that are topologically protected,
therefore, they are relatively stable against thermal fluc-
tuations. These magnetic spin structures were first
observed experimentally in the bulk MnSi4,5 and ex-
amined theoretically by using a mean-field model.6 At
low temperature and low magnetic field, MnSi devel-
ops a helical magnetic structure. Due to the large fer-
romagnetic exchange interaction a uniform spin align-
ment would, in principle, be favored, however the lack
of inversion symmetry in cubic B20 MnSi4 results in
Dzyaloshinskii-Moriya (DM) interactions7,8 that induce
the helical structure. By applying an external mag-
netic field, a columnar skyrmion lattice (SkX) develops
which is referred to as the A phase of bulk MnSi. Sim-
ilar skyrmion lattice formation was observed in a thin
film of B20-type Fe0.5Co0.5Si, where the thickness of the
film was less than the wave length of the helical spin
structure.9 As clear from the phase diagrams4,9 and other
theoretical studies6, external magnetic field and finite
temperature are needed to stabilize the skyrmion lattice,
however, the ranges of the stabilizing field and temper-
ature are relatively narrow. It should be noted that in
contrast to the previous results, for epitaxial FeGe(111)
films the skyrmion phase has been stabilized up to 250
K.10

Application of magnetic skyrmions in ultrathin films in

spintronic devices is an appealing issue,11 thus, the con-
ditions of formation and the properties of the magnetic
skyrmions are widely studied.

In a recent experimental work the formation of indi-
vidual skyrmions has been observed in a PdFe bilayer
deposited on Ir(111) surface.12 A spin-spiral ground state
has been revealed at temperature of 8 K, while ap-
plying a relatively small external magnetic field (B=1
T) skyrmions were created. The diameter of the
skyrmions, ∼ 5 − 6 nm, was much larger than that of
the nanoskyrmions in a single Fe atomic layer on Ir(111),
∼ 1 nm.13 However, this nanoskyrmion lattice most pos-
sibly manifests a phase different from that observed in
PdFe/Ir(111), because it is stable even without an exter-
nal magnetic field. Skyrmion magnetic structures includ-
ing aB−T phase diagram were first reported in terms of a
combined ab initio and spin-model study for the ordered
FePt monolayer deposited on Pt(111).14 The stability,
the structural and dynamic properties of skyrmions in
ultrathin films were very recently investigated theoreti-
cally in several contexts by Dupé et al.15

In the present work we study the magnetic properties
of the PdFe bilayer on Ir(111) surface using first princi-
ples calculations. We use a spin-cluster expansion (SCE)
technique combined with the relativistic disordered local
moment (RDLM) scheme to obtain parameters of a spin
model. Using these parameters, the magnetic ground
state with and without external magnetic field is exam-
ined by spin-dynamic simulations. We highlight the role
of the layer relaxations on the obtained magnetic inter-
actions within the Fe layer. We find that the geometry
of the magnetic interface considerably affects both the
isotropic exchange and the DM interactions, thus the for-
mation of the skyrmion state. With increasing inward
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layer relaxation, the ratio of DM and isotropic exchange
is increased. In agreement with Fert et al.11, we report
reduced skyrmion sizes with a large ratio of the DM in-
teraction and isotropic exchange. We also find that the
applied field needed to stabilize the skyrmion lattice in-
creases with decreasing diameter of the skyrmions. This
means that the formation of the skyrmions is tunable by
inducing small structural changes in the system.

II. COMPUTATIONAL DETAILS

Based on the adiabatic decoupling of fast electronic
fluctuations from the slow transversal motion of spins,16

the spin-system can be described in terms of a classical
spin-model. We use a generalized Heisenberg model,

H = −1

2

∑
i6=j

~siJij~sj +
∑
i

~siKi~si −
∑
i

mi~si ~Bext, (1)

where ~si represents the direction of the magnetic moment
at site i, ~mi = mi~si. The first term of Eq. (1) stands for
the exchange contribution with tensorial exchange cou-
pling, Jij ,

17 which can be decomposed into an isotropic
component, JijI with Jij = 1

3 TrJij , an antisymmetric

component JA
ij = 1

2 (Jij −JT
ij), and a traceless symmetric

part JS
ij = 1

2 (Jij+JT
ij)−JijI, where the superscript T de-

notes the transpose of a matrix and I is the unit matrix.
The first, isotropic component describes the Heisenberg

interaction. The energy term -~siJ
A
ij~sj = ~Dij(~si×~sj) cor-

responds to the DM interaction with ~Dij being the DM
vector7,8. The symmetric part of the exchange term is
the two-site magnetic anisotropy and the second term
of Eq. (1) comprises the on-site anisotropy with the
anisotropy matrix Ki. The third term of Eq. (1) is the
Zeeman energy of the spin-moments of magnitude mi

in the presence of an external field, ~Bext. Neglecting
self-consistent longitudinal spin-fluctuations, two meth-
ods are used in the literature to map the energy from
first-principles calculations to the generalized spin Hamil-
tonian in Eq.(1). The relativistic torque method17,18

makes use of infinitesimal rotations around specific mag-
netic configurations, mostly around the ferromagnetic
state (FM). For this reason, if the ground state is far
from the FM state, the interaction parameters might be
inconsistent with the original ground state. The spin-
cluster expansion (SCE) technique developed by Drautz
and Fähnle19,20 provides a systematic parametrization
of the adiabatic energy of the spin-system. The SCE
method was combined with the relativistic disordered
local moment scheme (RDLM)21–24, and this combina-
tion gives a proper tool to determine the parameters of
the spin Hamiltonian in Eq.(1) from the paramagnetic
state.25–27 Note that by using the SCE method no a
priori information about the magnetic ground state is
needed.

In terms of the screened Korringa-Kohn-Rostoker
(SKKR) method28,29 we performed self-consistent calcu-

lations of a PdFe bilayer deposited on Ir(111) surface.
We employed the scalar-relativistic DLM approach21

to obtain the electronic structure in the paramagnetic
state. The local spin-density approximation (LSDA)
as parametrized by Vosko et al.30 was used within the
atomic sphere approximation with an angular momen-
tum cut-off of lmax = 3. The energy integrals were per-
formed by sampling 16 points on a semicircle contour
in the upper complex semi-plane. To model the geome-
try of the system, the in-plane lattice constant of the Ir,
a2D=2.715Å was chosen, and fcc growth was assumed for
both the Fe and the Pd layers. It was indeed confirmed
by Dupé et al.15 that the fcc growth is lower in energy
as compared to the hcp growth. We performed geome-
try optimization in terms of VASP calculations31–33 by
modeling the PdFe/Ir(111) system as a slab of nine layers
(Pd + Fe +7 layers Ir). This resulted in a relaxation of
−5% of the Fe layer. In order to study the effect of struc-
tural modifications, in our SKKR calculations we consid-
ered inward relaxations of the Fe layer ranging from −5%
to −10%. Following the self-consistent calculations, for
each values of the Fe layer relaxation we derived the pa-
rameters of the spin-model Eq. (1) in terms of the SCE-
RDLM method.25 Note that since in the self-consistent
DLM state the local spin-polarization of the Pd and Ir
atoms disappeared, no spin-model parameters were cal-
culated for these atoms, therefore we considered only Fe
spins in the spin-model Eq. (1).

For finding the ground state, we performed zero tem-
perature (deterministic) Landau-Lifshitz-Gilbert spin-
dynamics simulations which describes the motion of the
localized magnetic moments,34,35

∂ ~mi

∂t
= − γ

1 + α2
~mi× ~Bi−

αγ

(1 + α2)mi
~mi×(~mi× ~Bi), (2)

where α is the Gilbert damping parameter, γ = 2µB/h̄

is the gyromagnetic ratio and the effective field, ~Bi, is
obtained from the generalized Hamiltonian, Eq. (1),

~Bi = − 1

mi

∂H
∂~si

=
1

mi

∑
j(6=i)

Jij~sj −
2

mi
Ki~si + ~Bext . (3)

We used a two–dimensional lattice of 128×128 sites popu-
lated by classical spins with periodic boundary condition
and considered the full tensorial exchange interactions
and the on-site anisotropy term when calculating the ef-
fective field. Each simulation was initialized at a random
spin configuration and continued until the absolute dif-
ference in the energy of the spin system between two
steps reached the value of 10−5 mRy. In the simulations
α = 0.01 was used with a sufficiently small time step to
ensure a stable search for the ground state.

III. RESULTS

Fig. 1 shows the calculated Fe-Fe isotropic exchange
interaction as a function of the inter-atomic distance for
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FIG. 1: (Color online) Calculated Fe-Fe isotropic exchange
interactions for PdFe/Ir(111) as a function of the inter-atomic
distance measured in units of the in-plane lattice constant
(a2D) for different Fe layer relaxations.

all considered layer relaxations. According to Eq. (1),
the positive sign of the exchange interaction means fer-
romagnetic (FM) coupling and the negative sign refers
to antiferromagnetic (AFM) coupling. For all considered
layer relaxations the nearest neighbor exchange interac-
tions are FM and they gradually decrease with increasing
inward layer relaxation. In the second and third shells
the exchange interactions are AFM that turn back to FM
from the fourth shell. Interestingly, from the second shell
the interactions just slightly depend on the inward layer
relaxation.

As mentioned above, beside the isotropic exchange in-
teraction the DM interactions can play an important role
in the formation of complex magnetic ground states in ul-
trathin films.13–15,27,36 In Fig. 2 the magnitudes of the
DM vectors between the Fe atoms are shown as a func-
tion of the inter-atomic distance for all considered layer
relaxations. It can be seen that the largest magnitude
of the DM vector is found for the first Fe neighbors, for
further shells the DM vectors are much smaller in magni-
tude. It is also clearly seen that the magnitude of the DM
vectors for the first shell increases with increasing inward
layer relaxation. Since the DM interaction prefers non-
collinear alignment of the magnetic moments, the large
DM vectors in the first shell indicate the formation of
a spin-spiral structure in the Fe layer as the magnetic
ground state.

It should be noted that due to the 1/2 factor in the
first term of the spin Hamiltonian in Eq. (1) our spin
model parameters are twice as large as in Ref. 15. Taking
this into account, at −5% relaxation we obtained J1 =
16.87 meV and D1 = 0.82 meV for the nearest neighbor
isotropic exchange interaction and magnitude of the DM
vectors, respectively, while in Ref. 15 J1 = 14.7 meV
and D1 = 1.0 meV were reported. Considering the quite
different theoretical approaches, this means a very good
agreement between the two calculations.
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FIG. 2: (Color online) Magnitudes of the Fe-Fe DM vectors
for PdFe/Ir(111) as a function of the inter-atomic distance
measured in units of the in-plane lattice constant (a2D) for
different Fe layer relaxations. The inset shows a sketch of the
in-plane components of the calculated DM vectors between
a central Fe atom (C) and its nearest and next nearest Fe
neighbors at −5% relaxation.

The inset of Fig. 2 shows the in-plane projection of the
DM vectors for the nearest and second nearest neighbors
in case of 5% inward layer relaxation. Obviously, the
orientations of the DM vectors in a given shell are con-
sistent with the C3v point group symmetry of the system.
Note that the DM vectors transform as axial vectors.7,8

Our calculations evidence that the in-plane components
of the DM vectors in the first and second shells are much
larger than the out-of plane components implying an out-
of plane rotation of the spins. For the first shell, the
magnitude of the in-plane component is D‖ = 1.58 meV,
whilst the out-of plane component is D⊥ = 0.41 meV.
Similar behavior of the DM vector components can be ob-
tained for all considered layer relaxations. Note that the
Fe-Fe isotropic exchange and DM interactions in the first
three shells are increased in magnitude due to the pres-
ence of the Pd overlayer on the Fe/Ir(111). For the near-
est neighbor interactions this increase was about 30%. A
similar effect was found by Dupé et al.15

First, we estimated the magnetic ground state of the
system by calculating the Fourier transform of the ex-
change matrices, J(~q). For a spin system described by
the first term in the Heisenberg Hamiltonian Eq. (1), the
energy of a spin-spiral with a wave-vector ~q is given by
the minimum eigenvalue of −J(~q) or equivalently, by the
maximum eigenvalue of J(~q).26,27,37,38 A uniaxial mag-
netic anisotropy, K cos2 θi with θi being the polar angle
of the magnetization at site i, adds K/2 per unit cell to
the energy of such a spin-spiral, while -|K| to that of the
FM state of minimal energy. Note that for −5% relax-
ation of the Fe layer we calculated K = −0.5 meV being
considerably smaller than the leading isotropic exchange
and DM interactions. Neglecting on-site anisotropy, a
maximum of the eigenvalues of J(~q) at the center of the
Brillouin zone, i.e. at the Γ point thus means a ferro-
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magnetic ground state, whilst a maximum located at a
general ~q vector of the Brillouin zone corresponds to a
more complex magnetic ground state. For all consid-
ered Fe layer relaxations, the maximum was found close
to the Γ anticipating a spin-spiral ground state of large
wave length.

From the spin-dynamics simulations we obtained a
spin-spiral ground state in accordance with the estima-
tion based on J(~q). The estimated wave length from
the maximum eigenvalue of J(~q) and the wave length
obtained from the spin-dynamics simulations are in re-
markably good agreement with each other, similarly as
found in the Fe/Os(0001) system.27 As can be seen in
Table I, the wave length of the spin-spiral (λ) decreases
with increasing inward layer relaxation. This can be cor-
related with the ratio of the magnitude of the nearest
neighbor DM vectors and the isotropic exchange inter-
action (D/J) also presented in Table I. There is almost
an inverse proportionality between λ and D/J as can be
obtained from a simple analytic estimation in the small
wave number limit.36 It should be noted that for −5%
relaxation, which is the energetically favored geometry
from the VASP method, the calculated wave length of
6.8 nm is in excellent agreement with the experimentally
measured spin-spiral period of about 6 to 7 nm.12

Relaxation D/J λ (nm)

−5% 0.05 6.8

−6% 0.06 5.4

−7% 0.07 4.7

−8% 0.09 4.1

−9% 0.10 3.6

−10% 0.19 2.4

TABLE I: Ratio of the magnitudes of the nearest neighbor
Fe-Fe DM vector (D) and isotropic exchange coupling (J) as
well as the wave length (λ) of the ground state spin-spiral for
each value of Fe layer relaxation in PdFe/Ir(111).

When an external magnetic field, Bext, is applied per-
pendicular to the surface, at low temperature the spin-
spiral structure can change to a 2D skyrmion lattice. In
an external magnetic field the energy of the spin-spiral
(SS), the skyrmion lattice phase (SkX) and the FM state
is changing differently due to the different out-of-plane
spin-component of these spin structures entering the Zee-
man term of the energy. Assuming frozen magnetic con-
figurations for the energetically favored geometry (−5%
relaxation), the energy dependence of the mentioned spin
structures on the external magnetic field at zero temper-
ature is shown in Fig. 3. In particular, for the skyrmion
phase we considered the spin-structure with the maxi-
mum skyrmion number (see later in context to Fig. 4).

At Bext = 0 the energy of the spin-spiral state is pre-
ferred and the highest energy is obtained for the ferro-
magnetic state. Since the net magnetization is zero in the
spin-spiral state, its Zeeman energy is also zero, there-

fore, the spin-spiral energy is constant against Bext. If
the spins of the ferromagnetic state are parallel to the
external field, the Zeeman contribution reduces the total
energy by increasing Bext. The slope of the curve cor-
responds to Nm, where N is the number of lattice sites
and m is the size of the Fe moments. Similar decreasing
energy can be observed in case of the skyrmion lattice.
Here, the slope of the energy curve is smaller than in
the FM state due to the smaller net out-of-plane com-
ponent of the spins. With increasing external magnetic
field the energy minimum changes first from spin-spiral
to skyrmion lattice. Further increasing Bext leads to the
saturation of the Fe moments in the ferromagnetic state.
The slope of the energy curve of the skyrmion lattice nat-
urally depends on the actual skyrmion state, more pre-
cisely on the number and size of individual skyrmions in
the system. Therefore, we calculated the energy curve of
several different frozen skyrmion states as obtained from
spin-dynamics simulations starting with different initial
configurations and found that the SS-SkX intersection
is in the range between 0.7 and 1.8 T and the SkX-FM
intersection is between 2.4 and 3.2 T. These ranges of
magnetic field are in good agreement with experimental
observations.12
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FIG. 3: (Color online) Energies of frozen spin-spiral (SS),
selected skyrmion phase (SkX), and ferromagnetic (FM) spin
structures in external magnetic field (Bext) perpendicular to
the surface for −5% relaxation of the Fe layer in PdFe/Ir(111).
All the energies correspond to the 128×128 lattice used for
the spin-dynamics simulations. The vertical lines denote the
phase boundaries between the three different states.

Fig. 3 should be regarded as an illustrative model
which gives a good qualitative picture about the origin of
the magnetic phase transitions in PdFe/Ir(1111) at zero
temperature. The phase boundaries can be determined
more precisely by performing spin-dynamics simulations
with increasing Bext. Here the spin-configurations are
not frozen any more, but they are evolved to get the
state with minimum energy for each value of Bext. By
starting the simulations from different initial states, a
statistics for the phase transitions can be obtained in
terms of Bext. From the spin-dynamics simulations we
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found the same range for the SkX-FM intersection as
from the energy curves of frozen skyrmions. This finding
suggests that the skyrmion lattice above about 3 T is
metastable. It should be noted that Dupé et al.15 found
magnetic phase transitions at much larger external fields
as compared to the experiments.12

According to our previous study,27 the spatial range
of the magnetic interactions plays a crucial role in the
formation of magnetic patterns in ultrathin films. In
our spin-dynamics simulations we used 15 shells includ-
ing isotropic exchange couplings, DM interactions and
two-site anisotropies. We found that at least 4 shells
are needed to obtain a spin-spiral configuration as the
magnetic ground state and skyrmion formation under
applying external magnetic field. This does not contra-
dict to the observed strong relationship between the SS
wave length and the ratio of nearest neighbor parameters,
D/J , as it just highlights that further DM interactions
are needed to decrease the energy of the spin-spiral be-
low that of the FM state. Without DM interactions the
magnetic ground state was ferromagnetic, in contrast to
Dupé et al.15 who obtained SS ground state by neglecting
spin-orbit interaction in their calculations.

The skyrmion phase is characterized by the skyrmion
number (topological charge) defined by

Nsk =
1

4π

∫
~s ·
(
∂~s

∂x
× ∂~s

∂y

)
dxdy, (4)

where ~s is the direction of the local magnetization.14 In
case of topologically trivial magnetic structures, such as
ferromagnetic, anti-ferromagnetic or spin-spiral states,
the topological charge is zero. A single skyrmion holds
the topological charge of Nsk = 1, whilst for anti-
skyrmion the charge is Nsk = −1. In the PdFe/Ir(111)
system, due to the clockwise rotation of the nearest
neighbor Fe-Fe DM vectors, see inset of Fig. 2, skyrmions
with winding number of one are formed. Nsk then gives
the number of skyrmions in the surface cell for which the
integration is carried out.

Based on the spin-configurations obtained from the
spin-dynamics simulations at zero temperature we deter-
mined the number of skyrmions as described in Ref. 14.
We found that averaging over 15 independent spin-
dynamics simulations being started from random spin
configurations is sufficient to stabilize the value of Nsk

for any layer relaxation and external magnetic field. Note
that only about 500 time steps were sufficient to reach
convergence of Nsk as opposed to at least 104 time steps
for a precise determination of the ground state. Fig. 4
shows the skyrmion number as a function of the external
magnetic field for two different layer relaxations of −5%
and −10%. As can be seen, without Bext the skyrmion
number is zero, corresponding to the spin-spiral ground
state.

According to the variation of Nsk against Bext, we at-
tempt to identify four different magnetic phases of the
system. When increasing Bext from zero to a certain
value, the skyrmion number is gradually increasing. In
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FIG. 4: (Color online) Calculated skyrmion numbers (Nsk) on
a 128×128 lattice at zero temperature as a function of external
magnetic field (Bext) in case of −5% and −10% relaxations of
the Fe layer in PdFe/Ir(111). The points represent skyrmion
numbers averaged over 15 independent spin-dynamic simu-
lations and the lines denote an interpolated curve between
the points. The magnetic phases as described in the text are
indicated.

this phase individual skyrmions coexist with spin-spirals,
therefore, we call it as a mixed spin-spiral and skyrmion,
SS+Sk, state. With larger external magnetic field the
skyrmion number saturates and there is a range of Bext

where Nsk is just slightly changed. Depending on the
actual shape of the Nsk(Bext) curves, this phase corre-
sponds to the skyrmion lattice SkX, and it is defined as
Nsk > (0.9− 0.95)×Nmax

sk , where Nmax
sk is the maximal

number of skyrmions. At even larger Bext the skyrmion
number is decreasing because the skyrmions are satu-
rated to the ferromagnetic state: this phase is a mixed
ferromagnetic and skyrmion state, FM+Sk. Finally at
a sufficiently large magnetic field the skyrmion number
vanishes again when the ferromagnetic phase is reached.

Inferring Fig. 4, in case of −5% layer relaxation
the skyrmion lattice phase is formed in the vicinity of
BSkX ' 5 T. As compared to Fig. 3, this is about
3 T higher than that obtained from the energy of frozen
spin-configurations in external field. This quantitative
difference can be understood as follows. The spin-
configuration of the SS+Sk phase sensitively changes
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(a) (b)

(c) (d)

FIG. 5: (Color online) (a) Zero-field ground state spin-spiral configuration of PdFe/Ir(111) system in case of −5% relaxation
and (c) in case of −10% relaxation as obtained from spin-dynamics simulation. External magnetic field leads to skyrmion
lattice formation, (b) represents the skyrmion lattice for −5% Fe layer relaxation and (d) for −10% relaxation. Small red and
blue arrows indicate magnetic moments with dominating out-of-plane and in-plane components, respectively.

with the change of Bext. Clearly, more and more
skyrmions are created that considerably reduce the en-
ergy of this phase. Therefore, the notion of constant
energy for the skyrmion phase in Fig. 3 is inconsistent
with the results of the spin-dynamics simulations. Sim-
ilar reasoning applies to explain the high value of the
lower border of the FM state (15 T), since the FM state
appears via a gradual decrease of Nsk with increasing
Bext.

From Fig. 4 we can observe two main features that are
remarkably different for the two considered Fe layer re-
laxations. One of them is that Nsk reaches a maximum
of 20 for −5% relaxation, while nearly 130 for −10% re-
laxation. The other one is the much broader range of
Bext for −10% relaxation with a corresponding value of
BSkX = 18 T as opposed to BSkX = 5 T for −5%. As for
each layer relaxations we used the same lattice (surface
area) in our spin-dynamics simulations, it is straightfor-
ward to conclude that both features are related to the
fact that the size of the individual skyrmions decreases
with increasing inward layer relaxation.

From the spatial dependence of the normal-to-plane
component of the normalized magnetic moments (sz =
cos θ), we used a domain wall like fit6,15,39 to determine
the diameter of the skyrmions. At the center of an indi-
vidual skyrmion sz = −1 (θ = π), and sz approaches 1
(θ = 0) sufficiently far from the skyrmion. In Table II,
for all considered layer relaxations we summarized the
determined skyrmion diameters, dSk, the smallest inter-

Relaxation D/J dSk(nm) dSk−Sk(nm) BSkX(T)

−5% 0.05 5.0 6.3 5

−6% 0.06 4.3 4.4 7

−7% 0.07 4.3 4.3 9

−8% 0.09 3.3 3.5 10

−9% 0.10 2.8 3.4 13

−10% 0.19 2.6 2.3 18

TABLE II: Relaxation of the Fe layer, ratio of the magni-
tudes of the Fe-Fe nearest neighbor DM vector and the near-
est neighbor isotropic exchange coupling (D/J), the diame-
ter of skyrmions (dSk), the smallest inter-skyrmion distance
(dSk−Sk), and the external magnetic field (BSkX) where the
skyrmion number takes its maximum. Note that BSkX is de-
termined with an error of 0.5 T.

skyrmion distances, dSk−Sk, and the external magnetic
fields, BSkX, where the skyrmion number is the largest.
Note that dSk−Sk is defined as the distance between the
center of the skyrmions. As can be seen, the skyrmion
diameter is decreasing with increased inward layer relax-
ation and correspondingly increased D/J , similarly as
found for the wave length of the spin-spiral, see Table I.
Interestingly, for larger relaxations the spin-spiral wave
length and the skyrmion diameter take very similar val-
ues. Moreover, we find that for increasing relaxations the
packing of the skyrmion lattice increases: in case of −5%
relaxation the smallest inter-skyrmion distance is consid-
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erably larger than the diameter of the skyrmions, while
for −10% relaxation dSk > dSk−Sk. It is also clearly seen
in Table II that BSkX is increasing with increasing inward
layer relaxation, i.e. with decreasing skyrmion size.

Finally, in Fig. 5 the simulated spin-configurations for
the spin-spiral ground states (Bext = 0) and the skyrmion
lattice at BSkX are presented for −5% and −10% Fe
layer relaxations. Noteworthy, the SS ground states are
characterized by a strong domain structure which is the
consequence of the three-fold degeneracy of the ~q wave
vectors of the ground state spin-spirals. It can be no-
ticed that in case of larger size of the skyrmions (−5%
relaxation), the high-density skyrmion phase is rather
loosely ordered and for small skyrmions (−10% relax-
ation) a well–ordered skyrmion lattice develops, see also
the dSk−Sk values in Table II. The origin of the less or-
dered Sk phase can be purely numerical, as the diameter
of the skyrmions is not compatible with the size of the
lattice used for the simulation. It is, however, not ex-
cluded that this difference can partly be related to differ-
ent skyrmion-skyrmion interactions, posing a challenging
topic for future research. Moreover, one can observe that
the area of ferromagnetically ordered spins is much larger
for larger sizes of the skyrmions, being a simple space-
filling effect. This makes the more relaxed (−10%) film
more rigid against applied external fields which explains
the larger range of Bext seen in Fig. 4.

IV. CONCLUSIONS

We investigated the magnetic ground state of
PdFe/Ir(111) at different inward layer relaxations and
the evolution of the magnetic ground state in external
magnetic field. We employed the SCE-RDLM method

to obtain spin-model parameters and performed spin-
dynamic simulations. We found that the magnetic
ground state without external magnetic field is a spin-
spiral in all considered inward layer relaxations. The
wave length of the spin-spiral is decreasing with increas-
ing inward layer relaxation due to the increasing ratio
of the nearest neighbor DM vector and the isotropic ex-
change coupling, D/J . Applying external magnetic field,
skyrmions are created in the system. Based on energy
calculations of spin configurations in external magnetic
field we obtained good agreement for the phase bound-
aries with available experiments. Numerically evaluat-
ing the skyrmion numbers in spin-dynamics simulations
we identified different magnetic phases depending on the
magnetic field. We found that the skyrmion diameter and
the smallest inter-skyrmion distances decrease with in-
creasing inward layer relaxation and larger external fields
are needed to stabilize such skyrmion lattices. Therefore,
we conclude that the size of skyrmions and the stabi-
lizing external field can be tuned by manipulating the
geometrical structure of the film, e.g. through applying
external mechanical strain or electric field or alloying the
substrate.37,38
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19 R. Drautz and M. Fähnle, Phys. Rev. B 69, 104404 (2004).
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