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Serum metabolome associated with severity of
acute traumatic brain injury
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Complex metabolic disruption is a crucial aspect of the pathophysiology of traumatic brain

injury (TBI). Associations between this and systemic metabolism and their potential prog-

nostic value are poorly understood. Here, we aimed to describe the serum metabolome

(including lipidome) associated with acute TBI within 24 h post-injury, and its relationship to

severity of injury and patient outcome. We performed a comprehensive metabolomics study

in a cohort of 716 patients with TBI and non-TBI reference patients (orthopedic, internal

medicine, and other neurological patients) from the Collaborative European NeuroTrauma

Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) cohort. We identified panels

of metabolites specifically associated with TBI severity and patient outcomes. Choline

phospholipids (lysophosphatidylcholines, ether phosphatidylcholines and sphingomyelins)

were inversely associated with TBI severity and were among the strongest predictors of TBI

patient outcomes, which was further confirmed in a separate validation dataset of 558

patients. The observed metabolic patterns may reflect different pathophysiological

mechanisms, including protective changes of systemic lipid metabolism aiming to maintain

lipid homeostasis in the brain.
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Traumatic brain injury (TBI) is one of the most common
neurological diseases worldwide1,2, affecting all ages. TBI
often results in long-term disability, and consequent soci-

etal burden3. Based on the Glasgow Coma Scale (GCS)4, TBI
patients are classified as having mild, moderate, or severe TBI.
Detailed characterization of the disease phenotype is crucial for
TBI management and for predicting outcome in individual
patients. The most common outcome evaluation method is the
Glasgow Outcome Scale - extended (GOSe), which ranges from 1
(death) to 8 (full recovery). Current models use the GCS as one
variable, alongside others, to predict patient recovery5. However,
this provides imperfect outcome prediction6 and the various
existing prognostic models for moderate and severe TBI only
explain approximately 35% of the variance in outcome7,8.
Improved characterization and prognostic models would allow
clinicians to make more accurate treatment choices, allocating
resources more effectively.

Therefore, there is increasing interest in non-invasive, blood-
based biomarkers for rapid evaluation of TBI severity, patho-
physiology, and prognostication. Currently, the biomarkers in
use, or being considered for use, are primarily proteins9. One
such intensively investigated biomarker is S100 calcium-binding
protein B (S100B)10,11, which has been implemented in a clinical
decision rule12,13. However, S100B lacks disease specificity10.
Recent studies have reported promising results for the more
disease-specific markers ubiquitin C-terminal hydrolase-L1
(UCH-L1) from neurons, and glial fibrillary acidic protein
(GFAP) from astrocytes, these markers being useful for acute
diagnosis of mild TBI patients who might have a brain lesion9,14.
The combination of these two biomarkers have been cleared by
the US Food and Drug Adminstration (FDA) for use as in vitro
diagnostics for these purposes15.

Whilst protein biomarkers may reflect tissue damage, they
provide no insights regarding metabolic disruption, which is
common after TBI and may indicate energy crisis / failure16,17.
There has been increasing interest in small molecules (specifically:
metabolites) as potential biomarkers for TBI stratification.
Indeed, the concentrations of circulating polar metabolites have
been found to have good diagnostic and prognostic potential for
TBI18–20, correlating with imaging findings21,22, injury severity
and 6-month post-injury outcomes18. However, past metabo-
lomics studies on TBI have mainly focused on a subset of the
metabolome, i.e., polar metabolites; and involved relatively small
sample sizes. The brain is rich in lipids, but comprehensive
analysis of molecular lipids (lipidomics) has been rarely per-
formed regarding TBI, with the few studies so far being limited to
small sub-cohorts23 and animal studies24. In order to account for
the heterogeneity and complex dynamics of TBI pathophysiology,
as well as to truly assess the diagnostic potential of specific
metabolites (including lipids) metabolomics studies in large,
prospective TBI cohorts are clearly needed.

Here, we performed a comprehensive metabolomics study in
a subset of patients from the Collaborative European Neuro-
Trauma Effectiveness Research in Traumatic Brain Injury
(CENTER-TBI) cohort and from three non-TBI reference
groups, i.e., acute internal medicine illnesses (Internal), acute
orthopedic injuries (Ortho), and subjects with acute stroke or
other neurological conditions (Neuro). Our primary aims were
to define the metabolome (including the lipidome) in acute TBI
at the time of hospital admission, from the perspectives of
injury severity and patient outcome. As secondary aims, we
investigated links between the TBI metabolome, findings from
head computed tomography (CT), the effect of propofol
administration, and extracranial injury on the metabolome.
Finally, we also investigated the improvement in patient
outcome discrimination gained by adding metabolites to

established discrimination models, i.e., the Corticosteroid
Randomization After Significant Head injury (CRASH) model5

and those based on protein biomarkers.

Results
Metabolomics study in TBI patients and reference groups. The
metabolomics study included 716 patients with TBI, recruited at
multiple European and Israeli centers, and 229 non-TBI reference
patents recruited at Turku University Hospital, Turku, Finland.
(Fig. 1; Supplementary Table 1). The reference patients comprised
three non-TBI groups: the Ortho group (n= 40), the Neuro group
(n= 93), and the Internal group (n= 96), (Supplementary
Table 2). Two mass spectrometry (MS)-based analytical methods
with broad analytical coverage were applied: (a) a ‘metabolomics’
platform for the analysis of polar metabolites using gas
chromatography coupled to quadrupole time-of-flight MS (GC-
QTOFMS), and (b) a ‘lipidomics’ platform for the analysis of
molecular lipids using liquid chromatography (LC)-QTOFMS. A
total of 459 metabolites were detected, 147 polar metabolites by
the metabolomics method (combined from the targeted and the
untargeted methods; Supplementary Table 3) and 312 lipids by the
lipidomics method (201 known, 111 unknown; Supplementary
Table 4). The identified metabolites included fatty acids, amino
acids, and sugar derivatives from the metabolomics platform, and
ceramides (Cer), cholesterol esters (CE), phosphatidylcholines (PC;
including ether PCs, O-PC), lysophosphatidylcholines (LPC),
phosphatidylethanolamines (PE; including plasmalogens, P-PE),
sphingomyelins (SM), diacylglycerols (DG), and triacylglycerols
(TG) from the lipidomics platform. Hereafter, we use the term
“metabolites” to refer to compounds from both platforms, when
“polar metabolites” and “lipids” refer to the compounds from their
respective, individual platforms.

Serum metabolome associates with diagnosis and severity of
TBI. First, we investigated whether circulating metabolites were
associated with the clinical severity of TBI. A total of 887
observations were included in the analysis (658 patients with TBI
having associated GCS values available, and 229 reference
patients). In order to examine the metabolome as a whole in both
TBI and reference patients, we first performed K-means
clustering25 on the metabolomics dataset, separately for polar
metabolites and lipids. Based on the within-cluster sum of
squares, the optimal number of clusters was selected, resulting in
three polar metabolite clusters (MCs) and six lipid clusters (LCs)
(Supplementary Table 5). For the polar metabolites, the first
cluster (MC1) contains sugar derivatives, alcohols, and keto acids,
the second (MC2) amino acids, and the third (MC3) fatty acids
and sugar derivatives. For the lipid clusters, the first (LC1) con-
tains TG, the second (LC2) Cer and PC, the third (LC3) various
phospholipids, the fourth (LC4) SM, the fifth (LC5) LPC and PC,
and the sixth (LC6) PC and TG. When comparing patients with
TBI vs. the reference groups (Fig. 2a), cluster MC1 was increased
(p= 6.8 × 10−4, Mann–Whitney U test) and clusters MC2 and
MC3 decreased in patients with TBI (p= 1.5 × 10−14, 2.4 × 10−2,
respectively). For lipids, LC2, LC3 (increased in patients with TBI;
p= 8.5 × 10−8 and 2.2 × 10−16, respectively), LC4, and LC6
(decreased in patients with TBI; p= 3.6 × 10−4, 4.5 × 10−5) were
different between the study groups.

When comparing TBI patients and the reference groups at the
individual feature (metabolite) level, a total of 280 out of 459
metabolites had significantly different levels between groups
(Welch t test, after false discovery rate (FDR) correction26,
q < 0.05). Among the most discriminating metabolites, three
amino acids (alanine, threonine and serine) were decreased, while
multiple phospholipids were increased in TBI (Fig. 2b, showing
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23 metabolites selected as an overlap of the top 30 metabolites
based on the lowest q-value and the top 30 metabolites as selected
by a random forest model27,28). The selected 23 metabolites were
used as predictors in a logistic regression model, but also
examined individually for their discriminatory ability (Fig. 2c).
The model with 23 metabolites yielded an area under the receiver
operating characteristic (ROC) curve (AUC) of 0.98 (95% CI:
0.96–0.99) when separating TBI cases and the reference patients.
To test if the model is mainly driven by the patients with
moderate/severe TBI, a separate model, using the same 23
metabolites, was fitted by including only patients with mild TBI
vs. reference patients. The logistic regression model had identical
performance (AUC of 0.98), suggesting that there is a clear
distinction between the patients with mild TBI and references,
including those that suffered other acute neurological conditions
(e.g., stroke). Since the three reference groups had higher mean
ages than the TBI group (Supplementary Table 2) a separate

analysis was carried out to investigate if age was associated
with the findings, but no strong association was detected
(Supplementary Discussion).

When comparing the three TBI severity groups (mild,
moderate, and severe), a total of 264 metabolites were different
between the three groups (Fig. 3a, showing 19 selected metabo-
lites). With increasing severity of TBI, LPCs, SMs, ether PCs,
multiple amino acids and the breakdown products of BCAAs
decreased, while two medium-chain fatty acids, octanoic (OA)
and decanoic (DA) acids, increased. In Fig. 3b, this trend can also
be seen for selected metabolites across all study groups.

We also investigated the effects of the administration of
propofol, extracranial injury, age, and study site. The association
of metabolome with TBI is not driven by propofol administration
or extracranial injuries, age does not influence which metabolites
are included in the prediction models, and no site-specific effects
were detected (Supplementary Discussion).

229 reference
pa�ents

716 TBI pa�ents

Blood samples
and severity

658 pa�ents:
242 mild
183 moderate
233 severe
(Sub-Cohort 1)

229 references:
93 Neuro
96 Internal
40 Ortho

Blood samples

Propofol 
administra�on

Extracranial 
injury

118 mild
124 moderate
187 severe              

26 mild
83 moderate
121 severe

CT data
638 pa�ents

Blood samples 
and outcomes

633 pa�ents:
395 favorable
238 unfavorable
(Sub-Cohort 2)        

Protein 
biomarkers
628 pa�ents

CRASH model: 535
pa�ents with age, 
pupillary 
responsiveness, 
presence of extra-
cranial injury and 

216 mTBI loss of 
consciousness, 199 
mTBI Post trauma�c 
amnesia, 201 mTBI
Retrograde amnesia

Fig. 1 The study setting. Black color denotes TBI patients and white color denotes reference patients. The TBI patients were from all three severity groups
(mild, moderate, severe) and the reference patients were from three injury types: internal medicine, orthopedic, and neurological (blue box). The main
analysis for severity discrimination was on patients for whom GCS scores were available (sub-cohort 1, yellow box) at baseline evaluation and the main
analysis for outcome discrimination was on patients that had GOSe available (sub-cohort 2, green box). Most patients belong in both sub-cohorts. For the
TBI-reference patient discrimination analysis data from sub-cohort 1 and the control patients were analyzed (yellow box plus blue box). Further sub-
populations were examined from sub-cohorts 1 and 2, based on availability of more refined data (extra-cranial injury, propofol administration, protein
biomarkers, and variables necessary for the evaluation of the CRASH model). For the full TBI cohort associations between the metabolomic/lipid levels and
CT findings were made. Abbreviations: Neuro, patients with acute stroke or other neurological conditions; Internal, acute internal medicine illnesses (e.g.,
infections, cardiac symptoms, GI-symptoms) (Internal); Ortho, patients with acute orthopedic or other non-brain traumas; mTBI, mild TBI.
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Serum metabolome associates with the findings from head
computed tomography. Next, the TBI metabolome was analyzed in
relation to the gross pathology findings on the CT of the patients. The
findings analyzed were acute subdural hematoma, epidural hema-
toma, contusion/intracerebral hematoma, intraventricular hemor-
rhage, traumatic subarachnoid hemorrhage, basal cistern compression
status, midline shift, and mass lesion. The patients received a grade of
present/absent for each of the mentioned gross pathologies.

At the cluster level, clusters MC1, MC2, LC4, and LC5
displayed the strongest associations with CT findings (Fig. 3c;
Mann–Whitney U test for positive vs. negative findings). MC1 was

increased in the positive findings, while MC2, LC4, and LC5 were
decreased. For this analysis, the eight different types of gross
pathology findings were further grouped based on their similarity
by using hierarchical clustering (Fig. 3d), leading to four groups of
gross pathology findings: epidural hematoma, intraventricular
hemorrhage, space-occupying lesions (mass lesion + cisternal
compression + midline shift), and mixed lesions (acute subdural
hematoma + contusion+ traumatic subarachnoid hemorrhage).
Because the traumatic intracranial findings occur in typical
combinations, the clusters were also generated on clinical grounds,
following the evaluation of the hierarchical clustering results.

Fig. 2 Survey of metabolome in TBI patients and controls. a Polar metabolite (MC) and lipid (LC) clusters across the study groups. Mean of orthopedic
and internal medicine controls was used as a reference, and the significant differences between the groups and the reference are marked. b Heatmap of the
TBI-reference patient groups and the top 23 metabolites as selected by the overlap of the random forest feature selection and the Welch t test significant
feature evaluation. Unknown polar metabolites and lipids are marked as Xmet and Xlip, respectively c Individual discriminatory performance for the top 23
metabolites. Each metabolite was used in a logistic regression model as predictor, with group affinity as response. The performance was averaged on 100
model runs of 70–30% data splits. Data are presented as mean values with the individual run performances as points (n= 100) and aggregated 95% CI.
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Fig. 3 Survey of metabolome in TBI severity and gross pathologies. a Heatmap of the 19 most important features for discrimination of TBI severity,
showing also study group and propofol administration. These features were selected from the overall of the top 30 metabolites from a random forest model
and the top 30 metabolites as selected by the Welch F test. b Levels of selected top-ranking metabolites across six study groups. The data were
standardized based on the levels of internal medicine and orthopedic patients, denoted as controls. Group abbreviations: Con (control; internal and
orthopedic), Neuro (neurological patients, mostly acute stroke), Tm (mild TBI), To (moderate TBI), Ts (severe TBI). c Heatmap of the gross pathologies
findings and the 11 metabolite clusters. Boxes with stars denote significant differences between positive and negative findings. d Dendrogram of the
clustering results for the gross pathology types from CT. A hierarchical clustering method was applied where a similarity measure between the common
combinations was used as the metric for the clustering. The y-axis in the plot denotes the dissimilarity measure based on the Jaccard distance of the
difference pathologies, with distance close to 0 being the most similar. Based on these, mass lesion, cisternal compression, and midline shift were grouped
in the space-occupying cluster, and acute subdural hematoma, contusion, and traumatic subarachnoid hemorrhage were grouped as the mixed lesions
cluster. These clusters are seen in panel c.
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The space-occupying lesions cluster and mixed lesions cluster were
designated as positive if at least two of the three findings were
present and negative otherwise. At the individual metabolite level,
associations between these and the CT findings were found for all
types of gross pathologies, except for epidural hematoma.
Seventeen metabolites were amongst the top 40 for all gross
pathologies differences: aspartic acid, glycine, methionine, serine,
threonine, LPC(18:2), LPC(20:5), two isomers of O-PC(34:2),
O-PC(34:3), O-PC(36:3), SM(40:1), SM(40:2), galactose, a polar
metabolite (glucose or mannose), sorbitol, mannitol, and Xlip_161.
Of those metabolites, all were downregulated in positive findings,
except for the sugars (galactose, glucose or mannose, sorbitol,
mannitol) which were upregulated.

Metabolites are predictive of patient outcomes in TBI. Previous
studies suggest that circulating metabolites may predict patient
outcomes after TBI18, although, so far, only polar metabolites
have been studied in this respect. Here, we examined associations
between metabolite levels within 24 h of admission and outcomes
for 633 patients with TBI for whom the GOSe score was available
6 months post-injury. In order to separate unfavorable
(GOSe= 1–4) vs. favorable (GOSe= 5–8) outcomes, penalized
logistic regression models were fitted using both the lasso29 and
the ridge30 methods (Fig. 4a), either by using the full metabo-
lomics dataset, or the metabolites selected as an overlap between
the top 30 metabolites from the prior application of a random
forest approach and Welch t test (Fig. 4b, c and Supplementary
Table 6). All four models had near-identical performance
(AUC= 0.81, 95% CI: 0.75–0.87). The individual performance of
the 19 metabolites (that was chosen based on the full dataset) was
examined and notably, the most significant associations with
patient outcomes were found for sugar derivatives and lipids
(Fig. 4b) with increased levels of O-PCs (ether PCs), SMs, and
LPCs being associated with favorable outcomes (Fig. 4c). A
logistic regression model, with all 19 metabolites included and
without further regularization, yielded an AUC of 0.83 (95% CI:
0.77–0.89) on 100 70%–30% splits for model fitting and testing.
The performance of this model, however, requires caution in its
interpretation, due to an increased chance of overfitting.

We also derived outcome discrimination models for the individual
GOSe levels (Fig. 4d), with GOSe scores of 2 and 3 pooled together,
for a total of seven values in total. The analysis showed that predicting
the outcomes for different GOSe values tends to be consistent at most
values, based on AUC. However, classifying patients having a
prognosis of full recovery (GOSe= 8 vs. all other) was the hardest to
make, with an AUC of 0.75 (95% CI: 0.67–0.84). In addition to the
models with individual cut-offs, a proportional odds model was also
fitted to the data with GOSe as an ordinal response value and using
16 metabolites as predictors. That model confirmed a clear separation
between GOSe thresholds since the intercepts of the individual logit
equations followed an almost perfect linear trend (Supplementary
Fig. 1). Next, we performed pathway analysis based on serum
metabolomics data, using the MetaboAnalyst31 tool (Fig. 4e). When
comparing metabolic profiles in patients with TBI with poor vs.
favorable outcomes, the highest pathway impacts were found to be
related to amino acid metabolism (3 pathways), sugar metabolism
(2 pathways), and lipid metabolism (linoleic acid metabolism, i.e.,
metabolism of polyunsaturated fatty acids). Within the list of all
significantly affected pathways (Supplementary Table 7), lipids,
sugars, and amino acid pathways were dominant.

Addition of metabolites to the CRASH clinical model and
protein biomarkers improves prediction of patient outcomes.
Next, we examined the added discriminative ability of metabolites
in the established clinical CRASH model to our model for outcome

discrimination. The CRASH model was created based on the fol-
lowing variables: age, pupillary responsiveness, presence of major
extracranial injury, and GCS score. In total, there were 535 patients
with full data available (GOSe, CRASH predictors, and metabo-
lites). The CRASH model had an AUC of 0.85 (95% CI: 0.78–0.91),
in line with previous studies in the same dataset32. The addition
of 13 metabolites (inositol, threitol, myo-Inositol, glycerol,
D-(+)-Galacturonic acid, isothreonic acid, X_Met with RI:998.87
(amino acid), serine, beta-D-(+)-Glucose, SM(d40:1), SM(40:2)/
(18:1/22:1), LPC(18:2), Xlip_161; as derived by the penalized lasso
regression model) to the CRASH model improved the dis-
criminative ability to an AUC of 0.89 (95% CI: 0.84–0.94). The
inclusion of the panel of metabolites into the CRASH model
improved the performance significantly (p-value of 1.5 × 10−14, R2
increased from 0.45 to 0.61). It should be noted that in Dijkland
et al.32, the patients included in the dataset were over 16 years of
age and with GCS ≤ 14, while here all patients were included in the
model. If the aforementioned criteria are imposed, as in Dijkland
et al., then the CRASH model had an AUC of 0.79 (95% CI:
0.70–0.88), the metabolite-based model had AUC of 0.75 (95% CI:
0.66–0.85), and the combined CRASH/metabolite model had AUC
of 0.83 (95% CI: 0.75–0.91), i.e., the addition of metabolites to the
CRASHmodel results in similar naïve improvement as with the full
dataset (p= 5.7 × 10−10). Excluding only the young patients (<16
years of age, n= 33) yields the same performance as the full dataset,
therefore it is the exclusion of GCS= 15 (n= 134) subgroup that
reduces the performance of the model.

Finally, we also examined the discriminative ability for
protein TBI biomarkers together with metabolites. The six
protein biomarkers examined were S100B, NF-L, UCH-L1,
GFAP, P-Tau, and neuron-specific enolase (NSE). A detailed
analysis of these proteins in the CENTER-TBI cohort has been
published previously9. A lasso logistic regression model with
these six proteins as predictors resulted in S100B, GFAP, and
UCH-L1 being included in the model, with AUC of 0.83 (95%
CI: 0.77–0.89), similar to the performance of the non-penalized
model for the metabolites, but slightly higher than the penalized
models (Fig. 4a). Next, in 628 patients for whom both
protein and metabolomics data were available, the selected 19
metabolite biomarkers (Fig. 4b, c) and six protein biomarkers
were jointly used as predictors a in lasso logistic regression
model. The final model, after regularization, included 17 pre-
dictors, the three protein biomarkers listed above and
14 metabolites, with AUC of 0.87 (95% CI: 0.82–0.92).
The addition of metabolites showed an increase in discrimina-
tive ability compared to either the protein or the metabolite
predictors alone (p < 2.2 × 10−16).

Velidation of metabolite-based model for prediction of patient
outcomes. To investigate whether the metabolites identified as
significant in the predictive model (Fig. 4b, c) demonstrate the
same discriminatory potential in an independent group of TBI
patients, serum samples from 558 further TBI patients were
analyzed (Supplementary Table 1). Lipidomic data were gener-
ated by using the same lipidomics platform (Örebro, Sweden) as
in the first dataset, while the polar metabolite data were generated
by using a different platform (Turku, Finland). The 19 important
metabolites (Fig. 4c) were quantified, except for one amino acid
that could not be detected (X_met, RI: 998.87). The model that
was developed on the original dataset (Fig. 4a) was applied to the
validation dataset and had AUC of 0.74 (CI: 0.70–0.79), meaning
that the findings hold the same promise for outcome dis-
crimination on a dataset processed and analyzed separately.
Furthermore, the relative changes between favorable and unfa-
vorable outcomes (Supplementary Fig. 2) are very similar to what
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was observed in the original data (Fig. 4c), confirming that the
findings are consistent across both datasets.

Discussion
The findings in our large, prospective cohort study indicate that
circulating metabolites associate with TBI severity and potentially

improve the prediction of patient outcomes. As a surprising
finding, certain lipids, specifically phospholipids such as LPCs,
ether PCs (O-PCs) and SMs, were found to be strongly and
specifically associated with severity of TBI and were among the
strongest predictors of patient outcomes. The greatest increases in
the levels of these lipids were found in patients with mild TBI,

Fig. 4 Prediction of TBI patient outcomes. a The ROC curves and AUC values of four penalized logistic regression models. Lasso logistic regression and
ridge logistic regression were evaluated with two sets of features each. The first set of features was the full metabolomics dataset (459 features). The
second set of predictors was the top features as selected by random forest feature selection and Welch t testing (19 features). The curves and AUC values
are the average of 100 training/testing folds. b Individual discriminatory performance for the top 19 metabolites. Each metabolite was used in a logistic
regression model as predictor, with outcome as response. The performance was averaged on 100 model runs of 70–30% data splits. Data are presented as
mean values with the individual run performances as points (n= 100) and aggregated 95% CI. c Heatmap of the top 19 features (also used in the reduced
models in panel a), as selected by the random forest and the Welch t test feature selection. GOSe of 1–4 is considered as unfavorable outcome and GOSe
of 5–8 as favorable. Overall, patients with favorable outcomes have lower concentration of metabolite/lipid levels, with a notable exception of Glycerol,
which is in higher levels in patients with favorable outcomes. d Evaluation of the discriminatory performance of logistic regression models for different cut-
offs of GOSe values (1 vs. 2–8, 1–2 vs. 3–8, …. 1–7 vs. 8). The AUC (red points) and CI values are the average of 100 training/testing folds for each cut-off
and each severity group. It appears that the accurate discrimination of full recovery (GOSe of 8) is not possible with the metabolomic/lipid dataset.
e Pathway analysis using MetaboAnalyst31 tool. The enriched metabolic pathways are based on differences of serum metabolites between the favorable
and unfavorable outcome groups. Only significantly different pathways (FDR corrected p-values from t test) with 2 or more hits are included.
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and then decreased with increasing severity. High levels of these
lipids were also associated with favorable patient outcomes. A
chemical structure common to all of the aforementioned lipid
classes is a choline moiety in their headgroup. In circulation,
these lipids are enriched in low-density and high-density lipo-
protein (LDL and HDL, respectively) fractions33. These findings
greatly extend our previous findings which concerned polar
metabolites alone18.

Proton magnetic resonance spectroscopy (1H-MRS) studies
suggest that choline is elevated in the brain after TBI34, and that
the increase is proportional to the severity of the injury34. It is
believed that these central level-changes in choline reflect cel-
lular damage due to membrane breakdown following the
injury35. Circulating choline-containing phospholipids, which
are predominantly synthesized in the liver36, can be transported
to the brain across the blood-brain barrier (BBB) via LDL-
receptor-facilitated transcytosis37. Our data thus suggest that
increased levels of circulating choline-containing lipids in
patients with mild TBI, and in those patients with favorable
outcomes, reflect the protective mechanism that facilitates the
uptake of these essential membrane lipids across the BBB. This
compensatory mechanism then appears to fail in more severe
injuries. In fact, cytidine diphosphate-choline (CDP-choline) is
a precursor of choline phospholipids, and its administration to
patients with TBI as a supplement has been shown to have
beneficial effects in terms of patient outcomes38, while studies
in experimental models of TBI suggest that choline supple-
mentation improves various behavioral and neurochemical
outcomes39.

In line with earlier findings18, several sugar derivatives
including myoinositol were found to be elevated in TBI, and
proportional to its severity. This associated with unfavorable
patient outcomes. Since these metabolites are found at high
concentrations in human cerebrospinal fluid40 as well as in cer-
ebral microdialysates of patients with TBI18, changes to their
levels in blood in TBI likely reflect disruption of both BBB and
cerebral glucose metabolism41. 1H-MRS studies found that
myoinositol is elevated in experimental TBI42 and that it
associates with poor outcomes in children with TBI43. Myoino-
sitol is known to be primarily produced in glial cells and is thus
seen as an MRS marker of their health44. Myoinositol is also
known to be an osmolyte in the glial cells45. In the acute phase of
TBI, in vivo MRS imaging reveals reductions in brain levels of
myoinositol (possibly due to astrocyte injury and/or loss) while at
later time points elevated levels may reflect astrogliosis46.
There is some uncertainty as to whether this may also represent
a microglial marker, as it co-localizes poorly with markers
of microglial activation47,48. We speculate, therefore, that
the increases in serum myoinositol that we observe may be the
consequence of early astroglial injury and constitute a leak of
the released myoinositol into systemic circulation. Elevated
circulating glucose levels have been reported in TBI, with
plausible explanations suggested to be due to stress-induced
hyperglycemia, a systemic inflammatory response, pituitary
and/or hypothalamic dysfunction or iatrogenic factors49.

Levels of several amino acids, including BCAAs and their
breakdown products, as well as threonine, alanine and serine,
were decreased in patients with TBI, along with increasing
severity of the injury. Although we did not observe significantly
decreased levels of BCAAs in our previous study18, similar
decreases in patients with TBI were observed in two other
studies20,50, while alterations in levels of BCAA breakdown pro-
ducts have also been reported in cerebral microdialysis fluids of
patients with TBI51. BCAAs52 and serine53 can easily pass from
circulation to the brain across the BBB via their transporters,
where they serve as important precursors of glutaminergic

neurotransmission in astrocytes. 1H-MRS studies indicate that
central glutamate and glutamine are elevated following TBI and
associate with poor patient outcomes34, potentially reflecting
early excitotoxic injury or possibly glial disruption and/or neu-
ronal cell death, given the importance of astrocytes in the glu-
tamine/glutamate cycle54. Therefore, the decreased circulating
levels of precursors of glutaminergic neurotransmission may be
due to their increased uptake across the BBB, which may further
exacerbate TBI-associated glutamate excitotoxicity. Serine, on
the other hand, has been suggested to play an essential role in the
function of the central nervous system55 and disruption in the
metabolism of glycine, serine and threonine might affect neuro-
protection and normal function of the nervous system56. In a
piglet model of TBI, similar changes in amino acid levels were
observed in brain tissue, with different responses occurring in
gray and white matter across all injury severities57. It is also
plausible that decreased amino acid concentrations may reflect
both increased protein catabolism associated with acute illness58,
and increased use of these metabolites for energy substrates in
the body.

We have also shown here that metabolites can be used as
biomarkers to discriminate between different findings from head
CT data. Previously, we demonstrated that a panel of six serum
polar metabolites could predict the need for CT imaging fol-
lowing a TBI and discriminate between positive and negative CT
findings21. In that study, we also observed that serum levels of
sugars were increased in patients that had positive CT findings. In
our present work, changes in individual metabolites, including
those lipids which changed along with the CT findings, were very
similar to those found to associate with patient outcome and TBI
severity, thus reinforcing the notion that positive CT findings are
associated with more severe injury and poorer outcomes.

We were able to show that both lipids and polar metabolites
hold promise as diagnostic and prognostic biomarkers of TBI,
including in mild TBI. Previously, we found that two medium-
chain fatty acids (octanoic and decanoic acid, OA and DA,
respectively) were positively associated with the severity of TBI
and with unfavorable patient outcomes18. We observed the same
pattern of the two aforementioned fatty acids in the present study,
although these were not included in the biomarker panels fol-
lowing our variable selection process for patient outcomes, while
they were included in the panels for severity. This may be due to
the fact that OA and DA were more confounded with propofol
levels than other TBI-associated metabolites (Fig. 3a; an effect
observed to a lesser degree also in the previous study18), although
they remained significantly associated with TBI severity and
patient outcomes after correcting for propofol, as well as after
patients with administered propofol were removed from the
analysis. The combination of metabolite markers with other
measures such as the CRASH model and protein biomarkers
increased the performance of the models, thus suggesting that
metabolites may hold additional discriminatory value and may
reflect different pathophysiological processes in TBI. Inter-
observer discrepancies are common in the clinical examination of
patients with TBI59. Metabolite markers can provide a compre-
hensive objective method to aid in clinical diagnosis and outcome
prediction.

Furthermore, a targeted panel of selected biomarkers was tes-
ted in a separate dataset, validating the potential for their clinical
utility. Once metabolites are selected as biomarkers, such as the
ones selected for the validation, mass spectrometry-based clinical
assays can be developed that are inexpensive and fast, thus
making them suitable for patient screening upon admission to the
hospital or even in the paramedical setting, and potentially also to
follow-up the recovery. In the current study, we applied a com-
bination of quantitative (using authentic internal standards for
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selected polar metabolites) and semiquantitative analysis. Lipids
were calibrated using class-specific internal standards, as it is
commonly the case in comprehensive lipidomic analyses.
Regarding clinical application, ideally selected lipids and other
metabolites would be quantified using authentic internal stan-
dards. The utility of these metabolic signatures of TBI in real-
world clinical settings thus remains to be demonstrated.

Taken together, our comprehensive metabolomics analysis
revealed extensive changes in the circulating metabolome due to
TBI, including changes proportional to disease severity and
associated with patient outcomes. This larger study setting, as
compared to earlier investigations18, enabled us to rule out our
observed associations being attributable to confounding factors
such as extracranial injury or propofol administration. Moreover,
the inclusion of three separate reference groups, i.e., the Ortho,
Internal, and Neuro groups, allowed us to examine the disease-
specificity of TBI-associated metabolites. Here, we were also able
to identify a metabolite profile that discriminates between
patients with mild TBI and the reference groups and was also able
to predict patient outcomes in mild TBI. Reasonable dis-
criminatory ability was even possible when predicting good
outcomes (GOSe scores of 7 and 8) vs. the others. The observed
metabolome changes in TBI likely reflect different pathophysio-
logical mechanisms including protective changes of systemic lipid
metabolism aiming to maintain lipid homeostasis in the brain,
disruption of BBB, and increased uptake of glutaminergic neu-
rotransmitters from circulation across the BBB. Our findings thus
reinforce the notion of TBI being an inherently systemic
disease60,61 and suggest that studies of metabolomes and their
trajectories following TBI may be a valuable tool for unraveling
the pathophysiology of TBI.

Methods
Clinical study setting—TBI patients. The CENTER-TBI study (https://www.
center-tbi.eu/) recruited 4509 patients from 18 European countries and Israel, with
two main aims: (a) to improve both characterization and classification of TBI and
(b) to identify the most effective clinical care for TBI. To that end, high-quality
clinical and epidemiological data were collected from repositories for neuroima-
ging, DNA, and blood serum from patients.

The data were extracted from the CENTER-TBI database. For this manuscript,
data from the Core 2.1 update were used. The CENTER-TBI database contains data
from 65 centers, with data collected between Dec 19, 2014, and Dec 17, 2017.
18 European Countries and Israel were part of the study. The data collected under
the CENTER-TBI framework contains information regarding the severity of the
patients’ injury, based on GCS, and the level of intervention of their treatment,
based on the admission stratum, into ER discharge, ward admission, and ICU
admission.

The inclusion criteria for the study were: a clinical diagnosis of TBI,
presentation to one of the 65 centers within 24 h of injury, and an indication for CT
scanning. Informed consent was obtained from all study participants or their legal
representatives/next of kin, where applicable, according to the local regulations of
each center. The presence of severe, pre-existing neurological disorders was an
exclusion criterion.

Additional information included the presence of major extracranial injury, as
well as information about the medication the patients were administered upon
admission to the hospital or during pre-hospital care. For extracranial injury, the
AIS score was used, which allocates a severity score to different body regions,
according to the severity of the injury in that region. The AIS ranges from 0 to 5,
and the patients were classified as having major extracranial injury if at least 1 of
the individual AIS scores had a value of 3 or larger (requiring hospitalization in its
own right).

Blood samples were obtained within 24 h of injury, to assay both proteins and
metabolites levels following injury. Samples were collected into gel-separator tubes
for serum and centrifuged within 60 minutes (45 ± 15 min). Serum was processed,
aliquoted (8 × 0.5 ml), and stored at −80 °C on sites until shipment on dry ice to
the CENTER-TBI biobank (Pécs, Hungary). The protein biomarkers measured
were NSE, S100B, NF-L, total tau, GFAP, and UCH-L1. Details of the protein
biomarker analysis, and relation to the severity of injury can be found elsewhere9.
Metabolomic (and lipidomic) measurements were carried out from 50 µl serum
samples which were separated from the left-over volumes of the pristine serum
aliquots, which served for the S100B and NSE measurements (underwent one
freeze-thaw cycle).

The patients underwent head CT on admission, and repeated CTs were
performed when required. For this study, only the first CT scan was considered,
marked as early CT.

Patient outcomes were evaluated at 6 months after injury directly (n= 633) in
those patients where a GOSe evaluation was available within the protocol time
window (5–8 months post-TBI).Where GOSe evaluations were only available outside
this time window, we used a multistate imputation to estimate 6-month outcomes62.
The main outcome evaluation of this study is the eight-point GOSe and the different
classifications of outcomes based on these scores (e.g., favorable vs. unfavorable).

The CENTER-TBI study was completed in agreement with all relevant laws of
the European Union, and with local laws and regulations at the respective locations
of 65 recruitment centers. A detailed description of the CENTER-TBI
administrative, regulatory, and logistic framework is published elsewhere62. That
publication also provides information regarding the data storage, de-identification,
verification, and curation.

The CENTER-TBI study (European Commission grant no. 602150) has been
conducted in accordance with all relevant laws of the EU if directly applicable or of
direct effect and all relevant laws of the country where the Recruiting sites were
located, including but not limited to, the relevant privacy and data protection laws
and regulations (the “Privacy Law”), the relevant laws and regulations on the use of
human materials, and all relevant guidance relating to clinical studies from time to
time in force including, but not limited to, the ICH Harmonized Tripartite
Guideline for Good Clinical Practice (CPMP/ICH/135/95) (“ICH GCP”) and the
World Medical Association Declaration of Helsinki entitled “Ethical Principles for
Medical Research Involving Human Subjects”. Informed Consent by the patients
and/or the legal representative/next of kin was obtained, accordingly to the local
legislations, for all patients recruited in the Core Dataset of CENTER-TBI and
documented in the e-CRF.

Ethical approval was obtained for each recruiting site. The list of sites, Ethical
Committees, approval numbers and approval dates can be found on the website:
https://www.center-tbi.eu/project/ethical-approval.

Clinical study setting—reference patients. The reference patient groups were
patients with (i) acute stroke or other neurological conditions (Neuro), (ii) acute
internal medicine illnesses (e.g., infections, cardiac symptoms, GI-symptoms)
(Internal), and (iii) patients with acute orthopedic or other non-brain traumas
(Ortho).

The reference dataset was collected in Turku University Hospital from two
different studies: the European Union-funded TBIcare (Evidence-based Diagnostic
and Treatment Planning Solution for Traumatic Brain Injuries) project between
Dec 7, 2011 and Nov 11, 2013 (part of the Ortho group) and the VambaT
(Validation of metabolic biomarkers for the assessment of TBIs) project (the
Neuro, Internal and Ortho groups) between June 14, 2016 and July 28, 2016.

The inclusion criterion (i) for the Neuro group was acute stroke or possible/
definite brain-related symptoms requiring neurological evaluation and acute CT
imaging of the brain at the ED, (ii) for the Internal group, acute medical illness
(<3 days of symptoms) necessitating an ED visit, and (iii) for the Ortho group,
acute orthopedic injury within 24 h from the arrival to the ED. The exclusion
criteria for all reference subjects were lack of informed consent, age < 18 years, any
signs or suspicion of acute head injury, any suspicion of any TBI within the
previous 3 months. The specific exclusion criteria for (i) the Internal group and (ii)
Ortho group were any suspicion of brain-related symptoms of the acute illness and
suspicion of on-going or recent (<3 months) brain-related illness. Full diagnostic
characteristics can be seen in Supplementary Table 8.

The Ortho group consisted of patients who had sustained skeletal trauma but
no brain injury, comparison with which provided an assessment of whether the
changes we observed were specific to TBI, or simply a consequence of trauma more
generally. The Neuro group consisted of patients who had been diagnosed with
neurological disease but had not sustained trauma, comparison with which allowed
us to determine whether our findings were specific to neurotrauma, rather than
reflecting neurological disease more generally. Finally, we included a broad control
cohort of patients with systemic non-traumatic disease (Internal group). It should
be noted that the three groups had higher mean ages than the TBI group
(Supplementary Table 2).

The ethical review board of the Hospital District of Southwest Finland approved
the study protocol (TBIcare: decision 68/180/2011; VambaT: 137/1801/2015). All
patients or their next of kin were informed about the study in both oral and written
forms. Written informed consent was obtained according to the World Medical
Association’s Declaration of Helsinki.

Analysis of lipid molecules—lipidomics. The serum lipids were extracted using a
modified version of the previously published Folch procedure63. Shortly, 10 µL of
0.9% NaCl and 120 µL of CHCl3: MeOH (2:1, v/v) containing 2.5 µg mL−1

internal standards solution (for quality control and normalization purposes) were
added to 10 µL of each serum sample. The standard solution contained the fol-
lowing compounds: 1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine
(PE(17:0/17:0)), N-heptadecanoyl-D-erythro-sphingosylphosphorylcho¬line
(SM(d18:1/17:0)), N-heptadecanoyl-D-erythro-sphingosine (Cer(d18:1/17:0)),
1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (PC(17:0/17:0)), 1-heptadeca-
noyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(17:0)) and 1-palmitoyl-d31-
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2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/d31/18:1)), were purchased from
Avanti Polar Lipids, Inc. (Alabaster, AL, USA), tripalmitin- Triheptadeca-
noylglycerol (TG(17:0/17:0/17:0)) (Larodan AB, Solna, Sweden). The samples
were vortex mixed and incubated on ice for 30 min after which they were cen-
trifu¬ged (9400 × g, 3 min, 4 °C). 60 µL from the lower layer of each sample was
then transferred to a glass vial with an insert and 60 µL of CHCl3: MeOH (2:1, v/v)
was added to each sample. The samples were then stored at −80 °C until analysis.

Calibration curves using 1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-
phosphocholine (PC(16:0/18:1(9Z))), 1-(1Z-octadecenyl)-2-(9Z-octade¬cenoyl)-
sn-glycero-3-phosphocholine (PC(16:0/16:0)), 1-octadecanoyl-sn-glycero-3-
phospho¬choline (LPC(18:0)), (LPC18:1), PE (16:0/18:1), (2-aminoethoxy)[(2 R)-
3-hydroxy-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphinic acid
(LysoPE(18:1)), N-(9Z-octadecenoyl)-sphinganine (Cer (d18:0/18:1(9Z))), 1-
hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (PE (16:0/
18:1)) from Avanti Polar Lipids, Inc., 1-Palmitoyl-2-Hydroxy-sn-Glycero-3-
Phosphatidylcholine (LPC(16:0)) and 1,2,3 trihexadecanoalglycerol (TG16:0/16:0/
16:0), 1,2,3-trioctadecanoylglycerol (TG(18:0/18:0/18:0)) and ChoE(18:0), 3β-
hydroxy-5-cholestene 3-linoleate (ChoE(18:2)) from from Larodan, were prepared
prepared to the following concentration levels: 100, 500, 1000, 1500, 2000 and
2500 ng mL−1 (in CHCl3:MeOH, 2:1, v/v) including 1000 ng mL-1 of each
internal standard.

The samples were analyzed using ultra-high-performance liquid
chromatography quadrupole time-of-flight mass spectrometry method (UHPLC-
QTOFMS), which has been presented in detail previously64. Briefly, the UHPLC
system used in this work was a 1290 Infinity system from Agilent Technologies
(Santa Clara, CA, USA). The system was equipped with a multi sampler
(maintained at 10 °C), a quaternary solvent manager and a column thermostat
(maintained at 50 °C). Separations were performed on an ACQUITY UPLC® BEH
C18 column (2.1 mm × 100mm, particle size 1.7 µm) by Waters (Milford, USA).

The mass spectrometer coupled to the UHPLC was a 6545 QTOF instrument
from Agilent Technologies interfaced with a dual jet stream electrospray (dual ESI)
ion source. All analyses were performed in positive ion mode and MassHunter
B.06.01 (Agilent Technologies) was used for all data acquisition. Quality control
was performed throughout the dataset by including blanks, pure standard samples,
extracted standard samples and QC samples. Relative standard deviations (%RSDs)
for lipids in the pooled QC (n= 40) were on average 15.9%.

MS data processing was performed using open-source software MZmine 2.1834.
The following steps were applied in the processing:

(1) Crop filtering with a m/z range of 350–1200m/z and a RT range of 2.0 to
15.0 min.

(2) Mass detection with a noise level of 1000.
(3) Chromatogram builder with a min time span of 0.08 min, min height of

1200 and a m/z tolerance of 0.006m/z or 10.0 ppm.
(4) Chromatogram deconvolution using the local minimum search algorithm

with a 70% chromatographic threshold, 0.05 min minimum RT range, 5%
minimum relative height, 1200 minimum absolute height, a minimum
ration of peak top/edge of 1.2 and a peak duration range of 0.08–5.0.

(5) Isotopic peak grouper with a m/z tolerance of 5.0 ppm, RT tolerance of
0.05 min, maximum charge of 2 and with the most intense isotope set as the
representative isotope.

(6) Peak list row filter keeping only peak with a minimum of 10 peaks in a row.
(7) Join aligner with a m/z tolerance of 0.009 or 10.0 ppm and a weight for of 2,

a RT tolerance of 0.1 min and a weight of 1 and with no requirement of
charge state or ID and no comparison of isotope pattern.

(8) Peak list row filter with a minimum of 53 peak in a row (= 10% of the
samples).

(9) Gap filling using the same RT and m/z range gap filler algorithm with an m/
z tolerance of 0.009m/z or 11.0 ppm.

(10) Identification of lipids using a custom database search with an m/z tolerance
of 0.009m/z or 10.0 ppm and a RT tolerance of 0.1 min.

(11) Normalization using internal standards (PE(17:0/17:0), SM(d18:1/17:0),
Cer(d18:1/17:0), LPC(17:0), TG(17:0/17:0/17:0) and PC(16:0/d30/18:1)) for
identified lipids and closest ISTD for the unknown lipids, followed by
calculation of the concentrations based on lipid-class concentration curves.

Analysis of polar metabolites—metabolomics. Serum samples were randomized,
and sample preparation was carried out as described previously64,65. In summary,
400 μL of MeOH containing ISTDs (heptadecanoic acid, deuterium-labeled DL-
valine, deuterium-labeled succinic acid, and deuterium-labeled glutamic acid,
c= 1 µg/mL) was added to 30 µl of the serum samples which were vortex mixed
and incubated on ice for 30 min after which they were centrifuged (9400 × g,
3 min) and 350 μL of the supernatant was collected after centrifugation. The sol-
vent was evaporated to dryness and 25 μL of MOX reagent was added and the
sample was incubated for 60 min at 45 °C. 25 μL of MSTFA was added and, after
60 min incubation at 45 °C, 25 μL of the retention index standard mixture (n-
alkanes, c= 10 µg/mL) was added.

The analyses were carried out on an Agilent 7890B GC coupled to 7200 Q-TOF
MS. Injection volume was 1 µL with 100:1 cold solvent split on PTV at 70 °C,
heating to 300 °C at 120 °C/min. Column: Zebron ZB-SemiVolatiles. Length: 20 m,

I.D. 0.18 mm, film thickness: 0.18 µm. With initial Helium flow 1.2 mL/min,
increasing to 2.4 mL/min after 16 min. Oven temperature program: 50 °C (5 min),
then to 270 °C at 20 °C/min and then to 300 °C at 40 °C/min (5 min). EI source:
250 °C, 70 eV electron energy, 35 µA emission, solvent delay 3 min. Mass range 55
to 650 amu, acquisition rate 5 spectra/s, acquisition time 200 ms/spectrum. Quad at
150 °C, 1.5 mL/min N2 collision flow, aux-2 temperature: 280 °C.

Calibration curves were constructed using alanine, citric acid, fumaric acid,
glutamic acid, glycine, lactic acid, malic acid, 2-hydroxybutyric acid,
3-hydroxybutyric acid, linoleic acid, oleic acid, palmitic acid, stearic acid,
cholesterol, fructose, glutamine, indole-3-propionic acid, isoleucine, leucine,
proline, succinic acid, valine, asparagine, aspartic acid, arachidonic acid, glycerol-3-
phosphate, lysine, methionine, ornithine, phenylalanine, serine and threonine
purchased from Sigma-Aldrich (St. Louis, MO, USA) at concentration range of
0.1–80 μg/mL. An aliquot of each sample was collected and pooled and used as
quality control samples, together with a NIST SRM 1950 serum sample and an in-
house pooled serum sample. Relative standard deviations (% RSDs) of the
metabolite concentrations in pooled serum samples (n= 50) showed % RSDs
within accepted analytical limits at averages of 23.5%.

The validation data for the polar metabolites were run on a Pegasus BT system
(Leco) coupled to an Agilent 7890B GC (in Turku, Finland). The method used was
broadly similar to the system used initially (Örebro, Sweden) with small
modifications. Firstly, the samples were derivatized online with a Gerstel dual head
system. Briefly, the injection volume was 1 µL with splitless injection with the inlet
held at 250 °C. Column: Zebron ZB-SemiVolatiles. Length: 20m, I.D. 0.18 mm, film
thickness: 0.18 µm. With initial Helium flow 1.2mL/min, increasing to 2.2mL/min
after 13.7 min. Oven temperature program: 50 °C (2min), then to 270 °C at 20 °C/
min and then to 300 °C at 40 °C/min (3min). EI source: 250 °C, 70 eV electron
energy, 35 µA emission, solvent delay 5.6min. Mass range 50 to 500 amu, acquisition
rate 16 spectra/s, acquisition time 30Hz. Transfer line temperature: 230 °C.

The same standard curves were used as in the initial experiment. Given the
presence of batch effects that were noticed in the data the following formula was
used to normalize the batch effect:

Correction factor ¼ All QC median=Batch QC Median

Each analyte was then multiplied by the correction factor after imputation of
missing data. This was the data used in the subsequent validation.

Statistical analysis. All modeling and statistical analysis were performed in R
3.6.166. The 163 polar metabolites and the 312 lipids were standardized (scaled to
zero mean and SD of 1) and the z-scores were used for all the analyses.

Clustering and testing of cluster means. K-means clustering (using Euclidean dis-
tance) was applied to summarize the polar metabolites and the lipids into clusters.
The kmeans function from the R base packages was used for this. This clustering was
performed for the full dataset (separately for polar metabolites and lipids) and then
the subjects that belonged to each group were selected afterward. The optimal
number of clusters was three for the polar metabolites and six for the lipids. These
numbers were decided based on the elbow point of the within-cluster sum-of-squares
(WCSS) value over the number of clusters plot. The optimal number is defined as that
which had the maximum distance from the line that connected the two ends of the
WCSS curve.

For each patient, the average z-scores of the compounds within each cluster
were calculated, reducing the 459 compounds to nine numerical features. The
distributions of the cluster means were tested for normality with a Shapiro–Wilk
test. When the cluster means were not normally distributed, a Mann-Whitney U
test was performed.

The intention of this testing was to see if within each cluster (or functional
groups) were differences between the metabolite levels of patients with different
clinical characteristics, or between TBI and reference patients. For this testing two
different comparisons were made: TBI vs. reference patients and CT gross
pathology findings.

Clustering of gross pathology findings. Since gross pathologies tend to appear in
combination, the eight gross pathologies for which evaluation were available were
further reduced to four categories, based on hierarchical clustering of the most
common combinations present on the dataset. The function hclust was used for
this analysis and the library “dendextend” was used for the visualization.

Statistical analysis at the level of individual features. The 459 compounds were also
tested individually for each of the comparisons described in the previous section
with a Welch t test or a Welch F test, depending on if the comparison was between
two or more groups. 459 tests for group mean differences were performed for each
comparison (with 1 degree of freedom for TBI/reference patients and outcomes
comparisons and 2 degrees of freedom for severity comparisons) and the p-values
were adjusted for multiple test comparisons with FDR correction. The top 30
compounds (lowest q-values) were kept from each comparison. Furthermore, for
each of the comparisons a random forest model was built (1000 trees each), in
order to evaluate the importance of each individual compound in association with
the ability to differentiate between the different classifications. For each random
forest the 30 most important variables were extracted (based on the mean decrease
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Gini index28). The important features for each comparison were considered to be
the overlap of features from the Welch F test and those from the random forest
model. The library “onewaytests” was used for the Welch F test and the library
“randomForest” was used for the random forest modeling. The number of meta-
bolites reported in the results section and reported in Figs. 2b, 3a, 4b, are based on
the selection process on the full dataset.

Correcting for propofol and extracranial injuries. Propofol use, or extra-cranial
injuries, could influence the metabolic response of the TBI patients. To investigate
if the metabolomic/lipidomic levels of the patients can be attributed to the severity
of injury or if they are influenced by these two factors, linear regression models
were fitted. The first one of these investigated the effect of propofol and severity of
TBI to the metabolic/lipid levels, and the second investigated the effect of major
extra-cranial injury and severity of TBI to the metabolic/lipid levels. Both models
were adjusted for age and sex.

Predictive modeling. Different discrimination models were fitted for the different
comparisons. In general, three steps were followed: (1) a predictor selection process
(from t test and random forest); (2) a parameter optimization process for the
models used; (3) validation of the model performance based on a 70/30 split of the
dataset. Steps 1–3 were repeated for 100 runs of the model and the predictive
performance was evaluated on the average of the performances on the hold out set
of each run. The TBI-reference dataset had one logistic regression model fitted for
binary classification with all the important features as predictors, without further
regularization, so step 2 was skipped for this comparison.

For outcome discrimination, two shrinkage methods models we evaluated,
Lasso logistic regression and Ridge logistic regression. Two different sets of
predictors were used for each model, first, the full dataset of 459 metabolites, and
second, a subset of metabolites as selected by the feature selection process. The
feature selection process and the optimal number of predictors for the shrinkage
models (lambda min) were selected based on cross-validation on the training set of
each run separately. The library “glmnet” was used for this work, with the functions
cv.glmnet and glmnet. The intention for the comparison of the models with the full
set of predictors and with the subset was to evaluate if the subset of important
features would yield similar predictive performance as the full dataset, with feature
selection from the full pool of compounds. A similar performance would confirm
the selection process of the overlap between the random forest model and the
Welch F test. Furthermore, the penalized regression models would reduce the
predictor set even further but also control for overfitting in the models.

Subsequently, the important predictors for discrimination of outcome, as
selected by penalized regression, were added to two predictive models: the CRASH
model, and a discrimination model which used the protein biomarkers as
predictors. Model performance was expressed in terms of discrimination (as
determined by AUC), which indicates how well the model can differentiate
between patients with a low and high risk of a given outcome. We examined the
incremental discriminative ability of the metabolomic/lipid biomarkers by
comparing the AUC between the models with and without metabolomic/lipid
biomarkers. The p-values reported in the results section are based on a chi-squared
test of the compared models fitted to the full dataset, using the anova function.

Pathway analysis. The pathway analysis was done on the online platform
MetaboAnalyst31, using the tool MetPA67. The list of all identified metabolites was
passed to the platform, together with their concentration values and groups
adherence. One pathway analysis was performed for the full dataset (TBI and
reference patients), and one analysis only for the patients with outcome labels as
favorable/unfavorable, based on the GOS score (1–4 vs. 5–8). For the different
pathways MetPA, identifies the number of compounds that belong in a specific
pathway (hits) and calculates the pathway impact of the differences of con-
centration between the groups as “the sum of the important measures of the
matched metabolites normalized by the sum of the important measures of all
metabolites in each pathway”. Pathways where a single hit was made were removed
from the analysis and only pathways with two or more hits were evaluated. The
ranking of the most important pathways was made based on the impact value.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The metabolomics data are stored at the Department of Advanced Data Management at
Leiden University Medical Center (LUMC; Leiden, NL) and available for researchers
upon submission of a data access request through the CENTER-TBI website: https://
www.center-tbi.eu/data. The authors are not legally allowed to share it publicly. The
authors confirm that they received no special access privileges to the data.
CENTER-TBI is committed to data sharing, and in particular to responsible further

use of the data. Hereto, we have a data sharing statement in place: https://www.center-tbi.
eu/data/sharing. The CENTER-TBI Management Committee, in collaboration with the
General Assembly, established the Data Sharing policy and Publication and Authorship

Guidelines to assure correct and appropriate use of the data as the dataset is hugely
complex and requires help of experts from the Data Curation Team or Bio-Statistical
Team for correct use. This means that we encourage researchers to contact the CENTER-
TBI team for any research plans and the Data Curation Team for any help in appropriate
use of the data, including sharing of scripts. The complete Manual for data access is also
available online: https://www.center-tbi.eu/files/SOP-Manual-DAPR-20181101.pdf.

Code availability
No custom code or mathematical algorithm was used in the methods. All statistical
analyses were conducted in R using published libraries and functions.
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