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A B S T R A C T   

Methyl salicylate is a volatile compound, the synthesis of which takes place via the salicylic acid pathway in 
plants. Both compounds can be involved in the development of systemic acquired resistance and they play their 
role partly independently. Salicylic acid transport has an important role in long-distance signalling, but methyl 
salicylate has also been suggested as a phloem-based mobile signal, which can be demethylated to form salicylic 
acid, inducing the de-novo synthesis of salicylic acid in distal tissue. Despite the fact that salicylic acid has a 
protective role in abiotic stress responses and tolerance, very few investigations have been reported on the 
similar effects of methyl salicylate. In addition, as salicylic acid and methyl salicylate are often treated simply as 
the volatile and non-volatile forms of the same compound, and in several cases they also act in the same way, it is 
hard to highlight the differences in their mode of action. The main aim of the present review is to reveal the 
individual role and action mechanism of methyl salicylate in systemic acquired resistance, plant-plant 
communication and various stress conditions in fruits and plants.   

1. Introduction 

Salicylic acid (SA) has an important role at several levels of plant 
development and physiological processes, such as seed germination, 
flowering, fruit yield, cell growth, nodulation in legumes, stomatal 
closure and in regulating the induction of biotic resistance and abiotic 
stress tolerance (Dempsey and Klessig, 2017; Gondor et al., 2016; Janda 
et al., 2012; Koo et al., 2020; Kovács et al., 2014; Sharma et al., 2020). 
As a signal molecule, it induces the antioxidant enzyme system to pro-
tect the plants against oxidative damage (Miura and Tada, 2014); in 
addition it has an important role in signal-transduction pathways and in 
cross-communication between them, which could regulate the physio-
logical processes (Mohsenzadeh et al., 2011). Several derivatives and 
conjugated form of SA are present in plants, like methyl salicylate 
(MeSA), which is a volatile form, that can be also partly transported 
(Attaran et al., 2009), or storage forms like salicylic acid 
2-O-β-d-glucoside (SAG) (George Thompson et al., 2017; reviewed in 
Pokotylo et al., 2019). 

MeSA is the methyl ester form of SA and it is a volatile organic 
compound (VOC). MeSA was first isolated in 1843. It is also called oil of 
wintergreen, because it is the most abundant component in wintergreen 
oil and was traditionally isolated from wintergreen plants. This ester is 
colourless and has a sweet odour, low molecular weight (152.149 g/ 
mol) and a high boiling point (223 ◦C). Its role is not as well known as 

that of salicylic acid. Experiments involving various modes of applica-
tion or the use of SA mutant or transgenic plants have proved that SA 
induces several plant responses during biotic and abiotic stress, but very 
few studies have focused on MeSA, and these mainly reported its role in 
biotic stress. For example, Nicotiana benthamiana seedlings treated with 
MeSA exhibited higher resistance against Pseudomonas syringae pv. 
tabaci and Pectobacterium carotovorum subsp. carotovorum, than the 
control (Song and Ryu, 2018). Transgenic benzoic acid/SA carboxyl 
methyltransferase 1 knockout mutant (Atbsmt1) Arabidopsis plants 
failed to accumulate MeSA, SA or its glucoside in the uninoculated 
leaves and did not develop systemic acquired resistance (SAR) during 
pathogen infection(Liu et al., 2010). However, recent findings suggest 
that MeSA is also an important signal molecule, so the present review 
would like to highlight the fact that MeSA is not only a VOC but can also 
induce defence mechanisms under various stress conditions. The main 
aim was to summarize the effects of different MeSA treatments on 
plants, especially on crop species, with the additional goal of revealing 
the differences in the mode of action of SA and MeSA. 

2. SA-related synthesis of MeSA in plants 

Plants synthesize MeSA from SA (Fig. 1.) and the shikimate pathway 
plays an important role in the synthesis of SA (Maruri-López et al., 
2019). Shikimate (3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid) is 
transformed into chorismate (CHOR) in a two-step reaction (Brown and 
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Abbreviations 

4Cl p-coumarate-CoA ligase 
ABA abscisic acid 
ACC 1-aminocyclopropane-1-carboxylic acid 
ADT arogenate dehydratase 
ANS anthocyanidin synthase 
AOX antioxidant enzymes 
APX ascorbate peroxidase 
Asc-GSH cycle Ascorbate-glutathione cycle 
B2L benzoic acid 2-hydroxylase 
BA benzoic acid 
BAMT benzoic acid carboxyl methyltransferase 
C4H cinnamate 4-hydroxylase 
C4L cinnamate 4-monooxygenase 
CA cinnamic acid 
CAD cinnamyl-alcohol dehydrogenase 
CAT catalase 
CHI chalcone isomerase 
CHOR chorismate 
CHS chalcone synthase 
CLas Candidatus Liberibacter asiaticus 
CM chorismate mutase 
CS chorismate synthase 
DFR dihydroflavonol 
DHAR dehydroascorbate peroxidase 
eds enhanced disease susceptibility 
ESPS 3-phosphoshikimate 1-carboxyvinyl transferase 
F3H flavanone 3-hydroxylase 
FUM fumaric acid 
GPX guaiacol peroxidase 
GR glutathione reductase 
HIPVs herbivore-induced plant volatiles 
ICHOR isochorismate 

ICS isochorismate synthase 
IPL isochorismate pyruvate lyase 
JA jasmonic acid 
MeJA methyl jasmonate 
MeSA methyl salicylate 
MeSAG MeSA 2-O-β-d-glucoside 
NPR1 nonexpressor of pathogenic related gene1 
oHCA ortho-hydroxy cinnamic acid 
Phe phenylalanine 
PAL phenyalalanine ammonia-lysase 
PAT phenylpyruvate transaminase 
PDT prephenate dehydratase 
POD peroxidase 
PPO polyphenol oxidase 
PR pathogenesis-related 
PTA prephenate transaminase 
PTAL phenylalanine/tyrosine ammonia-lyase 
ROS reactive oxygen species 
SA salicylic acid 
SABATH salicylic acid benzoic acid theobromine 
SABP salicylic acid binding protein 
SAG salicylic acid 2-O-β-d-glucoside 
SAGC salicylic acid glucosylated conjugates 
SAMT salicylic acid carboxyl methyltransferase 
SAR systemic acquired resistance 
SOD superoxide dismutase 
SPX syringaldazine peroxidase 
SUCC succinic acid 
TF transcription factor 
TISR Trichoderma atroviride-induced resistance 
UFGT udp-glucose flavonoid 3-o-transferase 
UGT71C3 uridine diphosphate-glycosyltransferase 
UGT74F1 uridine diphosphate-glycosyltransferase 
VOC volatile organic compound  

Fig. 1. SA-related synthesis of MeSA in plants. (CS: chorismate synthase, CHOR: chorismate, ICS: isochorismate synthase, ICHOR: isochorismate, IPL: isochorismate 
pyruvate lyase, Phe: phenylalanine, PAL: phenylalanine ammonia-lysase, CA: cinnamic acid, C4L: cinnamate 4-monooxygenase, oHCA: ortho-hydroxycinnamic acid, 
SA: salicylic acid, BA: benzoic acid, B2L: benzoic acid 2-hydroxylase, SAMT: salicylic acid carboxyl methyltransferase.) 
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Neish, 1955 reviewed in Rehan, 2021). First, shikimate kinase trans-
forms shikimate into shikimate-3-phosphate, after which 3-phosphoshi-
kimate 1-carboxyvinyl transferase converts this into 
5-enolpyruvylshikimate 3-phosphate. Chorismate synthase (CS) cataly-
ses the formation of CHOR, which is a branching point on this pathway, 
being the starting point for the isochorismate synthase (ICS) and 
phenylalanine ammonia-lyase (PAL) routes. CHOR is transformed into 
isochorismate (ICHOR) by ICS in the chloroplasts, after which iso-
chorismate pyruvate lyase forms SA in the cytosol (Dempsey et al., 2011; 
Fragnière et al., 2011; Maruri-López et al., 2019). 

In case of Arabidopsis, only 10% of the defence-related SA is pro-
duced via the PAL pathway, thus the major part is derived by the iso-
chorismate synthase1 in the plastid (Garcion et al., 2008). The 
synthetised ICHOR is exported from plastid to cytosol via the Enhanced 
Disease Susceptibility 5 (EDS5) protein (Rekhter et al., 2019). The PBS3, 
which is an avrPphB susceptible enzyme, catalyses the conjugation of 
ICHOR into ICHOR-glutamate; and after all, the EPS1 (Enhanced Pseu-
domonas Susceptibility 1, which is an acyltransferase-family protein) 
forms the SA (Torrens-Spence et al., 2019). The overexpression of ICS 
gene during the pathogen infection or acclimation to drought conditions 
(Rekhter et al., 2019; Wang et al., 2021) suggest that the PAL pathways 
is less predominant than the ICS pathway. 

In contrast to Arabidopsis, where the SA accumulation was parallel 
with the stress-induced AtICS1 expression, in Nicotiana tabacum L. ICS 
expression was not induced, thus the NtICS gene is probably not the 
main production route responsible for the stress induced SA accumula-
tion (Yokoo et al., 2018). The involvement of PAL in stress responses has 
been characterised in various plant species, such as Brachypodium (Pant 
et al., 2021), rice (Gho et al., 2020), wheat (Feduraev et al., 2020), pea 
(Dukare and Paul, 2021) and tomato (Lu et al., 2020). In soybean, the 
PAL and ICS pathways play equally important role in the 
pathogen-induced SA production (Shine et al., 2016). Compared to this, 
in rice the PAL pathway seems to be more important for SA accumula-
tion (Duan et al., 2014), but it should also be taken into consideration 
that the regulation/contribution of SA biosynthesis pathways can be 
different even in the different organs within the same plant (Lefevere 
et al., 2020) 

The PAL pathway starts from CHOR, which is isomerized into pre-
phenate by chorismate mutase. Then either prephenate dehydratase 
(PDT) transforms it into phenylpyruvate or prephenate transaminase 
induces the formation of L-arogenate, which can be transformed by 
arogenate dehydratase into phenylalanine. Phenylpyruvate is trans-
aminated by phenylalanine aminotransferase to form phenylalanine 
(Tzin and Galili, 2010). PAL and phenylalanine/tyrosine ammonia-lyase 
(PTAL) deaminate phenylalanine to form cinnamic acid (CA). The PTAL 
enzyme, which is well known in maize (Rosler et al., 1997), Arabidopsis 
(Barros and Dixon, 2020) and bean (Scott et al., 1992), eliminate the 
ammonium and form para-hydroxy cinnamic acid from tyrosine (Barros 
and Dixon, 2020). SA can be synthetised from CA in two ways. One 
involves transformation via CoA-dependent β-oxidation (Qualley et al., 
2012), where the intermediate product is benzoic acid (BA), after which 
the BA 2-hydroxylase enzyme produces SA (León et al., 1995). In the 
other pathway trans-cinnamate 4-monooxygenase enzyme first trans-
forms CA into ortho-hydroxy CA, from which SA is formed by NAD+

reduction (Tohge et al., 2013). SA carboxyl methyltransferase (SAMT) 
then methylates SA into MeSA using the methyl group of S-adeno-
syl-L-methionine (Negre et al., 2002). SAMT has been described in 
Lycium chinense, Atropa belladonna (Wang et al., 2019b), rice (Zhao et al., 
2010), wheat (Allamong and Abrahamson, 1977), maize (Köllner et al., 
2010), tomato (Sánchez-Aguayo et al., 2004) and pea (Aarnes, 1977) 
and in Arabidopsis (Chen et al., 2003). 

3. Fine-tuning of MeSA and SA 

Salicylic Acid Binding Proteins (SABP) were identified and isolated 
from tobacco (Du and Klessig, 1997), cucumber, tomato, Arabidopsis, 

soybean, maize and rice (Sánchez-Casas and Klessig, 1994). Nearly 30 
SABPs have been identified and almost 100 putative SABPs have been 
suggested (Manohar et al., 2015). These proteins exhibit a range of af-
finities for SA and all of them have enzyme function, which can be are 
altered by SA binding, and most of them play a role in plant immunity 
(Klessig et al., 2016; Kumar, 2014). However the physiological result of 
the interaction between most of these SABPs and SA is still unclear, in 
addition their receptor role is also questionable. Although, Non-
expressor of Pathogenesis-related protein 1 (NPR1) a key transcriptional 
regulator of SA signalling, which is one of currently known SA receptors 
(Wu et al., 2012) has been also characterised as SABP (Manohar et al., 
2015). Furthermore, NPR3 and NPR4 may also bind SA and they have 
also been suggested as potential receptors for SA signalling in Arabi-
dopsis (Fu et al., 2012) 

As some examples, SABP1 exhibits SA-inhibitable catalase activity, 
and can be inhibited also by 2,6-dihydroxy benzoic acid or acetyl-SA (Du 
and Klessig, 1997; Sánchez-Casas and Klessig, 1994), but not by SA 
conjugates (Chen et al., 1993). The SABP2 is a low abundance protein 
with high affinity for SA (Du and Klessig, 1997) and MeSA. It is localized 
in the cell membrane, as shown in tobacco plants (Forouhar et al., 2005). 
SABP2 belongs to the α/β hydrolase family with esterase activity and it 
may also hydrolase MeSA into SA (Forouhar et al., 2005; Park et al., 
2007; Vlot et al., 2008). It also shows some, although low affinity for 
both methyl jasmonate (MeJA) and methyl indole acetic acid. However, 
these methylated forms failed to compete with SA for binding, even 
when present in a 1,000-fold molar excess (Forouhar et al., 2005; Kumar 
and Klessig, 2003; Tripathi et al., 2010). In poplar plants, SABP2 is 
encoded by the PtSABP2-1 and PtSABP2-2 genes. In poplar leaves 
PtSABP2-1 exhibited a higher level of expression, while in the roots 
transcript level of PtSABP2-2 was dominant (Zhao et al., 2009). The 
transgenic overexpression of a SABP2-like gene, LcSABP (SABP2 ortho-
log from Lycium chinense) in tobacco had a positive effect on drought 
stress tolerance, increasing not only the endogenous SA content (due to 
the promoted conversion of MeSA to SA), but inducing the antioxidant 
enzyme system and the expression of stress-related transcription factors 
(TF) (Li et al., 2019). SABP3, also known as β-carbonic anhydrase 
(Slaymaker et al., 2002) having antioxidant activity, and it functions in 
the HR in plant disease resistance (Slaymaker et al., 2002). It is present 
in the chloroplasts, where it catalyses the interconversion of CO2 and 
bicarbonate (HCO3

− ) (Hewett-Emmett and Tashian, 1996, reviewed in 
Pokotylo et al., 2019). This enzyme is needed for positive regulation of 
defense responses in plants. SABP3 is a target for modification via 
S-nitrosylation during later stages of R-gene mediated protection against 
avirulent plant pathogens (Feechan et al., 2005). Upon pathogen 
infection, during the nitrosative burst, NO accumulation promotes 
S-nitrosylation of the AtSABP3 at Cys280. It supresses both its binding to 
SA and the carbonic anhydrase activity leading to decreased plant im-
munity (Wang et al., 2009). 

Similarly to SA, MeSA also has glucosylated conjugated form, MeSA 2-O- 
β-d-glucoside (MeSAG). A uridine diphosphate-glycosyltransferase 
(UGT71C3), which has been characterised in Arabidopsis, was found to be 
responsible for the glycosylation of form MeSA glucosides. This enzyme acts 
specifically on MeSA, and not on SA, thus has main role in the controlling of 
the active MeSA level (Chen et al., 2019). UGT71C3 is up-regulated in 
response to pathogens and MeSA accumulation, and in turn accelerates 
the glycosylation of MeSA (M’Hamdi, 2019). This glycolysation is 
negative regulator in the plant defence, because MeSA that reaches the 
systemic tissue is further glycosylated by UGT71C3, thus preventing the 
accumulation of MeSA. Overexpression of UGT71C3 led to more severe 
disease symptoms and deficiency in SAR (Chen et al., 2019), while loss 
of function mutants showed reduced symptoms and higher accumula-
tion of SA and MeSA (M’Hamdi, 2019). Thus, the glycolysation has role 
in the optimum homeostasis of MeSA and proper development of SAR. 

MeSAG is a non-volatile storage form of MeSA which formed under 
pathogenic attack (Song et al., 2008), but the role of this compound is 
unclear. In the same way, SA is transformed into the inactivated form 
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SAG by uridine diphosphate-glycosyltransferase (UGT74F1). In Arabi-
dopsis thaliana UGT74F1 was found to transform free SA into SAG, while 
UGT74F2, an enzyme homologous to UGT74F1, is responsible for the 
development of the SA glucose ester (Fig. 2) (Thompson et al., 2017). 

The SABATH enzyme family (catalysing methylations in plants), was 
named after the first discovered members, namely SA carboxyl meth-
yltransferase (SAMT), BA (benzoic acid) carboxyl methyltransferase 
(BAMT) and Theobromine synthase (D’Auria et al., 2002). The SAMT 
gene has been isolated from Atropa belladonna, cucumber, maize and 
Arabidopsis (Köllner et al., 2010; Zhao et al., 2010). SAMT catalyze 
transfer of the reactive methyl group from S-adenosyl-l-methionine 
(SAM) to the carboxyl forming S-adenosyl-l-homocysteine and MeSA 
(Ross et al., 1999). In Arabidopsis leaves, the expression of AtBSMT1 was 
induced by Plutella xylostella herbivory, uprooting, physical wounding, 
and methyl jasmonate, with the maximal emission of MeSA following 
alamethicin treatment,and it was suggested that AtBSMT1 responsible 
for MeSA production mainly during pathogen infection (Chen et al., 
2003). When rice SAMT gene OsBSMT1 was transformed into Arabi-
dopsis, overproduction of MeSA and MeBA and depletion in SA accu-
mulation was observed, which resulted in more susceptible plants and 
little induction of PR1. However, due to the vaporised MeSA, which 
serves as an airborne signal for plant to plant communication, SAR was 
activated in neighbouring plants in an ICS-independent way (Koo et al., 
2007). However, the knockout Arabidopsis mutant (Atbsmt1) failed to 
accumulate MeSA after pathogen infection and it did not develop SAR 
(Liu et al., 2010). In tobacco, when SAMT gene was silenced, SAR was 
also impaired in virus infected plants (Zhu et al., 2014) 

The SAMT gene expression in Citrus sinensis (CsSAMT) was upregu-
lated by Candidatus Liberibacter asiaticus (CLas) infection in the early 
stage of infection, but the MeSA level and SAMT expression decreased 
after a long period of infection compared to the uninfected control. This 
results was in parallel with changes in the citrus odour during CLas 
infection (Martini et al., 2018). Overexpression of citrus SAMT gene 
(CsSAMT1) in Wanjincheng orange plants susceptible for Citrus Huan-
glongbing (HLB) disease, conferred increased tolerance to Candidatus 
Liberibacter asiaticus (CLas), which was accompanied with increased 
MeSA and SA levels, induced transcription of defence genes and 
decreased phloemic cell over-proliferation, starch over-accumulation 
and callose over-deposition during infection compared with the wild 
type. 

CsSAMT1 overexpression elevated the transcription activity of dis-
ease resistance genes, thus enhancing HLB tolerance (Zou et al., 2021). 

The SABP2 expression in Populus tomentose increased rapidly after 
B. dothidea infection, peaking after 48 h, but decreased after 72 h. In 
contrast, SAMT expression peaked 12 h after the infection and decreased 
after 72 h (Li et al., 2018). Pseudomonas syringae can change the 
SA-mediated plant defense responses (Attaran et al., 2009) as the 
pathogen produces Coronatine, a virulence factor, which enhances the 
production of MeSA (by activating SAMT activity), thereby reducing 
levels of SA (by inhibition of ICS) (Zheng et al., 2012). This could also be 
a strategy of P. syringae for protecting the host plant against potential 
damage caused by accumulation of SA to high concentrations (Attaran 
et al., 2009). These results indicate that the SA homeostasis modulated 
by SAMT and SABP2 plays an important role in the development of 
resistance against various pathogen attacks. 

4. Endogenous MeSA under biotic stress 

Since plants are rooted and unable to move, different defence sys-
tems are needed than in the case of animals. Plants have developed 
direct and indirect defence mechanisms to protect themselves. Direct 
defence methods involve protecting themselves from herbivores with 
mechanical strategies such as hairs, trichomes, thorns, spines and thick 
leaves, or with chemical strategies, by producing toxic components, like 
terpenoids, alkaloids, anthocyanins, phenols, and quinones. In indirect 
defence mechanisms plants may use VOCs to attract the enemies of 
herbivores (Hanley et al., 2007). 

In the presence of biotic stressors, volatile plant hormones such as 
MeSA, ethylene and MeJA also play an important role in plant signal-
ling. These volatile components may specifically indicate biotic stress, i. 
e. the presence of pathogenic or herbivorous animals (Rowen et al., 
2017). Tomato plants were reported to induce the emission of VOCs, 
especially MeSA, in the case of aphid infestation and water deficit, both 
separately and in combination (Catola et al., 2018). Under aphid attack, 
the emitted MeSA increased the expression of the PAL gene (LePAL5), 
the MeSA transferase gene (LeSAMT) and one isoform of the lip-
oxygenase coding gene (LeLOXD), but no changes were observed in the 
expression of the another isoform of lipoxygenase coding gene 
(LeLOXC), or of the dehydrin coding LeTAS14, germacrene C synthase 
(LeGCS) and hydro peroxide lysase (LeHPL) genes. However, combined 
stress led to the expression of different defence genes and had an impact 
on different defence pathways than in the case of single stress, whether 
biotic or abiotic (Catola et al., 2018). Furthermore, it was also found in 
grapes and hops that exogenously applied MeSA recruits and retains the 
local population of beneficial, predator insects, leading to the reduction 
of the major arthropod pests, resulting better biological pest control 
management (James and Price, 2004). 

5. Systemic acquired resistance 

Systemic acquired resistance (SAR) is a plant defence system against 
a broad range of biotic stressors. The most important routes of SAR are 
the SA-mediated and the pipecolic acid dependent pathways. These are 
two parallel and interconnected branches, which can act both inde-
pendently and synergistically (Bernsdorff et al., 2016; Wang et al., 
2018). The findings that accumulation of SA has been detected both 
locally and systemically during the development of SAR, and that the 
degradation of SA in NahG transgenic plants compromised both the local 
immunity and SAR (Vernooij et al., 1994, reviewed in Vlot et al., 2009), 
suggested that SA is a central component of SAR, and can be a 
long-distance signal. However, when wild-type tobacco scions grafted to 
NahG rootstocks, the wild-type scion could establish SAR despite of the 
SA synthesis deficiency of the rootstock, demonstrating that 
long-distance signals might be others than SA (Vernooij et al., 1994). 

MeSA was one of the first confirmed VOC signal molecules in SAR 
(Park et al., 2007), which also serves as a plant-plant signal (Shulaev 
et al., 1997, reviewed in Singewar et al., 2021). It has been reported that 
the first step in SAR induction could be that the pathogen induces SA 

Fig. 2. Schematic diagram of the fine-tuning of MeSA and SA in plants. (MeSA: 
methyl salicylate, SA: salicylic acid, SABP2: SA binding protein 2, SAMT: sali-
cylic acid carboxyl methyltransferase, UGT71C3: uridine diphosphate-glycosyl-
transferase, UGT74F1: uridine diphosphate-glycosyltransferase, MeSAG: MeSA 2- 
O-β-d-glucoside, SAG: SA 2-O-β-d-glucoside, SAR: Systemic acquired resistance, 
ABC transporters: ATP-binding cassette transporters, bold arrows show mobile 
sign of the SAR. 
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synthesis, part of which is methylated to MeSA by SAMT (Park et al., 
2007). SA is transported via apoplast (Lim et al., 2016, reviewed in 
Kachroo et al., 2020). In the target part of the plant SA may induce the 
transcription of nonexpressor of pathogenic-related genes1 (NPR1), 
which is the main regulator of SA branch of SAR (Ding et al., 2020; 
Zavaliev et al., 2020) MeSA is more hydrophobic than SA, thus MeSA is 
less phloem mobile than SA (Lim et al., 2020). Although MeSA can be 
transported through the phloem, it is highly volatile, this fact make it 
possible to function not only as a long distance signal for distal tissues of 
the infected plant, but as a signal for plant to plant communication 
(Oelmüller, 2021). 

As, it was mentioned, MeSA can be converted into SA by the SABP2 
methyl esterase enzyme, (Fig. 2), according to this, the actual MeSA 
concentration in the cell could be fine-tuned via the inhibition of the 
activity of SABP2 (Farhad et al., 2005 reviewed in Pokotylo et al., 2019). 
On the other hand, MeSA can be also glucosylated to its inactive con-
jugated form (MeSAG) by UGT71C3, (Chen et al., 2019). It has been 
demonstrated that knockout mutation of UGT71C3 resulted in stronger 
expression of SAR, while its overexpression led to more severe disease 
symptoms and SAR deficiency (Chen et al., 2019; reviewed in M’Hamdi, 
2019). According to these, as it is summarised on Fig. 2., the proper 
development of SAR requires optimal, fine-tuned balance in the accu-
mulation of both MeSA, SA and their glycosylated forms. 

However, information on the essential role of MeSA in SAR is con-
tradictory. For example, in bsmt1-3 mutant Arabidopsis plants, due to a 
knockout mutation of the SAMT1 ortholog benzoic acid/SA methyl 
transferase1 (BSMT1), very little MeSA accumulation was observed after 
pathogen infection and they were defective for SAR (Liu et al., 2010). 
While investigations made on bstm1-1 and bstm1-2 mutant Arabidopsis 
lines revealed that despite of the impaired MeSA accumulation after 
pathogen infection, the accumulation of SA and PR-1 transcripts 
together with the development of SAR was observed (Attaran et al., 
2009). Contradictory results can be explained with the differences in the 
experimental designs, including the developmental age of the plants, the 
virulence of the pathogen, or even the light conditions (Liu et al., 2010). 
The influence of light on SAR was supported by the facts that phyto-
chromeAphytochromeB (phyAphyB) double mutant Arabidopsis plants 
showed SAR-defective phenotype (Griebel and Zeier, 2008). In addition, 
also in Arabidopsis it has been reported that the length of light exposure 
after the infection determines the extent to which MeSA is required for 
SAR development, as in case of very little light exposure the MeSA was 
essential, while longer light exposures reduce the importance of MeSA 
for SAR development (Liu et al., 2010). In tobacco, it was found that 
different light intensities influenced the SAR induction capacity and the 
involvement of signalling compounds. SAR is induced without SA 
accumulation under high light conditions, but depended on the 
expression of FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1), 
which has role in the conversion of pipecolic acid to N-hydroxypipecolic 
acid. While MeSA, DIR1 and G3P are activated only when SAR is 
induced under darkness. Studies on SAR-deficient mutants and silenced 
lines suggested that MeSA-induced SAR operates in Arabidopsis under 
darkness (Ádám et al., 2018), and in tomato plants it was also observed 
that the plant defence responses are different in the daytime and at night 
(Czékus et al., 2021). 

Putative SAR signal molecules or important factors for movement of 
long distance SAR signals are collection of diverse mobile molecules 
(Ádám et al., 2018). It included the SA (Gaffney et al., 1993; Shulaev 
et al., 1995; reviewed in Vlot et al., 2009), MeSA (Park et al., 2007), 
azelaic acid (G.-H. Lim et al., 2016), glycerol-3-phosphate (Chanda 
et al., 2011; G. H. Lim et al., 2016), dehydroabietinal (Chaturvedi et al., 
2012; Chowdhury et al., 2020), free radicals such as nitric oxide and 
reactive oxygen species (Chen et al., 1993; reviewed in Gao et al., 2021; 
Wang et al., 2014), and pipecolic acid, N-hydroxy Pip (Caixia et al., 
2022; Návarová et al., 2012), pinene volatiles (Chen et al., 1993; 
reviewed in Gao et al., 2021) and extracellular (e)NAD(P) (Wang et al., 
2019a; reviewed in Kachroo and Kachroo, 2020) could also induce the 

SAR in distal tissues. Ca, ROS, NO are necessary for cell-to cell signal 
propagation during SAR and show emergent roles in the mediation of 
other SAR metabolites (Eccleston et al., 2022). 

Based on the above listed findings, SAR can be also established at 
least partly independently from MeSA production. In NahG Arabidopsis 
plants, which is a non-host plant for Pseudomonas syringae pv. phaseo-
licola 3121 (Psp) (Ham et al., 2007) the loss of resistance to this strain, 
was not due to the low level of SA, but rather to the catabolism of SA by 
NAHG (Van Wees and Glazebrook, 2003). Interestingly, although SA 
synthesis was blocked in sid2NahG double mutants, the resistance to Psp 
is retained, leading to the conclusion that catechol may be responsible 
for susceptibility of NahG plants to Psp. (Van Wees and Glazebrook, 
2003). However, the exact role of catechol is still unclear. 

Investigations on Arabidopsis and tobacco dir1 (defective in induced 
resistance1) mutants, which are unable to develop SAR, revealed that 
under certain conditions, including the developmental stage of the 
plants, the type and the concentration of the pathogen inoculum, SAR 
could activated due to the interplay between MeSA and a lipid signal 
complex, but this is still unconfirmed (Liu et al., 2011). Several candi-
date SAR signals that are linked to lipid metabolism and their trans-
location have been also described, like DIR1 (defective in induced 
resistance), a protein that shows homology to the lipid transfer protein 
(LTP) family (Fernandez-Maldonado et al., 2002). Previously it was only 
hypothesized that DIR1 moves down the leaf petiole to distant leaves 
(Fernandez-Maldonado et al., 2002, but later it was demonstrated that 
DIR1 can be a long distance signal and translocated to distant tissues 
during SAR (Champigny et al., 2013). 

6. Plant-plant communication 

VOCs are able to act as external signals in within-plant communi-
cation and may also induce defence reactions in nearby plants (Heil and 
Bueno, 2007). Some VOCs, like isoprene, methanol, the phytohormone 
ethylene, and some monoterpenes are limited to plant interactions at 
shorter distances, because they are highly volatile. Less volatile VOCs 
such as terpene, MeJA, MeSA, or green leaf volatiles (C6 aldehydes, al-
cohols, and their esters) are able to act over longer distances (Hatanaka, 
1993, reviewed in Matsui, 2006, reviewed in War et al., 2011). As a 
volatile compound, MeSA could serve as a signal not only inside the 
plant but also between plants. It has been identified as a member in the 
herbivore-induced plant volatiles (HIPVs) emitted by various crop spe-
cies, including hops (Humulus lupulus L.), tomato and cucumber (Van 
Den Boom et al., 2004). Furthermore, exposure of sweet pepper to 
HIPVs, including MeSA activates the immune defence system, by upre-
gulating the JA and SA signalling pathways in healthy plants (Riahi 
et al., 2022). 

Interconnection, either underground or on the surface, is important 
not only in the case of herbivore attack or pathogen infection, but also 
under various other stress conditions, including nutrient deficiency. This 
type of communication has been described in natural plant communities 
like tomato plants, where SA and jasmonic acid (JA) also play an 
important role as a signal (Song et al., 2010). Phenolic acids like ros-
marinic acid in sweet basil or CA in barley have been also detected in the 
root exudates as antimicrobial compounds (Bais et al., 2002; Lanoue 
et al., 2010). Besides these, bioactive secondary metabolites, such as 
indole, terpenoid, benzoxazinone and natural flavonoids/isoflavonoids 
products are also isolated from plant-root exudates of various plant 
species (Bais et al., 2002; reviewed in Bais et al., 2004). 

On the surface, the above-ground communication may involve VOCs. 
Different types of stress could affect the quality of the VOCs, and could 
induce genetically encoded programs and pathways to prepare defence 
against different stresses (Conrath et al., 2015, reviewed in Ninkovic 
et al., 2021). Whiteflies (Bemisia tabaci) were found to produce VOCs 
similar to those in plants. These may inhibit SA-related defence in 
neighbouring plants, preparing a safe environment for their progeny (H. 
Zhang et al., 2019). Abiotic stress can also induce the production of 
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VOCs, which could be detected by neighbouring plants, and VOCs may 
induce SA-related pathways leading to defence in neighbouring plants 
against abiotic stress. Tea plants have been, reported to emit geraniol, 
linalool and MeSA under cold stress, and these VOCs were able to induce 
cold tolerance (Zhao et al., 2020). Although plant VOCs have been 
studied mostly as above-ground chemical signals, recently it was sug-
gested that VOCs also take part in below-ground plant–plant interactions 
(Gfeller et al., 2019). 

MeSA affects not only plants: it was shown to be an attractive signal 
for various bugs, such as western big-eyed bug (Geocoris pallens Stal.), 
ladybird beetle, spider mite destroyer (Stethorus punctum picipes Casey) 
and Colorado potato beetle (Leptinotarsa decemlineata Say) (Dickens, 
2006; James and Price, 2004, reviewed in War et al., 2012). Insect 
herbivores prefer HIPVs such as terpenoids, volatile fatty acid de-
rivatives, aldehydes, alcohols, esters and acids, and also MeSA. MeSA 
can be a trigger for the induction of defence signalling in plants (War 
et al., 2011, reviewed in War et al., 2012.). The Diaphorina citri 
Kuwayama bug is the vector of the CLas bacterium, which causes citrus 
greening. The bug was attracted to CLas-infected citrus, which emitted 
MeSA, thus protecting other fruit from infection (Martini et al., 2018). 
MeSA induces resistance in lima bean attacked by bacterial pathogens 
by increasing the content of an antimicrobial VOC, nonanal, after 24 h 
(Girón-Calva et al., 2012, reviewed in Ninkovic et al., 2019). MeSA also 
serves as one of the attraction-aggregation-attachment pheromones 
produced by South African bont tick (Amblyomma hebraeum Koch) 
(Norval et al., 1996). The green-veined white male butterfly (Pieris napi 
Linnaeus) transfers MeSA to the female during mating as an 
anti-aphrodisiac pheromone (Andersson et al., 2000). Mated females of 
the cabbage moth (Mamestra brassicae L.) avoid MeSA-emitting plants, 
thus reducing egg-laying on these plants (Ulland et al., 2008). 

7. Application of MeSA to improve stress tolerance in plants 

7.1. Biotic stress 

Exogenous MeSA treatment in rice plants induced peroxidase (POD) 
activity, leading to increased herbivore resistance against the rice leaf-
roller (Cnaphalocrocis medinalis Guenée). MeSA spraying induced the 
accumulation of VOCs, ROS and SA and elevated the expression of 
defence-related genes and PR genes (Kalaivani et al., 2018, 2016). When 
the developmental characteristics of C. medinalis were monitored after 
spraying rice plants with various concentrations of MeSA, decreased 
feeding activity was found, which led to nutrition loss and disturbances 
in the metabolic activities of the larvae (Indhumathi et al., 2019). 
Similarly, when rice seedlings were inoculated with Xanthomonas ory-
zae and sprayed with MeSA solution, the application of MeSA regulated 
the expression of POD genes, and increased the activity of the antioxi-
dant enzyme system (Kalaivani et al., 2021). Repeated application of 
MeSA in tobacco seedlings induced stronger SAR capacity and expres-
sion levels of the N. benthamiana Pathogenesis-Related 1a (NbPR1a) 
and NbPR2 genes during Pectobacterium carotovorum subsp. car-
otovorum (Pcc) and Pseudomonas syringae pv. tabaci infection, suggest-
ing that plants may remember to volatile priming (Song and Ryu, 2018). 
When cucumber plants were treated with MeSA, no direct effect on 
cotton aphids was detected (Fig. 4). However, MeSA accelerated 
Scymnus (Pullus) sodalis bug visiting, which suppressed the aphid 
population, reducing crop yield losses (Dong and Hwang, 2017). In 
cucumber plants, pre-treatment with Trichoderma atroviride TRS25 
reduced the incidence of Rhizoctonia solani-induced disease, a phe-
nomenon known as TRS25-induced resistance (TISR). This is associated 
with the enhanced activity of defence enzymes, e.g. guaiacol peroxidase 
(GPX), syringaldazine peroxidase (SPX), PAL and polyphenol oxidase 
(PPO), and an increase in the phenolic (PC) concentration. Other results 
indicated that TISR might depend on the accumulation of MeSA, sali-
cylic acid glucosylated conjugates (SAGC), and β-cyclocitral (Nawrocka 
et al., 2018). When faba beans seeds were soaked in MeSA or SA 

solutions to determine their repellent effect on Aphis craccivora, the 
treatment elongated the nymphal stage, reduced survival and increased 
wing formation, so SA and MeSA induced resistance in beans (El-Soli-
many, 2020). In seedless table grape (Vitis vinifera L.) MeSA treatment 
during the preharvest stage alleviated the postharvest disease caused by 
B. cinerea. MeSA increased phenolic compound levels, and the activity of 
the antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT) 
and POD, leading to better quality grapes and higher concentrations of 
ascorbic, succinic and fumaric acids (Fig. 3) (García-Pastor et al., 
2020a). 

7.2. Abiotic stress 

MeSA was also proposed as a signal molecule in plant responses to 
abiotic stresses as it improved plant tolerance against chilling injury as a 
seed soaking treatment in cucumber plants (Seydpour and Sayyari, 
2016). In Prunus armeniaca L. cv. Kate sprayed with MeSA after full 
blossom, the soluble sugar content and related enzyme activities 
increased, which appeared to be connected with induced chilling 
tolerance (Fan et al., 2021). Treating the leaves of watermelon (Citrullus 
lanatus L.) cv. Charleston grey seedlings with MeSA solution also 
induced chilling tolerance. The treatment increased the leaf chlorophyll 
content and relative water content, and decreased the level of malon-
dialdehyde, alleviating chilling injury (Ghanbari et al., 2018). The 
vapour treatment increased antioxidant enzyme activity, induced heat 
shock proteins and reduced the lipid peroxidation level, leading to less 
pronounced membrane degradation in horticultural crop plants (Ding 
et al., 2001; Asghari and Aghdam, 2010). Soaking seeds of rice varieties 
in MeSA solutions enhanced growth rate, phytic, total phenolic and 
flavonoid contents and increased α-amylase activity after salinity stress 
leading to enhanced physiological and biochemical properties of the 
plants (Fig. 4) (Thu et al., 2020). In Viola odorata L. a combination of 
MeSA treatment with NaCl moderated the reduction in weight and leaf 
and root lengths caused by high salinity (Safaa et al., 2021). 

8. Other physiological and developmental processes 

MeSA has been reported to affect seed germination, cell growth, 
respiration, net assimilation rate, stomatal closure, VOC profiles, 
phenolic and flavonoid contents, antioxidant enzyme activities, nodu-
lation in legumes, fruit yield, senescence-associated gene expression or 
biotic stress responses (Tang et al., 2015; Kalaivani et al., 2016; Liu 
et al., 2018; Thu et al., 2020). However, the observed mode of action can 
be depended on the type of the application. 

8.1. Using different application techniques 

8.1.1. Seed priming 
Treatment of rice seeds with MeSA significantly increased the 

peroxidase enzyme activity, which in turn led to the altering of plant 
physiology that was beneficial for crop protection against bacterial 
blight disease (Kalaivani et al., 2021). MeSA seed priming was also 
effective as a plant resistance inducer against cowpea aphid in faba bean 
(El-Solimany, 2020). Seed soaking with MeSA also enhanced the phys-
iological and biochemical properties of rice under salt stress condition, 
which was related to elevated seed growth, α-amylase activity, phytic 
acid, and flavonoid contents (Thu et al., 2020). 

8.1.2. Spraying technique 
The flavonoid content increased after 2 days in the leaves of tea 

plants (Camellia sinensis L.) sprayed with MeSA solution, which was due 
to the increased activity of PAL pathway via the upregulated gene 
expression of the flavonoid synthesis enzymes CsPAL, CsC4H (cinna-
mate 4-hydroxylase: C4H), Cs4CL (p-coumarate CoA ligase: 4CL), CsCHS 
(chalcone synthase: CHS), CsCHI (chalcone isomerase: CHI), CsF3H 
(flavanone 3-hydroxylase: F3H), CsDFR (dihydroflavonol 4-reductase: 
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DFR), CsANS (anthocyanidin synthase: ANS) and CsUFGT (udp-glucose 
flavonoid 3-o-glucosyl transferase: UFGT) (Li et al., 2019). In another 
experiment, tea plants were sprayed with solutions of JA, SA, or theirs 
volatile ester derivatives, MeJA, and MeSA, and the induced VOCs were 
measured. SA and MeSA induced MeSA production, while the jasmo-
nates did not. Based on principal component and hierarchical cluster 
analyses, salicylates and jasmonates induced compounds belonging to 
different cluster classes (Long et al., 2020). When silver birch (Betula 
pendula Roth) was sprayed with various concentrations of MeSA, no 
significant relationship was found between stomatal conductance and 
the concentrations, but the net assimilation rate was significantly 
reduced by the treatments in a concentration-dependent manner. MeSA 

increased the amount of benzenoids, monoterpenes and fatty 
acid-derived compounds (Liu et al., 2018). However, when apple trees 
(Malus domestica; ‘Topaz’) were sprayed with MeSA during fruit 
maturation, the activity of PAL, chalcone synthase and isomerase, and 
flavone-3β-hydroxylase was increased, leading to elevated levels of 
flavanols, flavonols and hydroxycinnamic acids, but decreased the fruit 
quality (Gacnik et al., 2021). When chickpea (Cicer arietinum var. 
GNG1581) was watered with MeSA alone or in combination with 
L-phenylalanine, the precursor of MeSA in the phenylpropanoid 
pathway, MeSA treatment induced PAL and tyrosine ammonia-lyase 
enzyme activities, and increased phenol, flavonoids and condensed 
tannin contents in the leaves, and the combination was even more 

Fig. 3. Summary of the physiological changes taking place in fruit treated with MeSA as vapour or dipping/spraying. (ACC: 1-amino 1-carboxyl cyclopropane, PAL: 
phenylalanine ammonia-lysase, AOX: antioxidant enzymes, CAD: cinnamyl-alcohol dehydrogenase, Asc-GSH cycle: Ascorbate-glutathion cycle, DHA: dehy-
droascorbate, GR: glutathion reductase, CAT: catalase, POD: peroxidase, Asc: Ascorbate, SUCC: succinic acid, FUM: fumaric acid.) 

Fig. 4. Summary of the physiological changes taking place in plants treated with MeSA using various modes of application, namely vapour, spraying, seed soaking 
and watering. (PAL: phenylalanine ammonia-lysase, TAL: Tyrosine ammonia-lysase, AOX: antioxidant enzymes, VOCs: volatile organic compounds.) 
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effective. In addition, it has been shown that the phenylpropanoid 
pathway not only induced the accumulation of phenols and flavonoids, 
but also increased antioxidant capacity (Thappa and Guleria, 2021). 
Sweet cherry fruit had better quality (size, colour and firmness) when 
the trees were treated with MeSA solution 3 times (1. at pit hardening, 2. 
initial colour changes and 3. onset of ripening) (Giménez et al., 2015). 

8.1.3. Hydrophonic treatment 
When SA derivatives (SA, MeSA, acetylsalicylate, propyl salicylate, 

amyl salicylate, benzyl salicylate, and salicin) were added to the me-
dium of Arabidopsis thaliana (Columbia ecotype and mutants) MeSA was 
found to caused the maximum stomatal closure, being more effective 
than SA, salicin, or acetylsalicylate, suggesting that the stomatal closure 
induced by MeSA could restrict pathogen entry into the leaves (Agurla 
et al., 2020). Interestingly, 24-h hydroponic MeSA treatment on With-
ania somnifera increased the withaferin A content (which is an 
anti-inflammantory, anti-tumor and immunosuppressive compound) 
and reduced membrane leakage compared to the control plants (Gor-
elick et al., 2015). Tomato wild-type and def-1 (deficient in JA synthesis 
mutant) plants were watering with MeSA solution and the arbuscular 
mycorrhizal fungi (AMF) symbioses and the AMF regulation of root 
hydraulic conductance were examined under both well-watered and 
drought conditions. It was found, that the AMF regulation of root hy-
draulic conductance was increased in def-1 plants (Sánchez-Romera 
et al., 2018). 

8.1.4. Vapour exposure 
The effects of MeSA treatment on leaves may also depend on the age 

of the leaf. In an experiment on wheat, the 1st or 2nd-3rd leaves were 
treated with the same concentration of MeSA. In the case of the oldest 
(1st) leaves, the free SA content increased, while the bound form and the 
activity of catalase exhibited no change. In contrast treatment of 
younger leaves enhanced the bound form and the activity of catalase 
(Janda et al., 2021). Exposure of poplar leaves (Populus Simonii × Pop-
ulus Pyramibalis c.v and Populus deltoids) to MeSA decreased the amount 
of gallic acid, catechinic acid, pyrocatechol and ferulic acid (An et al., 
2006). When Bidens pilosa (Asteraceae) was exposed to MeSA vapour, 
the metabolomics profile showed a decrease in the chalcone, okanin 
di-acetylglucoside, flavonoid, chicoric and caftaric acid contents, while 
PAL activity was induced. In this experiment, exposure to MeJA affected 
the same secondary metabolites, suggesting that a cross-talk mechanism 
exists between the SA and JA pathways (Ramabulana et al., 2020). 

8.1.5. Impact of MeSA during storage 
MeSA treatment may also be used during the storage of fruits or 

vegetables. When pomegranate trees were sprayed preharvest, the 
treatment increased the fruit quality, including firmness, colour, sugar 
and organic acid contents. The phenolic, anthocyanin and ascorbic acid 
contents increased in the arils of the pomegranate fruit (García-Pastor 
et al., 2020a). MeSA vapour treatments during ripening increased the 
expression of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase 
genes (Le-ACS2 and Le-ACS4) and decreased Le-ACS6 transcription, 
regulating the ethylene biosynthesis (Ding and Wang, 2003). Contrary 
to this finding, when kiwi fruit (Actinidia deliciosa ‘Hayward’) was 
vapour treated with MeSA, ethylene production significantly decreased 
(Aghdam et al., 2009). 

When pepper fruits were stored at low temperature, vapour treat-
ment with MeSA increased the conversion of glutamate into proline and 
increased the sucrose content (Seo et al., 2020). Exogenously applied 
MeSA participated in the regulation of yellowing in ‘Zaosu’ pears by 
degradation of chlorophyll during storage (Zhang et al., 2019). Dipping 
‘Sucrier’ banana in MeSA solution during ripening stage 3, decreased 
H2O2 accumulation and senescent spotting (Chotikakham et al., 2019). 
Similar treatment increased the storability of sweet cherry (Giménez 
et al., 2015) and tomato (Min et al., 2018). When ‘Sucrier’ bananas were 
sprayed with MeSA solution during storage, there was an increase in the 

activity of ascorbate-glutathione cycle which eliminates ROS and de-
creases oxidative membrane damage (malondialdehyde and protein 
carbonyl contents), and changes were observed in the content of 
non-enzymatic antioxidants (reduced glutathione and ascorbate) and 
the activity of antioxidant enzymes APX, dehydroascorbate peroxidase 
(DHAR) and glutathione reductase (GR) (Chotikakham et al., 2020). 
During storage, the appearance of grey mold caused by Botrytis cinerea 
declined after treatment with MeSA and L-arginine due to an increase in 
superoxide dismutase (SOD), CAT, PAL and polyphenol oxidase activ-
ities and in the expression level of pathogenesis-related protein 1 gene. 
In addition the total contents of phenolics, polyamines and nitric oxide 
was elevated after the treatment (Zhang et al., 2017). When the effect of 
low temperature was tested in cold-susceptible and resistant rice geno-
types, increased MeSA contents were found in both genotypes, while SA 
only increased in the resistant genotype under cold conditions (Wani 
et al., 2021). In kiwi fruit (Actinidia deliciosa cv Xuxiang) MeSA treat-
ment inhibited lignin accumulation after cold storage by inducing PAL 
pathway, which was manifested in the increased expression of AcPAL 
genes and the activity of cinnamyl-alcohol dehydrogenase (CAD) (Li 
et al., 2017). The chilling injury index, skin browning, and surface 
pitting and drying up decreased in pomegranate. Treatment with MeSA 
was able to maintain membrane structure, low values of electrolyte 
leakage and good fruit quality (firmness, total acidity) (Sayyari et al., 
2011). MeSA vapour treatment increased the endogenous polyamine 
content, especially that of putrescine and spermidine, which were able 
to reduce chilling injury (Valero et al., 2015). 

9. Comparison of the effects of SA and MeSA 

MeSA as a VOC can induce indirect defence by attracting the natural 
enemies of herbivores. In addition MeSA also induces the emission of 
VOCs, again promoting indirect defence, as found during spider mite 
infection on lima bean, tomato and pear (Aljbory and Chen, 2018; De 
Boer et al., 2004; Dicke, 1994; Ozawa et al., 2000). Treating poplar 
cuttings (P. × euramericana ‘Nanlin 895’) with MeSA induced several 
VOCs, including (Z)-3-hexen-1-ol and (Z)-3-hexenyl acetate emissions 
(Tang et al., 2015). Earlier results showed that (Z)-3-hexen-1-ol and 
(Z)-3-hexenyl acetate were highly attractive to male insects of Melo-
lontha hippocastani (Ruther et al., 2002) and Manduca sexta (Fraser et al., 
2003), respectively. MeSA spraying before infection reduced the feeding 
activity of Cnaphalocrocis medinalis in rice plants (Indhumathi et al., 
2019). The same effect was observed in the case of glasshouse whitefly 
(Trialeurodes vaporariorum Westwood) on tomato (Conboy et al., 2020). 

In Arabidopsis plants grown on medium and treated with MeSA or SA, 
MeSA induced greater stomatal closure than SA, but in the nia1 and nia2 
mutants (which are unable to produce NO) stomatal closure could not 
induced by either MeSA or SA, but by NADPH oxidase, which can be 
activated by MeSA or abscisic acid (ABA) in a same way (Agurla et al., 
2020). 

When table grape cultivars were sprayed with SA or MeSA, then 
inoculated with Botrytis cinerea, MeSA reduced the pathogenic effects to 
a greater extent than SA. Although both the compounds changed the 
contents of sugars and the activity of CAT, APX and POD, the ester form 
had more significant effects, namely increased the level of glucose, 
fructose and glucosides, while decreased the total antioxidant activity 
more efficiently than SA (García-Pastor et al., 2020b). Faba bean seeds 
were soaked in MeSA or SA solution to monitor the priming effect on 
Aphis craccivora. The SA treatment protracted the nymphal stage for a 
longer period then MeSA, but a low concentration of MeSA (50 ppm) 
increased the wing formation of the aphids compared to SA and 
decreased the percentage of apterious adults. However, a high concen-
tration (200 ppm) of SA, caused greater changes in the alatae and 
apterae forms compared to MeSA priming (El-Solimany, 2020). 

When the fruit of plum trees sprayed with MeSA or SA during the on- 
tree plum phase, then stored at 10 ◦C for 50 days, SA treatment resulted 
in a higher total phenolic content after storage than MeSA, though the 
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rise of antioxidant enzyme activity to the same level (Martínez-Esplá 
et al., 2017). When the fruit of pomegranate trees sprayed with SA or 
MeSA before harvest were stored at the same temperature for 90 days, 
SA increased the total phenolics and anthocyanins to a higher extent 
than MeSA, while MeSA increased the succinic acid and glucose contents 
more than SA (García-Pastor et al., 2020a). 

10. Concluding remarks and future prospects 

The role of SA under stress conditions is already relatively well- 
characterised, while the role of MeSA is much less understood. 
Although MeSA and SA are often mentioned simply as the volatile and 
non-volatile forms of the same compound, it is worth highlighting their 
differences, in order to reveal the independent role and action mecha-
nism of MeSA. SA is methylated to MeSA by SAMT, while MeSA is 
transformed to SA by SABP2. It is true that since SA and MeSA are 
mutual precursors, it is often difficult to differentiate between their in-
dividual effects. In several cases SA and MeSA act in the same way; for 
example, the signalling cascade of each of the compound has an 
important role under biotic stress. SA and MeSA are also mobile signal 
compounds in plants to induce SAR, although MeSA is more hydro-
phobic and volatile than SA. Therefore, it can spread easier and act faster 
than SA, but the signalling differences and similarities are still unclear. 
Plants also emit MeSA as an indicator of biotic stress or induce indirect 
defence via attract the enemies of herbivores. The MeSA is also attractive 
signal for various bugs and induce defence mechanism the intact plants. 
In addition, exogenous MeSA was more effective in stomatal closure 
than SA. Results suggest that although there are still many open ques-
tions related to the mode of action of MeSA, it could also be a promising 
compound in practical agriculture to improve the tolerance of plants to 
various stress factors. 
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Gacnik, S., Veberič, R., Hudina, M., Marinovic, S., Halbwirth, H., Mikulič-Petkovšek, M., 
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Martínez-Esplá, A., Serrano, M., Valero, D., Martínez-Romero, D., Castillo, S., Zapata, P. 
J., 2017. Enhancement of antioxidant systems and storability of two plum cultivars 
by preharvest treatments with salicylates. Int. J. Mol. Sci. https://doi.org/10.3390/ 
ijms18091911. 

Martini, X., Coy, M., Kuhns, E., Stelinski, L.L., 2018. Temporal decline in pathogen- 
mediated release of methyl salicylate associated with decreasing vector preference 
for infected over uninfected plants. Front. Ecol. Evol. 
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