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Ultrastructural Abnormalities in CA1 Hippocampus
Caused by Deletion of the Actin Regulator WAVE-1
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Abstract

By conveying signals from the small GTPase family of proteins to the Arp2/3 complex, proteins of the WAVE family
facilitate actin remodeling. The WAVE-1 isoform is expressed at high levels in brain, where it plays a role in normal
synaptic processing, and is implicated in hippocampus-dependent memory retention. We used electron microscopy
to determine whether synaptic structure is modified in the hippocampus of WAVE-1 knockout mice, focusing on the
neuropil of CA1 stratum radiatum. Mice lacking WAVE-1 exhibited alterations in the morphology of both axon
terminals and dendritic spines; the relationship between the synaptic partners was also modified. The abnormal
synaptic morphology we observed suggests that signaling through WAVE-1 plays a critical role in establishing normal
synaptic architecture in the rodent hippocampus.
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Introduction

Most excitatory neurons in the mammalian forebrain have a
long axon, and several shorter dendrites covered with spines.
These dendritic spines are the primary target of glutamatergic
axon terminals; modifications in spine shape and size are
associated with multiple forms of long-term synaptic plasticity
[1]. Spines are rich in actin, their principal cytoskeletal element
[2,3,4,5]. Actin is also found in presynaptic axon terminals,
where it can modulate the organization of the different pools of
synaptic vesicles [6,7]. For example, by creating a barrier
between the reserve pool and the presynaptic active zone, F-
actin may lower release probability [8]; conversely, through
interaction with synapsins, actin can facilitate transfer of
vesicles from the reserve pool into the readily-releasable pool
[9]. Thus, the actin cytoskeleton is important for both pre- and
postsynaptic function.

Extensive research in model systems has shown that the
actin cytoskeleton is dynamically controlled via an elaborate
network of biochemical cascades [10,11]. A key upstream
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component of this cascade is the Rho/Rac family of small
GTPases [12,13,14,15,16,17,18], which are also involved in
neuronal proliferation and migration during development, and
help to regulate synaptic plasticity in the mature brain [19].
Signaling through these GTPases is relayed to the actin
cytoskeleton by the WAVE (Wiskott-Aldrich syndrome verprolin
homology) family of scaffolding proteins [20,21,22,23]. WAVE
contains multiple protein-interaction domains: the N-terminal
SCAR-homology domain regulates Rac signaling [24], and a
central proline-rich region can interact with SH3 domain-
containing proteins, whereas the C-terminal Verprolin-Cofilin-
Acidic domain plays a key role in activation of the Actin-Related
Protein 2/3 (Arp2/3) complex, which mediates nucleation and
branching of F-actin filaments [20]. Thus, WAVE provides a
platform to assemble multiple molecules that can interact to
modulate remodeling of the actin cytoskeleton.

While our knowledge of WAVE signaling derives mainly from
studies in model systems, accumulating evidence points to an
important role for WAVE-mediated signaling also in neurons
[21,25,26,27]. In vitro evidence suggests that WAVE-1 (the
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major isoform in brain [28]) is required for the formation,
maintenance, and activity-dependent reorganization of
dendritic spines; moreover, loss of WAVE-1 function reduces
spine number and alters spine shape in cultured hippocampal
neurons [29]. WAVE-1 is also found in axon terminals, where in
vitro experiments suggest an important role in neurite growth
and formation of axonal filopodia [21,29,30,31,32,33,34].
Behavioral and electrophysiological studies in mutant mice
show that WAVE-1 deletion leads to disrupted synaptic
plasticity in the hippocampus, and impairs hippocampus-
dependent learning and memory [21,27]. However, it remains
unclear whether genetic deletion of WAVE-1 affects the
architecture of synapses in the intact hippocampus. We here
use quantitative electron microscopy to investigate alterations
in the CA1 neuropil caused by genetic ablation, finding that
loss of WAVE-1 protein disrupts the architecture of both axon
terminals and dendritic spines.

Materials and Methods

The WAVE-1 knockout (KO) mice used in this study have
been described previously [21,27]. Experimental animals were
littermates from heterozygous pairings. All mice were housed in
Duke University’s Division of Laboratory Animal Resources
facilities. All procedures were conducted with protocols
approved by the Szent Istvan University (permit numbers:
22.1/2060/3/2011, MAB 18/2011) and Duke University
Institutional Animal Care and Use Committees (permit number:
A288-11-11) in accordance with Hungarian Animal Health and
Welfare Committee and U.S. National Institutes of Health
guidelines. All efforts were made to minimize the number of
animals, and to minimize animal stress, suffering, and
discomfort.

Preparation of tissue

Experiments were carried out on 60-65 day old C57BL/6
WAVE-1 KO mice and wild-type (wt) littermate controls of both
sexes. Animals were deeply anesthetized with pentobarbital
(60 mg/kg i.p.), then perfused intracardially with saline,
followed by a mixture of depolymerized paraformaldehyde (4%)
and glutaraldehyde (0.2%) in 0.1 M phosphate buffer pH 7.4
(PB). Sections were postfixed in 0.5-1% osmium tetroxide in
0.1 M PB for 35-45 min and stained en bloc with 1% uranyl
acetate for 1 h. After dehydration in ascending ethanol series
and propylene oxide, sections were infiltrated with Epon/Spurr
resin (EMS) and flat-mounted between sheets of Aclar within
glass slides. For single section analysis seventy nm sections
were cut and mounted on 300 mesh copper grids; for three
dimensional reconstructions, fifty nm serial sections were
mounted on Formvar-coated single slot grids (EMS) and
contrasted with uranyl acetate and Sato’s lead. We used the
freely available Reconstruct software (see http:// http:/
synapses.clm.utexas.edu/tools/reconstruct/reconstruct.stm) to
reconstruct spines from serial sections [35].

Data analysis
Material was examined in a JEOL T1011 electron
microscope at 80 KV; randomly-selected images from stratum
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radiatum of CA1 were collected with a MegaView (Soft Imaging
System) 12 bit 1024x1024 CCD camera at a uniform
magnification, resulting in 32.98 ym? fields. Data collection and
measurements were performed in a blinded manner. Areas,
perimeters and profile circularity (4m*area/perimeter?) were
measured using the engine provided by NIH Imaged [36]. We
used the Wilcoxon rank-sum text to assess the possible
statistical significance of differences between wt and KO
datasets, since this robust non-parametric test does not
assume normality in the underlying population.

Results

We studied the stratum radiatum of CA1 hippocampus in
both wt (n=3, M5235, M5236 and M5264) and WAVE-1 KO
mice (n=3, M5229, M5233 and M5266), examining axon
terminals, dendritic spines, and synaptic contacts. Results were
generally consistent among animals (Table S1). We detected
no obvious differences between measurements from males
and females [37], and therefore pooled data from both sexes in
our analysis.

Presynaptic axon terminals

Analysis of single sections collected from CA1 stratum
radiatum revealed that the genetic lesion led to a slight (~8%)
increase in density of axon terminals, 86.2 + 1.6 (SEM) per 100
um? in the KO (n=1990 terminals from 70 fields from 3
animals), versus 79.5 + 1.6 per 100 uym? in the wt (n = 2334
terminals from 89 fields, 3 animals, P < 0.05, Wilcoxon; median
density of 86.4 vs 78.8 terminals per 100 um?). We asked how
many of these terminals establish synaptic contacts with spines
(counting only terminals that made synaptic contact with
dendritic spines, as defined by the presence of a clearly visible
synaptic cleft and a postsynaptic density in the partner spine),
finding that their proportion was reduced by ~ 33%: in CA1
stratum radiatum neuropil from KO mice only 50.4% of the
terminals made an axospinous synaptic contact in the plane of
section (n=1003 terminals out of 1990), while in wt mice, 75.2%
of the terminals contacted spines (n=1756 terminals out of
2334). To assess significance, we asked what fraction of
terminals contacted spines in each of 70 fields from KO
animals and 89 fields from wt animals, finding P < 0.001
(median for KO = 50.0%; for wt = 75.7%). We conclude that
while deletion of WAVE-1 slightly increased the number of
terminals in CA1 stratum radiatum, it substantially reduced the
fraction of terminals that make visible synapses with spines.

Qualitative examination suggested that the morphology of
terminals is subtly altered in the KO mice (Figure 1).
Quantitative analysis confirmed this impression. We found that
terminals from mutant mice were ~18% bigger (Figure 2A;
terminal area of 0.206 + 0.004 um? in the KO (n = 750
terminals), versus 0.174 + 0.004 um? in the wt (n = 772);
medians of 0.177 vs 0.142; P < 0.001). Furthermore, these
bigger terminals contained ~24% more synaptic vesicles than
terminals from the wt (26.8 £ 1.5 synaptic vesicles/terminal in
the KO (n= 77 terminals from 3 animals); 21.6 + 1.1 synaptic
vesicles/terminal in the wt (n = 77 terminals from 3 animals); P
<0.02).
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Figure 1. Overview of ultrastructural changes associated with deletion of WAVE-1. Representative low-magnification electron
micrographs of synaptic neuropil in stratum radiatum of CA1 hippocampus, showing postsynaptic spines (orange) and presynaptic
boutons (blue) in material from KO (A) and wt mice (B). Scale bar: 5 um.

doi: 10.1371/journal.pone.0075248.g001

Presynaptic vesicles in the KO seemed to be less tightly
associated with the active zone than in the wt, whose vesicles
typically concentrated at the active zone, becoming sparse at
the periphery of the axon terminal (Figure 2B). To analyze their
relative position, we measured the distance of vesicles from the
synaptic membrane of the active zone, confirming that vesicles
lay considerably further from the active zone in KO animals
(180 = 6 nm; n = 596 vesicles) than in the wt (136 + 4 nm; n =
574); medians of 147 vs 111; P < 0.001. However, KO
terminals were larger than those from wt mice, potentially
confusing the issue. We controlled for this difference by
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computing a normalized distribution of synaptic vesicles, such
that a vesicle directly touching the presynaptic membrane at
the active zone would have a normalized radial distance of 0,
and a vesicle at the opposite side of the plasma membrane
would have a normalized distance of 1.0 (see inset in Figure
2C). This analysis confirmed our subjective impression,
showing that vesicles in the KO lay at a mean distance of 0.40
normalized units, while synaptic vesicles in the wt lay closer to
the synapse, at a mean normalized distance of 0.29 (Figure
2C; medians of 0.37 vs 0.29; P < 0.001). Thus, bigger axon
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Figure 2. WAVE-1 affects size of presynaptic terminals
and organization of synaptic vesicles. A. Cumulative plot
shows the distribution of the mean diameter (defined as
sqrt(area*4/1)) of terminals in KO (grey circles) and wt (black
diamonds) CA1 KO terminals are generally larger than wt
terminals. B. Electron micrographs (upper panel) and
corresponding line drawings (lower panel) illustrate
organization of synaptic vesicles within an axon terminal from a
KO mouse (left), compared to wt control (right). Micrographs
are from stratum radiatum of CA1 hippocampus. Synaptic
vesicles are more numerous and lie farther from the active
zone in KO mice, compared to wt. Scale bar: 200 nm. C.
Quantitative analysis of the organization of vesicles in KO
mice, versus wt controls. To combine data from terminals of
different sizes, the distribution of vesicles was normalized (see
inset): 0 corresponds to a vesicle lying directly at the
presynaptic membrane, and 1 to a vesicle lying at the opposite
non-synaptic membrane along an axis perpendicular to the
synapse. Black circles (representing positions of KO vesicles in
terminals) tend to lie farther from the active zone than white
circles (representing positions of the wt vesicles). Vertical bars
are standard errors (N = 3 animals for each genotype).
doi: 10.1371/journal.pone.0075248.g002
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terminals in the WAVE-1 KO animals contained significantly
more vesicles, which distributed abnormally within the terminal.

Postsynaptic dendritic spines

Consistent with previously-published evidence from light
microscopy of in vitro material that suggested a reduction in
spine number as a result of WAVE-1 loss, we found a marked
(~30%) reduction in the number of postsynaptic spines in CA1
stratum radiatum from KO mice (KO, 42.8 + 1.2 spines/100
um?2, n = 70 fields; wt, 60.7 £ 1.5 spines/100 ym?, n = 80 fields;
P < 0.001; Figure 1). We compared the size of spines from KO
animals with those from wt (n = 384 spines in KO and 395 in
wt), finding no significant differences in area (KO, 0.077 +
0.002 pm?; wt, 0.079 £ 0.002 ym? P > 0.4). In contrast, the
spine perimeter was significantly increased in KO mice (mean
perimeter for KO, 1221 + 22 nm; wt, 1133 £ 21 nm; P < 0.002).
Likewise, the length of postsynaptic densities (PSDs) as seen
in single sections was significantly longer in KO spines (260 + 6
nm) compared to wt spines (216 + 5 nm; P < 0.001). Previous
work using serial-section microscopy shows that larger spines
tend to have larger PSDs [38]. Accordingly, we analyzed the
relationship between spine head area and PSD length in our
material. Randomly-selected single sections of spines from
CA1 stratum radiatum of the KO mice exhibited a positive
correlation between spine size and PSD length (r> = 0.36), but
there was a considerably stronger correlation for spines from
wt mice (r? = 0.54; Figure 3).

That spine perimeter increased while spine area was
unchanged in the KO mice suggests spine profiles from KO
mice were less round. To test this, we computed the
"circularity" of randomly selected spine head profiles from
single sections (a value of 1.0 indicates a perfect circle, and 0
indicates a completely flattened shape; see methods for
details). We found that spines in the KO mice were significantly
less circular (0.65 + 0.01) than spines from the wt stratum
radiatum (0.74 = 0.01; P < 0.001), implying that KO animals
have flattened or elongated spine heads.

We also noticed abnormalities in the internal structure of
spines. We found no spine apparatus in our KO sample (0 of
989 spines); in contrast, we found that ~2% of spines (35 of
1602) in the wt animals had a clearly-defined spine apparatus
(typically in large mushroom-shaped spines). On the other
hand, spines from the KO material contained almost three
times more endosomes (46.4 per 100 spines) than spines from
the wt (16.6); P < 0.001 (Figure 4, arrowheads).

Synaptic relationship

The above results suggest that loss of WAVE-1 affects
postsynaptic spines more dramatically than axon terminals.
Interestingly, we also noted that some of the characteristically
flattened spines had two spatially-separated PSDs. These were
not typical perforated synapses; the PSDs instead lay on
opposite sides of the spine head, apparently contacting two
different axon terminals (see arrows, Figure 5A). These
features are rarely observed in the normal CA1 stratum
radiatum. To see whether these synaptic contacts are
established by two independent axon terminals, we performed
3D serial reconstruction of a representative sample of these
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Figure 3. WAVE-1 affects relationship between PSD size and spine size. Scatterplots show the area of spine profiles as a
function of PSD length, in CA1 stratum radiatum of KO (left) and wt hippocampus (right). Linear regression analysis demonstrates a
weaker correlation between spine area and PSD length in the KO (R = 0.60) than the wt material (R = 0.73).

doi: 10.1371/journal.pone.0075248.g003

abnormal synaptic contacts (n= 21), finding that in all cases, a
single axon terminal gave rise to both synapses (Figure 5B).
These anomalous synaptic contacts might account—at least in
part—for the observed numerical asymmetry between the
synaptic partners.

In summary, we found that the density of terminals in KO
animals changed little, but these terminals were bigger, with
more but less organized synaptic vesicles. On the postsynaptic
side, the density of spines in KO animals was significantly
reduced, and these spines made abnormal synaptic contacts;
furthermore, the spine head was flattened, with an abnormal
content of internal membrane-bound structures.

Discussion

Changes in synaptic efficacy are typically associated with
morphological changes, in part because the biochemical
cascades implicated in synaptic plasticity share common
signaling pathways with the machinery controlling actin
dynamics and reorganization [39]. Molecules that serve as
‘hubs’ for these shared pathways are thus essential both for
normal neuronal morphology and for activity-dependent
synaptic plasticity. Accumulating evidence suggests that
WAVE-1 is one such hub: WAVE-1 is required for lamellipodial
extension in neuronal growth cones [40], and disruption of the
WAVE gene causes deficits at the (glutamatergic)
neuromuscular junction in  Drosophila [41]. Moreover,
decreased expression of WAVE-1 (resulting from RNAI)
reduces the number of mature dendritic spines in cultured
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primary hippocampal neurons [29]. Likewise, disruption of
upstream signaling to WAVE-1 also causes spine reduction,
altered synaptic plasticity, and deficits in memory retention
[21,27], as does downstream disruption of the WAVE-1 ligand
Abi-2 [42,43] or the Arp2/3 complex [44]. Thus, the WAVE-1
signaling hub appears to play a key role in mediating the
morphological changes associated with synaptic plasticity.

The present ultrastructural data from KO mice provides clues
as to how WAVE-1 may regulate synaptic function in CA1
hippocampus. Presynaptically, we found that loss of WAVE-1
affects the number and distribution of synaptic vesicles in
Schaffer-collateral axon terminals in CA1 hippocampus. The
biochemical pathway underlying this effect is unclear.
Electrophysiological evidence from WAVE-1 KO mice revealed
that paired-pulse facilitation is normal in the hippocampus,
suggesting normal presynaptic release probability [21].
However, phosphorylation of WAVE-1 by cyclin-dependent
kinase 5 (Cdk5) inhibits its ability to regulate Arp2/3-dependent
actin polymerization, and the functionally recycling vesicle
fraction in hippocampal synapses is regulated by Cdk5 activity
[45]. Accordingly, we speculate that WAVE-1 in axon terminals
may regulate synaptic vesicle distribution via Cdk5.

The abnormal flattening of spine heads in KO mice
presumably reflects dysregulation of the actin spinoskeleton
[10,46,47]. We also found that postsynaptic spines in the KO
have longer PSDs. Since the length of the PSD correlates with
the number of glutamate receptors at the synapse, and the
magnitude of EPSCs [48,49,50,51,52], the longer PSDs we
detected in the mutants are likely to contain more glutamate
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Figure 4. Loss of WAVE-1 causes abnormalities in the
internal structure of spines. Representative electron
micrographs of CA1 synaptic neuropil; coloring as in Figure 1.
Spines from the KO material (A) were far more likely to contain
endosomes (black arrowheads) than spines from the wt (B).
Scale bar: 1 ym.

doi: 10.1371/journal.pone.0075248.9g004

receptors, consistent with the enhanced LTP and impaired LTD
previously reported for WAVE-1 KOs [21]. Current evidence
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Figure 5. Abnormal spines in stratum radiatum of the
WAVE-1 KO mouse. A. Arrows point to spines with two
PSDs. Spines are colored in orange, axon terminals in blue. B.
3D reconstruction of an axospinous synaptic contact from
mutant hippocampus. The reconstructed CA1 apical dendritic
segment (D) has a spine (Sp) oriented to show the synaptic
surface. This spine has two distinct postsynaptic densities (red,
arrows). The same axon (yellow) establishes separate synaptic
contacts with both PSDs. Axon is yellow, spine is grey, PSD is
red. Arrows point to synaptic surface between presynaptic
active zone and postsynaptic density of the spine (Sp). Scale
bars: 200 nm.

doi: 10.1371/journal.pone.0075248.g005

suggests that AMPA receptors are added to the synapse from
recycling endosomes in the spine [53,54]. Interestingly we
found a marked increase of endosomes within KO spines.
Whether these endosomes are trapped within the spinoplasm
due to defective actin polymerization, or are more numerous
because more receptor is being transported to the spine
surface (as suggested by the enhanced LTP) will require
further investigation.
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In conclusion, the combined pre- and postsynaptic changes
in synaptic architecture reported here provide a structural
substrate for the cognitive deficits previously reported, and
support a role for WAVE-1 as an important modulator of
synaptic plasticity.

Supporting Information

Table S1. Synapse-related parameters for each of the KO
and wt animals studied. No clear relationship between any of
these parameters and sex of mouse was apparent.
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