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Abstract—Time series are generated at an unprecedented rate
in domains ranging from finance, medicine to education. Collec-
tions composed of heterogeneous, variable-length and misaligned
times series are best explored using a plethora of dynamic time
warping distances. However, the computational costs of using
such elastic distances result in unacceptable response times. We
thus design the first practical solution for the efficient GENeral
EXploration of time series leveraging multiple warped distances.
GENEX pre-processes time series data in metric point-wise
distance spaces, while providing bounds for the accuracy of
corresponding analytics derived in non-metric warped distance
spaces. Our empirical evaluation on 66 benchmark datasets
provides a comparative study of the accuracy and response times
of diverse warped distances. We show that GENEX is a versatile
yet highly efficient solution for processing expensive-to-compute
warped distances over large datasets, with response times 3 to 5
orders of magnitude faster than state-of-art systems.

Index Terms—Time Series Mining, Dynamic Time Warping,
Similarity Exploration

I. INTRODUCTION
A. Background and Motivation

Time series are prevalent in many scientific and commer-
cial applications from weather, medicine, finance to energy
forecasting [1], [2]. Finding similarities between time series
by computing their distance is a core functionality of many
data mining applications. It has been shown that computing
the similarity among time series using a specific distance
often misses insights that could have been revealed if another
distance had been utilized [3]. Thus different applications rely
on specific interpretations of similarity expressed through the
use of diverse domain-specific distance metrics. For example,
similarity in financial data analysis and market prediction
[4], [5] is interpreted differently than in weather forecasting
or medicine [1] reflected in the choice of distances used to
express their analytics queries.

It has been repeatedly shown that warped distances are
better suited than point-wise distances to explore sequences
with different lengths and alignments [6], [7]. Thus, GDTW
methodology [3] was designed to extend the capability of
warping to a variety of point-wise distances in a unified
manner. Using diverse warped distances for time series mining
guarantees highly accurate results due to their ability to capture
temporal misalignments and to compare sequences of different
lengths. [3] showed experimentally that distances warped
by this methodology improve the accuracy of certain data

mining tasks such as classification, clustering and similarity
retrieval by enabling flexible comparisons between unaligned
sequences. This helps to reveal insights into datasets that
would otherwise be missed.

Best match (GDTW_ED) == Query Best Match (ED)

Query

\

Best match (GDTW_MD) == Query — Best Match (MD)

Fig. 1: Motivating example displays the best matches to a
sample leaf retrieved using diverse warped distances (i.e.
warped Euclidean and warped Manhattan.)

Fig. 1 displays a classification example applying two warped
distances, namely warped Euclidean (commonly called DTW,
here referred to as GDTWgp) and warped Manhattan (here
GDTW yp) [3] respectively, to classify shapes of leaves in
the OSULeaf dataset [8]. As the figure shows, DTW did
not correctly classify the target leaf (blue), while the warped
Manhattan found the matching species (green). Thus, analysts
using a system based on only one distance, say the common
DTW, would work with an incorrect classification. When
identifying leaves that could induce severe allergic reactions in
people, incorrect results could lead to dramatic consequences.
This is only one example of how beneficial it is for analysts
to have multiple warped distances at their finger tips for their
data mining tasks. If they could compare with ease the results
within the same system, they could decide which warped
distance is best suited for their specific dataset.
Unfortunately, the benefits of using multiple warped dis-
tances are overshadowed by the quadratic complexity of their
computation (prohibitive for large data sets) as illustrated
below. Further, the lack of proven triangle inequalities for
elastic distances hinders their usage in practice [3]. Some
applications such as astronomy may be able to function with
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slower response times, while others such as medicine or the
stock market require quick results for making good decisions
in a timely manner.

Let us consider the limitations imposed by the lack of
adequate performance for exploring large datasets using robust
alignment tools. For example, the response time for finding
one best match in a large dataset such as “Computers” from
the UCR archive [8] using warped distances takes approxi-
mately 43 minutes per each sample sequence for each warped
distance using the only existing system that incorporates many
warped distances, namely GDTW [3]. We will show that the
technology we propose instead finds the best match in about
0.2 seconds for each distance. Often we are interested in
several, say 10 or 15, similar matches instead of just a single
one. In this case, this would take almost 11 hours for each
warped distance by GDTW for the Computers dataset, while
our proposed GENEX technology can retrieve 15 matches in
only 3 seconds as shown in Sec. V-B. GENEX thus offers a
practical turn-around time 5 orders of magnitude faster.

In summary, there is a need for exploratory systems that
support multiple warped distances within one integrated plat-
form, guaranteeing quick response times and highly accurate
results.

B. Limitations of State-of-the-Art

We summarize key challenges in solving the above prob-
lems of efficient exploration of time series datasets:

1.Lack of Performance for comparisons between sequences
with different temporal alignments and/or lengths. The ubig-
uitous Euclidean Distance (ED) is used by many applications
for fast distance computation [9], [10], [11]. However, ED
and point-wise distances in general are brittle in compar-
ing sequences with temporal misalignments or with different
lengths. Unlike point-wise distances, time warped distances
[3], including DTW [12], overcome this challenge, but their
performance is impractical. That is, due to the high complexity
of their computation and their non-metric nature reflected in
the lack of proven triangle inequalities, exploring datasets
using warped distances requires finding all pairwise similarity
relationships. Thus it does not scale well to large datasets.
Fortunately, as our results in Sec. V-B show, our proposed
GENEX technology can be used to explore large datasets
within seconds.

2. High data cardinality leading to a compromise between
increased responsiveness and higher accuracy. Time series
datasets such as the ones used to store energy consumption
habits of millions of customers [13] tend to be huge. Thus
performing all necessary pair-wise distance-based similarity
comparisons is impractical. This leads state-of-the art tech-
niques to focus on either increased responsiveness or increased
accuracy. For DTW some systems provide exact or highly ac-
curate solutions [4], [14] at the expense of increased response
times. Others offer fast response times but with decreased
accuracy [9], [10]. Yet clearly we need both. The system
that incorporates other warped distances besides DTW into
one single integrated platform, namely, GDTW [3], offers no
optimizations beyond the LB qqn lower bound. It is thus
impractical to use on large datasets due to its slow response

times.

3. Supporting multi-distance driven similarity exploration.
Most systems use one single distance [14], [15], [16]. Yet,
as motivated above, exploratory results change based on the
distance metric used. While GDTW [3] corresponds to a
logical approach for warping a large variety of point-wise
distances, its response times are impractical for large datasets.
In this light, efficiently supporting a generalized similarity
model that incorporates many distances is imperative.

C. Our GENEX Approach

In this work, we design a novel exploratory methodology
called GENEX that empowers analysts to gain unique insights
into time series datasets by performing similarity exploration
instantiated by multiple time warped distances. Based on the
general theoretical foundation underlying GENEX, analysts
can with ease incorporate new distances and have them there-
after be efficiently supported by the system. Although other
works [16], [17] “combine” ED and DTW, generalizing the
pairing of point-wise and warped counterpart distances is far
from trivial. The novelty of this work rests on establishing
bounds that “extend” time series similarity from the metric
space of point-wise distances to the non-metric space of
warped distances in a general way, regardless of the distance
used and without having to compromise between accuracy and
response times. Mitigating this problem for a large array of
distances at the theoretical rather than empirical level opens
the door for increased versatility by allowing the incorpora-
tion of new distances, while guaranteeing accurate similarity
exploration results with response times up to 5 orders of
magnitude faster than existing systems. Our GENEX architec-
ture described in Sec. IV-A supports the above functionality
through three modules with specific functions: (1) enable
analysts to choose specific point-wise distances and warp
them for similarity exploration; (2) pre-process time series
by creating similarity clusters and representatives based on
their chosen distance; (3) perform efficient similarity searches
by examining a much reduced number of sequences, namely
finding the best candidate representatives and only explore the
sequences that they represent.

Contributions:

1. GENEX offers a versatile framework by supporting the
extension with a plethora of new distances, while guaranteeing
the results in their usage for fast and accurate time series
mining. (Sec. III-A)

2. As theoretical foundation of GENEX, we establish and
prove a generalized triangle inequality between pairs of point-
wise distances and their warped counterparts. This allows us
to efficiently “extend” the similarity of sequences from the
metric space of point-wise distances to the non-metric space
of their counterpart warped distances. (Sec. III-B).

3. GENEX encodes similarity relationships between se-
quences into compact similarity clusters constructed using
simple-to-compute point-wise distances and compresses them
into representatives. Efficiency of processing is achieved by
applying diverse time-warping distances to these representa-
tives, instead of the raw data. This processing is supported by
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several GENEX optimization strategies including indexing for
diverse distances to mitigate scalability issues. (Sec. IV-B).

4. Our experimental evaluation over 66 datasets in the UCR
archive [8] depicts the changes in the similarity panorama
revealed by the use of multiple warped distances. GENEX is
up to 5 orders of magnitude faster than state-of-the-art systems.
(Sec. V-B).

II. KEY CONCEPTS
A. Generalized Dynamic Time Warping

We summarize a large array of point-wise distances that
now can be “warped” by a novel methodology [3] based on
generalizing the classic DTW methodology [18], [15].

For two variable-length time series X = (z1,22,...,Zn)
and Y = (y1,¥2,...,Ym), With n > m, an n x m grid G
is constructed. Similarly to the classic DTW algorithm, a
warping path P is defined as a sequence of elements that
forms a contiguous path from (1, 1) to (n,m). The t** element
of P denoted as p; = (i, j¢) refers to the indices (i, j;) of
the element (z;,,y;,) in the path.

Hence, a path P is P = (p1,p2,...,P¢,-.-,Pr), Where
n<T<2n-1,p =(1,1) and pr = (n,m) and n >
m. By “decoding” this general warping path and extracting
the values for z;, and y;, at every position on the path, we
conceptually construct the following two equal-length vectors:
Xp = (@i, Ziy, .y Tip) and Yp = (y5,,Yjn, -, Yjr ), Where
some of the x;, and y;, are repeated while advancing on the
path.

Considering an arbitrary point-wise distance d, the weight
of the warping path P is then defined as the distance between
Xp and Yp computed using d. That is, w(P) = d(Xp,Yp).
We note that the case of d = E'D defaults to the classic DTW.

Definition 1: The Generalized Dynamic Time Warping
Distance corresponding to a distance d, denoted by GDTW,,
is the weight of the path P with the minimum weight, namely:

GDTWq(X,Y) = min(d(Xp, Yp)).

There is an exponential number of warping paths satisfying
these conditions [12]. Thus finding the minimum weight
warping path is prohibitively expensive. Similar to the efficient
computation of the classic DTW warping path using dynamic
programming [19], the key idea in [3] is to construct the dis-
tance function recursively by incorporating the n** coordinates
based on the previous n-1 coordinates.

Definition 2: The distance d in Definition 1 must satisfy
the following recursive condition: There exists a 3-variable
function f; : RT x R x R — RT where R denotes the set
of real numbers and R™ denotes the set of non-negative real
numbers with respect to a distance d such that for vectors
Xp = (21,29, ....,2,) and Yp = (y1,92, ..., Yn) (n > 2), we
have:

d(Xp,Yp)=d((z1,...,2n), (y1,- -
= fd (d((l‘l, ..
The f; function tells us, given the distance measure on the first

n — 1 coordinates (x1,...Cn—1,%Y1-.-Yn—1) how to incorporate
the n'"* coordinates (,, yy,).

JUn))

. 7x’n71)7 (y17 e 7yn*1))7x’ﬂ7yn) .

This function is used to compute the GDT W/ path recursively
using dynamic programming.

Definition 3: The general recursive expression amendable
for dynamic programming for warping a point-wise distance
dis:
fd(’Y(Z - ]-3.7 - 1)7 X, yj)a
fd(PY(Z - 17j)axiayj)7
fd(’Y(ivj - 1)7 Ty, yj)'
with y(1,1) = d(x1,y1).

Definition 4: Using Eqn. 1, the “warped” version of a

distance d returns a general dynamic warping distance
defined as:

(i, j) = min )

2

For the specific case of d = FE D, this defaults to the known
dynamic programming recursive expression for DTW[12]:

’Y(Lj) = EDZ(JU%yj)"'min(’)/(i_lvj_l)vfY(i_Lj)?’Y(i’j_l))

The complexity of the generalized warping (GDTW) process
is the same as in the classical DTW algorithm [3], namely
quadratic. Thus, the use of warped distances faces the same
open challenges first revealed by the use of DTW, making it
imperative to find viable, general efficient solutions, especially
for exploring large datasets.

GDTW4(X,Y) =~v(n,m)

B. Key Concepts in Similarity

We introduce time series and sequences, then we define
their similarity in the context of our generalized model in-
stantiated by multiple warped distances. A time series X =
(z1,22,...,2,) is an ordered set of n real values. A dataset
D ={X1,X,,...,Xn} is a collection of N such time series.

There are many distances and similarity measures for ex-
ploring time series similarity [20]. Since the similarity mea-
sures can be expressed in terms of distances, for the remaining
of this work we will not make the distinction between the two
categories and will refer to them as “distances” or “similarity
distances” .

Definition 5: A sequence of a time series X, denoted
(Xp)é-, is a time series of length ¢ starting at position j where
1<i<mand1<j<n—i+1.

Definition 6: We define the normalized distance d between
two sequences of the same length n, X = (z1,z2,...,2,) and
Y = (y1,y2, -, Yn) as:

g( X,Y) = M’
g(n)

where d(X,Y) is a point-wise distance and g(n) is specific
for each distance and generally dependent on the length of the
sequence.

Table I shows similarity distances and their normalized coun-
terparts used in this work. For brevity, we denote Euclidean
as ED, Manhattan as MD, Minkowski as Mink, and GDTW,
as the warped variant of a general point-wise distance d.
We chose these distances because their use for similarity
exploration is documented [3] and well-known to the research
community.
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TABLE I: Popular similarity distances

\ | Definition | Normalized distance |
- (X.Y)
2 EnEaY ED(X,Y
ED 2;(% Yi) ED(X,Y) = — 72—
iz
‘ MD ‘ s — vl ‘ FD(X, v) = MDLEY) ‘
i=1
‘ Mink ‘ nféx |z; — yi ‘ Mink(X,Y) = Mink(X,Y) ‘
GDTW,4(X,Y
‘ GDTW4 GDTW,4 ‘ GDTW4(X,Y) = d( ) ‘

Definition 7: Similar Sequences. In the context of this
work, we consider two sequences of the same length n, namely
X and Y to be similar if the chosen normalized distance d
between them is within a user specified similarity threshold
ST, that is d(X,Y) < ST.

III. GENEX THEORETICAL FOUNDATION
A. Generalized Similarity Model

The key idea of our model is to first group together
sequences of equal length that are similar according to Def.
7 into clusters. The clusters encode similarity relationships
between sequences by imposing specific requirements that,
as we prove later, insure that these clusters can be explored
through their representatives instead of the raw data.

By construction, the representative Rj of a cluster C} of
sequences of equal length i, is a sequence from the cluster
chosen such that the distance between this representative and
any other sequence in the cluster is within half of the similarity
threshold. In other words, d(Rj,, (X,)}) < ST/2 for all (X))’
in C}.

Definition 8: Given the set T of all possible sequences (X )’
of dataset D, a partition is created. That is, the sequences
(Xp)§- € T are clustered into similarity clusters denoted
by Cj, based on a given distance d with their respective
representatives R:, such that all sequences (Xp)j- € T are
in one and only one cluster C}. These similarity clusters are
said to be GENEX similarity clusters, denoted by C, if the
following two properties hold:

(1) all sequences (Xp); in a cluster C}, have the same length,
(2) each cluster C} has one representative R such that d
between any sequence (X,)} in Cf and the representative R},
of this cluster CY, is smaller than half of the similarity threshold
ST, that is

d((X ) Ri)) < ST/2,Vi € [1,
1],and Vpe [1,N].

In summary, the key requirements for placing sequences of
equal length into the same similarity cluster are: (1) d between
the sequences and the representative of the cluster must be the
smallest compared to the d to any other representative at the
time the sequence is examined for placement, and (2) d is also
smaller than ST'/2.

We refer to the similarity clusters and their representa-
tives as GENEX Bases. These requirements entail that all
sequences that belong to the same similarity cluster are similar
to each other, meaning that the d between any two sequences
in the cluster is smaller than ST.

n), Vj € [l,n — i+

Intra-Cluster Similarity Property: For any two sequences
of equal length i, namely X and Y belonging to the same cluster
C?, with C! defined in Def. 8, d(X,Y) defined in Def. 6 is within
the threshold ST, that is, d(X,Y) < ST, for all X, Y € C,i.
This property is intrinsically based on proving a triangle
inequality for the general distance d. Thus from this point
forward we assume that our GENEX model only works with
such distances. Proofs for specific distances such as MD and
Mink are trivial, based on their own triangle inequalities. Since
they are used in this paper, we give the proofs for MD and
Mink along with our additional material [21], while the proof
for ED can be found in [16]. All “metric” distances can work
with our generalized similarity model.

Although the results of the grouping algorithm are specific
to each point-wise distance, it is important to note that the dif-
ference in results has no further impact. That is, conceptually
the exploration follows the same algorithm that, as we show in
Sec. I1I-B, uses the counterpart warped version of each specific
point-wise distance and leads to guaranteed results.

B. Expanding Similarity Exploration from Metric Point-Wise
Distances Space to Non-Metric Warped Distances Space

Based on the above property that there exists a triangle
inequality for distance d, our GENEX time-warped explo-
ration framework is based on proving a customized triangle
inequality between a general point-wise distance d and its
warped counterpart G DT'W,. This allows us to create compact
GENEX clusters using the point-wise distance d, yet explore
these clusters through their representatives using the more
powerful warped counterpart, namely GDT'W,. We prove that
the similarity between a sample sequence seq provided by the
user and the representative of a GENEX similarity cluster as
defined in Def. 8 “extends” to all sequences in that cluster.
This empowers GENEX to perform time warped comparisons
of the sample sequence over the representatives instead of the
entire dataset D.

More specifically, for a general distance d, if GDTW,
between a sample sequence () and the representative R: is
smaller than some value s, then we can guarantee that all
sequences in that cluster C} are similar to this sequence
Q. More precisely, GDTW ,; between () and any of these
sequences is smaller than s + S7/2. We prove that this
important property holds for any general distance d that is
“GENEX-compliant” as defined below. The value of s is
chosen by the analyst, and the smaller this value is, the more
similar the sequences are (the distance d between the sample
and the sequence is smaller).

Definition 9: A general distance d is said to be “GENEX-
compliant” if the following conditions are true for any se-
quences of equal length X, Y and Z:

1. d is symmetric in the coordinates, i.e., if we swap some
coordinates in X and we make the same swaps in Y, then
the value of d(X,Y’) does not change.

2. d satisfies the triangle inequality, ie., d(X,Z) <
d(X,Y)+d(Y, 2).

3. d is monotonic increasing in the following sense: Let
us pick a subsequence X’ of X (we keep some of
the coordinates from X) and let Y’ be the respective
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subsequence from Y (we keep the same coordinates).
Let X = (X,X’) (so we get X from X by repeating
the coordinates in X’) and let similarly Y = (Y,Y”).
Then we have the following:

d(X,Y) < d(X,V) < d(X,Y) +d(X',Y").

These are natural assumptions. First, without the triangle
inequality, a distance d would not even be a metric. The mono-
tonicity condition is also satisfied by many distances such as
the ones based on sum or max of base distances. Examples
of GENEX-compatible distances include the Lp — norms,
Inner Product, Intersection, Gower, Canberra, Wave Hedges,
Pearson Coefficient and many other distances based on sums
and respectively maximums as defined in [20]. While there are
possibly other distances that can work with our framework,
outside of the ones based on sums and maximums — we are
only showcasing the ones for which a general proof exists.

When searching for the top-k most similar sequences to a
given sample, sometimes we might have to explore more than
one cluster, namely as many clusters as needed to contain at
least k sequences combined, where k is the number provided
by the analyst. When k is large, for some of these clusters the
warped distance between their representatives and the sample
is within ST/2, but for others, the warped distance between
the representatives and the sample has some value s, close to
ST/2. We can guarantee that all sequences in such clusters are
similar to the sample, having a warped distance between the
sample and any of these sequences within s + ST'/2.

Lemma 1: Given Y = (y1,...,yn) an arbitrary sequence of
length n in any cluster as per Def. 8, with the representative
of the cluster R = (r1,...,7,) and a sample sequence ) =
(q15---5Gm), then the following is true:

If d(R,Y) < ST/2 and GDTW 4(Q, R) < s, then we have
GDTW 4(Q,Y) < s+ ST/2.

This allows us, for small values of s, to guarantee the results
of exploring our similarity clusters using GDTWj.

Proof: (Case: sequences of the same length). From the
assumptions of Lemma 1 we have:

d(R,Y) < ST/2 3)
Furthermore, from the definition of GDTW,, GDT W, and
the assumptions of Lemma 1 we know that there is a warping
path P between @@ and R from (1,1) to (n,n) with the
GDTW, weight at most 2ns. More precisely, P is a contigu-
ous path in the nxn grid from (1,1) to (n,n). The t** element
of P is py = (it,je). Thus P = (p1,p2,....pt,...,P1),
where n < T < 2n—1, py = (1,1) and pr = (n,n). By
“decoding” this path and extracting the values x;, and r;, at
every position on the path, we construct the two equal-length
vectors: Qp = (qiy, iy, -y Gig) a0d Rp = (75,, Ty, s Tip )
where some of the ¢; and 7; are repeated while advancing on
the path. Then for this path P we have

We now have to show that there is a warping path from (1, 1)
to (n,n) between @ and Y with GDTW weight at most 2n.S7T.
In fact we will show that the same warping path P will be

good, i.e., we need to prove that:

GDTW4(Q,Y) <d(Qp,Yp) < 2n(s+ST/2) < 2ns+nST.
&)

From the triangle inequality, we know that:
d(Qp,Yp) < d(Qp,Rp) +d(Rp,Yp).
From (4) we know for the first term that
d(Qp, Rp) < 2ns.

Thus in order to prove (5), all we need is to prove for the
second term that below holds:

d(RP,Yp) S nST (6)

We get Rp (resp. Yp) by repeating some coordinates in R
(resp. Y), where each coordinate is repeated at most (n —
1) times. Using the monotonicity condition we get an upper
bound if we repeat every coordinate in R (respectively Y)
exactly n times. Thus we get the following upper bound using
(3) and the fact that the distance is symmetric and monotonic
increasing:

d(Rp,Yp) <d((R,...,R),(Y,...,Y)) 7)

T
<nd(R,Y) < n% <nST (8)

This proves (6).

Proof sketch (Case: sequences of different lengths.) Let R
and Y be sequences of length n where R is the representative
of the cluster, Y’ an arbitrary sequence in the cluster and X
a query sequence of length m, with m < n. Without loss of
generality we consider here the case of m < n but the proof
is very similar for n < m. In GDT'W defined in Table I we
divide by 2n because the warping path may have length up to
m 4+ n < 2n. The matrix M (X,Y”’) is an m x n matrix and
the warping path connects (1, 1) to (m, n). Other than this, the
proofs for sequences of different lengths and for sequences of
the same length are the same.

We note that for the special case when s = ST/2 the
Lemma 1 guarantees that exploring clusters that are within
ST/2 of the sample sequence will lead to sequences that are
similar to this sample within ST.

Lemma 2: Let d be a general distance satisfying Def. 9.
Given Y = (y1,...,yy) an arbitrary sequence of length n in
any cluster as per Def. 8, with the representative of the cluster
R = (r1,...,r,) and a sample sequence Q = (¢1,.-.,Gm)s
then the following is true: If d(R,Y) < ST/2 and
GDTW 4(Q, R) < ST/2, then we have GDTW 4(Q,Y) <

ST.
The proof for this specific case is very similar to the proof

for Lemma 1, just making the following changes: 1) replacing
in (4) s with ST/2 which leads to the right term to be n ST;
and 2) changing the right term of (5) to be 2n.ST/2 = nST.
The triangle inequality for d remains the same, so the only
difference between Lemma 2 and its generalized form Lemma
1 is that now that the second term in (5) is 2 n ST/2 = n ST.
Other than this, the rest of the proof is the same.

In addition, analysts can prove these lemmas for other spe-
cific distances on an individual basis. We give such examples



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

of proofs for the distances used in this paper, MD and Mink
in our additional material [21], while the proof for Lemma 1
for ED can be found at [17].

IV. GENEX FRAMEWORK
A. GENEX Overview

Our GENEX provides fast and accurate insights into time
series datasets by using the theoretical foundation in Sec. III.
As depicted in Fig. 2, GENEX facilitates time series explo-
ration with multiple distances using the following modules:

OperationManager: enables analysts (Fig. 2-a) to perform
similarity exploratory operations listed in Sec. IV-C based on
the efficient processing strategies described in Sec. IV-D.

DistanceManager: provides a repository of warped dis-
tances. Analysts can add new point-wise distances similar to
[3]. Both point-wise distances and their warped counterparts
are accessible to the rest of GENEX (Fig. 2-b).

BaseManager: pre-processes time series datasets using the
point-wise distance chosen by the analyst, and constructs
GENEX similarity clusters (Fig. 2-c).

Operation Manager
+ Ranked k Similarity

Base Manager

+ Best Match Retrieval + Similarity Clusters

Analyst (@)
Distance Manager
+ Add/Get Distance

t_. -
+ Distance Repository

® ©

+ Representatives R

+ Length Index L

j1oseje( Seuag awi|

Fig. 2: GENEX Overview

B. Base Manager Construction

The algorithm for constructing similarity clusters is inde-
pendent of the distance chosen by the analyst. As indicated
in Sec. III, our aim is to construct clusters with a diameter
smaller or equal to ST, such that any sequence in a cluster
is similar to the representative of the cluster within ST/2. As
shown in Sec. III-A, this guarantees that all sequences in the
cluster are similar to each other.

There are many strategies to build such similarity clusters.
Similar to [16], GENEX uses an algorithm that is empirically
robust where clusters are incrementally constructed by adding
the given sequences to the existing cluster whose represen-
tative has the minimum distance to the sequence and that is
also within ST/2 of the sequence. If no such similarity cluster
exists, a new cluster is constructed with the current sequence
becoming the representative of this new cluster. This process is
performed for all sequences in the dataset and it is parallelized
across different lengths with concurrent threads.

The complexity of constructing the GENEX Base for each
distance d is in the worst case O(nl3g) where [ is the number
of distinct lengths that each time series is decomposed into,
g the number of groups and n the number of time series in
the dataset. The [3 term is due to the O(I?) sequences and the
O(l) the cost of computing d, assuming a linear complexity

of computing d for any two sequences of length [. It has been
shown probabilistically that the expected number of groups is
v/nl [16]. However in the worst case each item could become
its own group, i.e., g = O(nl). For the general case where
[ < n, we treat [ as constant with respect to n, so the expected
complexity is O(n?).

C. Similarity Exploratory Operations

The Operation Manager allows the analyst to choose a spe-
cific distance for similarity exploration and a sample sequence
seq.

Similarity search allows analysts to perform two subclasses
of operations expressed in the following syntax:

Q OUTPUT set of X,
FROM D WHERE Sim <= min|
MATCH = Exact (L) |Any
d in {ED,MD, Mink, or other
distances in the Repository}
k=provided by user

ST, seq = g

Ranked top K similarity search returns the top & most
similar sequences to a user-supplied sample seq. The distance
is chosen by the analyst and returned sequences have minimum
or within ST distance with the provided sample seq. If
MATCH=Exact, the returned sequences have the same length
L as sample seq, otherwise all length sequences are explored.
Use Case: A financial analyst may want to retrieve the top
10 stocks whose fluctuations are similar to that of the Apple
Stock over a specific time period. This illustrates the case
when the sample sequence is a sequence present in the
dataset. Alternatively, an analyst can “design” a desired stock
fluctuation and search the datasets for the top 10 stocks similar
to this desired sequence. Such sequence is likely not to exist
in the dataset, in which case the closest matches are retrieved.

Best match retrieval. As a special case of the similarity

search class for k= 1, this subclass returns the best match to
the sample sequence.
Use Case: An analyst might want to retrieve the stock having
the closest selling price with that of Google stock over one
year. Or a doctor might want to find the most similar shape to
the ECG of a patient from an annotated collection of ECGs
to help diagnose specific heart conditions.

D. Exploratory Processing Strategies

Based on its formal foundation (Sec. III-B), our GENEX
Operations Manager applies time-warped strategies on the
compact GENEX bases. In this section we describe the pro-
cessing strategies that handle the similarity search operations
described in Sec. IV-C.

To optimize the similarity exploration we construct a
LengthIndex L which indexes the set of representatives of
each length. As shown below, we explore these representatives
first; then only the corresponding sequences in the similarity
clusters that we are interested in are explored, instead of the
entire raw data. To find the most similar k& sequences to a
sample seq, the OperationManager selects a set of candidate
representatives. Then it computes the distance to the sample
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from all the represented time series, selecting the k£ most
similar sequences. The selection of candidate representatives
is optimized as shown in Fig. 3-a and explained below. For
finding the best match sequence we only select one candidate
representative and then explore the sequences that belong to
its cluster.

Similarity Search Operations involve both retrieval of the
k most similar sequences and the best match to a given sample.
We discuss below the strategy for retrieving the top k most
similar sequences to a given sample, while the retrieval of the
best match becomes the specific case of k=1. We first find the
set of representative candidates whose similarity clusters are
most likely to contain the k most similar sequences. Then
we explore the sequences in these clusters and rank them
based on their similarity to the given sample, thus selecting the
top k most similar sequences. These strategies are the same
regardless of the chosen distance.

Ranked top K similarity search: We denote the desired
number of similar sequences chosen by the analyst as k. We
denote the minimum number of subsequences that the candi-
date representatives must represent to insure 100% accuracy as
k.. GENEX retrieves k most similar sequences similar to [17]
by first finding the representatives having the least distance
with the query sequence and that have at least k. > k members
combined. In the next step, the pairwise warped distances of
at least k. sequences to the sample query are computed and
the top k sequences with the smallest distances are returned.

In order to find the candidate set of k. sequences, we first
retrieve the representatives of each specific length by using
the LengthIndex L (Fig. 3-a). Then we compute the GDTW,
between each representative and the sample sequence (Fig. 3-
b), selecting those whose distance is the smallest and within
ST/2. A max-heap maintains the most similar representatives
H, (Fig. 3-c). Before H, contains at least k. sequences, any
representative with a warped distance to the sample smaller
than STT is added to the heap. This is heapified based on the
distance from the representatives to the sample. From here
on, H, maintains the current worst candidate R*, enabling
early abandonment techniques. R* is evicted when a new
better candidate is added to H,. This results in a max-

=P Compute Flow

|Hr| = Z |R| > ke

= = = Candidate Representatives ReH,
= = = k Similar Sequences |H | =k
s| =
Li R ¥ S
— = L
1
[ Li R} : b= 5 !
d{RrR} | d | s
L |
Lt Rh 1| Sk,
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(@ (b) © (d ©

Fig. 3: Operation Manager Internals

heap populated with the set of candidate representatives most
similar to the sample (Fig. 3-d). The similarity clusters of these

representatives now contain the most similar k sequences to
the sample. To retrieve them we apply the same methodology,
but instead of the representatives we are now exploring the k.
sequences. The max-heap H, has a capacity of k instead of
k., resulting in the & most similar time series (Fig. 3-e).

The complexity of the top k similarity operation is com-
posed of the complexity of selecting the candidate represen-
tatives and that of retrieving k top ranked sequences. The
complexity of selecting representatives is O(|G|log(|G’|)1?),
where |G| is the number of examined clusters, |G| is the num-
ber of clusters similar to the sample which in the worst case,
when each cluster has only one member, is k.. The complexity
of the warped distance computation for sequences of length
[ is [2. The complexity of retrieving k sequences in G’ is
O(kelog(k)I?). In practice, the retrieval requires processing
at least one cluster. So k. is at least the size of the best
candidate cluster. The overall complexity is O(|G| log(k.)I*+
k. log(k)I?). However, k and k. are constants and additionally
log(k) < ke and |G'| < ke < |G|, so we summarize
the overall complexity for the top k similarity as O(|G|(?).
It is important to note that our k is generally a very small
number, thus the difference in complexity and performance of
using other methods related to the k-selection problem is not
significantly impacting the real response time. For k = 1 the
complexity is O(G + m), where G is the number of clusters
explored and m is the number of sequences in the best match
cluster.

E. Optimizations for Exploratory Operations

We devise general strategies to work with any distance d
and efficiently retrieve the k most similar sequences to a given
sample seq, by optimizing the retrieval of the best candidate
clusters and of the top k similar sequences within these clusters
as described in Sec. IV-D. Additionally, existing distance-
specific optimizations can be incorporated into our framework.

General distance optimization: For a given sample se-
quence of length £, we start the search for candidate clusters
with the ones of the same length as the query, as items with
similar lengths are more likely to be similar [22]. This allows
us to better leverage early abandonment techniques.

Distance specific optimization: For ED we use the
LBgeogn [15] lower bound to build envelopes around the
representatives. These envelopes are computed during the pre-
processing step, allowing us to “prune” many unpromising
representative candidates. Similar techniques can be developed
for MD, Mink and other monotonic increasing distances to
optimize the construction of similarity clusters.

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

Our GENEX framework can incorporate a large array of
distances. Thus, instead of highlighting the merits of individual
distances we focus on showcasing the accuracy and efficiency
of our method compared to state-of-the-art systems. For this,
we implement a select subset of warped distances known
to the research community, namely, GDTWgp (DTW),
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GDTW ppink (warped Minkowski), and GDTWy,p (warped
Manbhattan).

GENEX is implemented in C++11 and experiments are con-
ducted on a Linux machine with a 3.30 GHz Intel Xeon CPU
and 64GB of memory. All our experiments are reproducible
and the detailed results are available at [21] while our code is
publicly available at [23].

Alternate state-of-the-art methods. Although there are many
previous approaches that have indexed DTW, we focus on all
three warped distances equally, thus we use for comparison
systems that implement all three of them: Generalized Dy-
namic Time Warping (GDTW) [3] and Piecewise Aggregation
Approximation (PAA) [14]. To avoid confusion between the
GDTW as the system and the generalized warped distances
denoted with GDT'W, and its variants, we refer to the original
GDTW system as introduced in [3] as GDTWSys for this
evaluation section. The GDTWSys implementation finds the
exact solution by computing all pairwise distances from the
sample to each subsequence in a dataset. Thus we use its
results as ground truth for assessing the accuracy of other
methods. PAA is a well-known data-reduction method that
finds an approximate solution by averaging consecutive pieces
of equal length in each sequence. Using simple heuristics we
decided to average every 3 data points of a time series to
obtain a data point of the PAA time series. PAA’s ability
to use multiple warped distances makes it appropriate for
comparison to GENEX. Our preprocessing is a one-time step
whose results can be re-used repeatedly thereafter during
analysis. The expense of this step pays off leading to increased
online time responsiveness. Similar with [24], which uses a
preprocessing step, we thus don’t include preprocessing phase
costs as part of on-line retrieval costs. We instead report the
online performance which reflects the analyst‘s experience.
Both competitors take advantage of the well-known lower
bound LBy, optimization in their implementations.

Next, we explain why other methods, in particular, iSax [25]
while also mining time series, are not suitable for experimental
comparison in our context. iSax focusses on a data structure
to scale to large time series datasets that cannot fit in main
memory. For this, they support bulk loading strategies of
data from a disk structure. GENEX instead focuses on fast
and accurate similarity search using in-memory structures. In
addition, as memory becomes increasingly affordable at larger
capacity, the proposed structures of GENEX supporting inter-
active exploration experience for increasingly larger datasets
can fit into modern main memory. In a nutshell, [25] targets
disk-access bound indexing for a cheap to compute metric,
while our objective is to speed up a rich variety of CPU bound
time series similarity queries in memory with an expensive to
compute measure.

Datasets. We run experiments on 66 datasets from the
benchmark UCR time-series collection [8]. These datasets
were selected in increasing order of their size computed as
size = n * (m x (m — 1)/2), where n is the number of time
series and m is the length of each time series. We do not run
experiments on the remaining datasets in the archive due to the
extremely long time necessary for the competitor systems to
run. We normalize each sequence X = (x;...x,) based on the

maximum (max) and minimum (min) values in each dataset
[15] by computing the normalized values for each point x; as

T;—min
maxr—min "’

Experimental methodology.

We perform three classes of experiments:

1. Experiment on similarity search.

1.1 Best match retrieval. We first evaluate the accuracy
and speed of our system in retrieving the best match se-
quence to a given sample using each of the three warped
distances. We compare our accuracy and response time with
the two benchmark methods: Generalized Dynamic Time
Warping (GDTWSys) and Piecewise Aggregation Approxima-
tion (PAA) to show that GENEX has comparable accuracy,
while being orders of magnitude faster than both competitors.

1.3 Trade-off evaluation. We find the best similarity thresh-
old ST for each specific dataset, the one that leads to the lowest
error rate and fastest response time. These results can assist
analysts in establishing the best similarity setting for exploring
specific datasets.

2. Evaluating GENEX bases. We create GENEX bases
for GDTWgp, GDTWyp, GDTWine for 66 datasets
in the UCR collection. For each distance, we evaluate the
GENEX bases by measuring the compression rate and the
construction time of our preprocessed clusters when varying
similarity threshold ranges across datasets. This results in a
“similarity panorama” that helps analysts better understand
their specific datasets. We present these results with the sole
purpose of showing that our data compression strategy allows
us to process fairly large datasets into memory.

3. Case Study: Using GENEX for botanical applications.
To demonstrate the advantages of a multi-distance system, we
conduct a classification experiment on the OSULeaf dataset
[8]. We show that other distances can be better than the classic
DTW for specific data mining tasks, which reinforces the need
to have multiple warped distances integrated within the same
system.

B. Experimental Results

1) Experiment on Similarity Search: Each dataset in the
UCR archive has a Test set and respectively a Training set.
To streamline this experiment we use the Test set to search
for similar sequences. Thus, we name this set DATA. We
want to experiment with sequences both inside and outside
the dataset, so we organize our search as follows: when we
want to experiment with samples outside the dataset we use
the Training set to select our sample sequences, so we name
this set the QUERY set. When we want to experiment with
sequences inside the dataset, we select them from the Data
set. For each specific distance, we run the similarity search
experiment using the following methodology:

First, we generate 30 different samples of arbitrary length
for each dataset by randomly selecting fifteen subsequences
from the DATA set and fifteen subsequences from the QUERY
set. This selection scheme covers samples both present in
the dataset and not present in the dataset. Next, we find the
best match and respectively the top-15 most similar sequences
of each sample in each dataset using GENEX and the two
alternative methods. Finally, we compute the average error rate
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over the 30 samples in each dataset for GENEX and PAA using
the results of GDTWSys as ground truth. The time responses
for each method are also measured by averaging the running
times of these 30 samples for each dataset.

1.1. Accuracy and response time for finding best match
sequence. We assess the accuracy of a solution by measuring
its relative error to the ground truth calculated as follows:
we denote dapnex, dpaa and dgprwsys as the respec-
tive distances between the given sample and the solution
computed using each one of the three warped distances by
GENEX, PAA and GDTWSys respectively. The relative er-
rors of GENEX and PAA are calculated using the formula
|deenex — daprwsys| and |dpaa — daprwsys|. Since
GDTWSys gives the ground truth, we only assess the relative
errors of GENEX and PAA. Table II shows that the relative
error of GENEX is up to 4 times lower than that of PAA.

TABLE II: Average errors of PAA and GENEX across 66 datasets

PAA GENEX
GDTWEgp 0.7x1073 [ 0.2 x 1073
GDTWyp 1.3x1073 | 0.8 x 1073
GDTWsini: | 7.7x 1073 | 3.6 x 1073
104 BN GENEX
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Fig. 4: Average response time of GDTWSys, PAA and

GENEX by distance across 60 medium and small datasets.
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Fig. 5: Average response time of GDTWSys, PAA and
GENEX by distance across 6 large datasets.

Fig. 4 displays the average response times of each method
across 60 medium and small datasets. GENEX is approx.
3862 times faster than GDTWSys for GDTWEgp, 731 times
for GDTW;p and 240 times for GDTWink. GENEX is
980 times faster than PAA for GDTWgp, 182 times for
GDTWyp and 66 times for GDTW ;. Fig. 5, displays

the average response times of the three methods across the
6 largest datasets. Here, GENEX is faster than GDTWSys
13106 times for GDTWEgp, 807 times for GDTW ;p and
55 times for GDTW ;. GENEX is 3328 times faster than
PAA for GDTWgp, 180 times for GDTWj,p and 15 times
for GDTWMan

This shows that the larger the datasets, the faster GENEX
becomes, up to 4-5 orders of magnitude faster than the
competitors.

We plot the individual relative errors and response times
of all 66 datasets for the three distances in Fig. 6 and
Fig. 7, respectively. In each subplot, from left to right, the
datasets are sorted in ascending order by the number of
subsequences they contain. The lines denoting GENEX for
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all three distances in Fig. 6 mostly lie below the PAA line,
indicating high consistency of GENEX in achieving very low
error rates. Furthermore, as the datasets increase in size in Fig.
7, the difference in the response times between GENEX and
the other two methods increases dramatically, showing that
GENEX is 4 to 5 orders of magnitude faster.

In summary, GENEX is up to 5 orders of magnitude faster
than GDTWSys and 4 orders of magnitude faster than PAA.

1.2. Accuracy for top-15 most similar sequences. Here
we showcase the ability of GENEX to find very fast ranked
similar matches to a given sample with very high accuracy. We
reuse the 30 samples from the experiment for finding the best
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match, but now we find the top 15 most similar sequences for
each sample. We also show that GENEX can achieve perfect
accuracy by varying the number of sequences explored. We use
the same notation as in the previous experiment and compute
the relative error based on the average relative errors of the
top-15 matches, using the formula:

S ldeenex, — dapTwsys, |
k
Fig. 8 shows the GENEX similarity search error averaged
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Fig. 7: Time response of PAA, GDTWSys and GENEX
(in logarithmic scale) for 66 datasets using GDWTgp,
GDWT]WD, and G*l)VVfZ—‘]wl'n]C

across 66 datasets for k=15 using GDTWgp, GDTWyp,
and GDTW ;.1 respectively. We note that as the percentage
of explored sequences increases, the error rate rapidly declines
and reaches 0 at very low percentage values. Specifically, the
average and respectively maximum percentages to reach per-
fect accuracy are respectively 1.5% and 9.3% for GDTWgp,
2.2% and 9.6% for GDTWy;p, and 0.6% and 4.3% for
GDTW pink.

In summary, GENEX can achieve 100% accuracy by exploring
on average less than 1.5% of all sequences in any of the 66
datasets.

1.3. Trade-off between accuracy and response time As
shown in [16], there is a trade-off between accuracy and
response time when varying the similarity threshold, allowing
analysts to use the most suitable ST to achieve the highest
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Fig. 8: GENEX similarity search error for GDTWgp,
GDTWyp, and GDTWyini of 66 datasets versus the
percentage of explored sequences.

accuracy and fastest response time. We scale up this trade-
off experiment to 66 datasets and across the three distances.
The results for each distance are illustrated in Fig. 9. All
three subplots in Fig. 9 reveal similar trade-off patterns for
GDTWgp, GDTWyp and GDTW i ink. As we increase
ST, the error rate increases, and the time response decreases.
The “balanced” spot where we achieve the fastest response
time and the lowest error rate is around 0.25 for GDTWgp,
0.16 for GDTW ;p and 0.24 for GDTWarink.

2) Evaluating GENEX Bases: Our method achieves a great
advantage in speed and accuracy largely due to the compact
representation in the form of similarity clusters performed
during the preprocessing step. In this experiment, 66 datasets
in the UCR archive have been pre-processed using ED, MD
and Mink. Here we investigate how the use of these distances
and varying similarity thresholds affect the construction time
and the cluster compactness. Similar to [17], we define com-
pression rate as:

# of cluster + avg. cluster size
100% — £ %.
total # of sequences

This definition measures the ratio of the average number of
sequences unexplored by GENEX to the original number of
sequences. Fig. 10 shows that in general, over all datasets,
the pre-processing times are faster for MD then ED. The
processing times for Mink are slower than the other two
distances. We note a correlating trend in the compression
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Fig. 9: Response time and error trade-off of GDTWgp,
GDTWysp, and GDTW ik varying ST.

rate as depicted in Fig. 11. On average, MD yields a smaller
number of clusters, thus having the highest compression rate
and the fastest preprocessing time. Conversely, Mink generates
a larger number of clusters and has the lowest compression rate
and the highest preprocessing time. In addition, we visualize

—e— Euclidean

—4— Minkowski
—#— Manhattan

102 4

Grouping time (seconds)

T T T T T T T T T
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

ST

Fig. 10: GENEX bases preprocessing time

the variation in the number of representatives while varying
the similarity threshold for five select datasets using our three
distances respectively in Fig. 12, 13, and 14. A row in each
figure consists of five square subplots and one line subplot.
The five square subplots correspond to the varying ST values
for preprocessing the dataset, while the line subplot shows the
respective average best match error rate of each ST setting.
A square subplot consists of multiple cells colored on a blue-
yellow spectrum: stronger-blue cells denote clusters of shorter-
length sequences while stronger-yellow cells denote clusters of
longer-length sequences. The area of a cell is commensurate
with the number of sequences in the cluster. For each dataset
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Fig. 12: Cluster distribution for ED.

we sort the clusters by their cardinalities in a decreasing order,
then plot the top 600 clusters in each square subplot. The
arrangement of the cells is generated using the Python library
squarify [26], [27]. As a result, the sizes of the cells, starting
with the largest from the bottom left corner of the subplot,
decrease gradually towards the upper right corner. We call a
square subplot “ordered” if the colors of its cells smoothly
transition from blue to yellow going from the bottom left
corner to the upper right corner of the subplot. For example,
the subplot at ST = 0.5 of the dataset Lighting7 (the last
column of the second row) in Fig. 12 is highly ordered. This
characteristic implies that the size of a cluster of a specific
length is proportional to the number of sequences of that
length. In other words, clusters of shorter-length sequences
tend to contain more members as there are many more short
sequences than longer ones and vice-versa. By correlating this
characteristic with the error rate, we observe that a set of
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Fig. 13: Cluster distribution for MD.

more ordered clusters generally achieves a lower error rate.
Instances of this phenomena can be seen in datasets Beef,
Lighting7, and FacesUCR in Fig. 12 and 13. The reverse is not
necessarily true: a lower error rate does not guarantee ordered
clusters. A possible explanation of this is that the chosen ST
generates highly “even” clusters. Hence their boundaries do
not overlap much. Consequently, the representatives becomes
a better proxy for comparing similarity between a sample and
the members of a cluster.

In summary, this visualization method provides analysts with
a valuable tool to evaluate the quality of the clusters for
varying similarity thresholds, and guide them towards setting
the most appropriate similarity settings for exploring their
dataset.

C. Case Study: Botanical Applications

We showcase here the use of GENEX for K-nearest neigh-
bors classification (KNN) on the OSULeaf dataset [8] using
GDTWgp, GDTWyp, GDTWrink. OSULeaf contains
one-dimensional outlines of 6 classes of leaves, each of length
427. The series were obtained by color image segmentation
and boundary extraction (in anti-clockwise direction) from
digitized leaf images of six classes: Acer Circinatum, Acer
Glabrum, Acer Macrophyllum, Acer Negundo, Quercus Gar-
ryana and Quercus Kelloggii.

The Train set and Test set contain respectively 200 and 242
sequences. For each warped distance, we first determine the
value K by performing KNN on a validation set containing
20% randomly selected sequences from the Test set. Then we

Beef

Lighting7

Trace

FacesUCR

ToeSegmentationl

\\\J/\/
GDTWyp m

Fig. 15: Alignments of a pair of series generated by
GDTWgp and GDTWyp

run KNN on the entire Test set using the value K that gives
the best accuracy on the validation set for both GENEX and
GDTWSys. As shown in Table III, the accuracy of GENEX is

TABLE III: K-nearest neighbors results for OSULeaf

Distance K GENEX GDTWSys
Acc. | Time (s) | Acc. | Time (s)
GDTWgp 1] 0.55 9.58 0.55 31.5
GDTWyp 0.60 12.6 0.60 259
GDTWppink | 3 | 048 10.3 0.51 24.3

comparable to that of GDTWSys. However, here GENEX is 2
to 3 times faster than GDTWSys. Among the three distances,
GDTW s p produces the best accuracy. To see why this is the
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case, we select one leaf shape from the Test set that is incor-
rectly classified by GDTWgp but it is correctly classified by
GDTWyp, along with the leaf shape from the Train set that
GDTWEgp classifies as the nearest neighbor to the previous
one. We then plot the alignments generated by GDTWgp
and GDTWjrp as shown in Fig. 15. The section marked by
the red box shows that GDTWpgp “collapses” a group of
consecutive points in one series into a point on another. This
phenomenon distorts the similarity measurement and results in
an incorrect classification. Conversely, GDTWj,p mitigates
this problem by finding more intuitive alignments.

VI. RELATED WORK

Many similarity distances have been widely used for
mining time series. The ubiquitous Euclidean distance [9],
[10] or variants [28] cannot handle misalignments and different
length sequences. Although DTW [12] has been successfully
used to handle misalignments in many domains, it can produce
singularities [29]. To deal with singularities [30] penalizes
whenever there is a deviation from a diagonal path, while
[31] constrains the warping path by limiting the width along
the diagonal. [19] replaces ED with another base distance
to constrain the warping path, while [32] “quantizes” the
sequences into the range [0,1] and then places similar points in
neighboring bins. GDTW [3] provides a framework to warp a
large array of point wise distances. However, neither of these
systems provides optimizations to reduce the computation of
the warped distances beyond the use of dynamic programming,
so to make it practical to mine large time series datasets.

Specific to DTW there are indexing techniques [9], [33],
[11] and other optimizations such as using squared distance,
lower bounds [34], early abandoning of ED and creating
envelopes around the query sequence instead of the candidate
sequences [15]. [35] embeds the work of [36] to speedup the
DTW computation among pairs of time series that are not
discarded by other pruning methods. [37] efficiently indexes
datasets using a hierarchical K-means tree structure specially
designed for DTW. These techniques are orthogonal to our
work, and we indeed leverage some of them to optimize
similarity search customized to specific warped distances.

Techniques for representing time series with reduced di-
mensionality exist, including Discrete Fourier Transformation
(DFT) [4] , Piece Aggregate Approximation (PAA) [38] and
Single Value Decomposition (SVD) [39] . The key aspect
of these techniques is that they preserve the fundamental
characteristics of the data and retrieve highly accurate results.
However, most techniques focus on a single distance, tackling
efficiency as their main goal and do not handle diverse
distances. Conceptually similar [40] uses a local constant
embedding which divides the data set into disjoint groups
so that the triangle inequality holds within each group by
constant shifting, but they have to pre-define the number of
members in each group. Our method takes advantage of the
specific data distribution in each dataset without having to
impose any artificial parameters in defining groups. [41], [25]
propose the multi-resolution symbolic SAX representation
which can be used to create efficient indices over very large

databases using Euclidean distance. However, the technique is
optimized for Euclidean distance only thus limited in scope,
while our work is geared towards the use of diverse warped
distances. Conceptually similar, [42], [1], [16] reduce data
cardinality by grouping similar sequences. [1] finds part-to-
part correspondences between two time series characterized
as multi-dimensional trajectories. The resultant dissimilarity
is used as input for clustering algorithms. [43] uses DTW av-
erages to create nearest centroid based classifiers for increased
efficiency. Conversely, GENEX representatives are selected by
construction and DTW is only used for comparing sample
sequences to the representatives. [16] only supports DTW
while GENEX is the first system to enable analysts to use
a variety of warped distances within a single framework. [44]
further extends [45] by providing strategies for reducing the
training effort required to build an Elastic Ensemble for time
series classification. [46] experimentally compares 7 similarity
measures for time series classification.

VII. CONCLUSION

GENEX is a versatile exploratory tool for getting insights
into time series datasets using multiple warped distances. Un-
like prior work, GENEX provides the first efficient framework
for query processing with newly warped point-wise distances
on time series collections. The first practical solution for
exploring large datasets using multiple robust alignment tools,
GENEX vyields highly accurate results with response times up
to 5 orders of magnitude faster than state-of-the-art systems.
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