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1.

It is well known that during the correspondence of Euler and Goldbach the
following conjecture – today known as Goldbach’s conjecture (or sometimes
called even Goldbach conjecture) – was formulated in 1742.

Goldbach Conjecture (Binary Goldbach Conjecture). Every even number
greater than 2 can be written as the sum of two primes.

In his original letter Goldbach formulated two similar, more complicated
conjectures which were actually equivalent with the above and it was Euler
who used the above formulation in his reply letter. However, he noted in
the same letter that Goldbach mentioned him earlier in a conversation the
above simpler and more elegant form. So it is fully justified to attribute the
conjecture to Goldbach.

It is much less known – I learned it from a manuscript of D. Wolke – that
Descartes (1591–1650) mentioned many years before the following assertion
(without any proof), what we will call Descartes Conjecture.

Descartes Conjecture. Every even number can be expressed as the sum
of at most three primes.

This assertion appeared in print first in the collected works of Descartes
only in the 1908 edition ([3], Opuscula Posthuma, Excerpta Mathematica,
Vol. 10, p. 298), so we can rightly assume that Goldbach and Euler did not
hear about this before their correspondence in 1742.
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Descartes does not mention odd numbers in his assertion, but the same
assertion follows trivially for odd numbers from the assertion for even num-
bers.

It is also obvious that if an even N satisfies Descartes Conjecture then
N or N − 2 can be expressed as the sum of two primes. The converse is
clearly also true.

In the present work we will investigate the number of possible exceptional
Descartes numbers below a large bound X, that is (P denotes the set of
primes)

(1.1) D(X) = #

{
n ≤ X; 2 | n, n 6=

j∑
i=1

pi, pi ∈ P, for j ≤ 3

}
.

It is trivial that D(X) ≤ E(X), where

(1.2) E(X) = # {n ≤ X; 2 | n, n 6= p1 + p2, pi ∈ P}

is the size of the exceptional set for Goldbach’s problem.
The strongest published result

(1.3) E(X)� X0.879

is due to Wen Chao Lu [8]. We improved this to

(1.4) E(X)� X0.72

in a work in arXiv ([11]).
Our present goal is to show a sharper estimate for D(X). Earlier meth-

ods did not allow to prove a distinctly sharper bound for even exceptional
Goldbach numbers n if we knew that n− 2 is also an exceptional Goldbach
number.

The crucial point, which makes a more effective treatment of D(X) pos-
sible is an approximate formula for the contribution of the major arcs [10].
This formula shows that a particular L-zero close to the line Re s = 1 can
have a bad effect for the number of Goldbach decomposition of an even
number n (more precisely, for the contribution of the major arcs to it), but
not simultaneously for n and n− 2. We will prove

Theorem 1. D(X)�ε X
3/5+ε for any ε > 0.
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2 Notation. The role of the explicit formula

The explicit formula proved in [10] will play a central role in the proof of
Theorem 1; in order to formulate it we first need to introduce the notation.

Let ε and ε0 be small positive numbers, X be a number large enough
(X > X0(ε, ε0)), and let us define

(2.1) X1 := X1−ε0 , e(u) := e2πiu, S(α) :=
∑

X1<p≤X
log p e(pα), L = logX,

where p, p′, pi will always denote primes. |M| will denote the cardinality of
the finite setM. We will define the major (M) and minor (m) arcs through
the parameters P and Q satisfying (c and C will denote generic absolute
constants)

(2.2) (logX)C ≤ P ≤ X4/9−ε, Q =
X

P
,

(2.3) M =
⋃
q≤P

⋃
a

(a,q)=1

[
a

q
− 1

qQ
,
a

q
+

1

qQ

]
, m =

[
1

Q
, 1 +

1

Q

]
\M.

We will examine the number of Goldbach decompositions of even num-
bers m ∈ [X/2, X] in the form

(2.4) R(m) =
∑

p+p′=m
p,p′≥X1

log p · log p′ = R1(m) +R2(m),

where

(2.5) R1(m) =

∫
M

S2(α)e(−mα)dα, R2(m) =

∫
m

S2(α)e(−mα)dα.

The now standard treatment of the minor arcs (Parseval’s theorem and
the estimate of Vinogradov, reproved in a simpler way by Vaughan) gives

(2.6) |R2(m)| ≤ X√
logX

for P ≤ X2/5

apart from at most CX
P log10X exceptional values m (see Section 5 of [10],

for example).
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In order to formulate the explicit formula for the major arcs in Gold-
bach’s problem we will define the set E = E(H,P, T,X) of generalized excep-
tional singularities of the functions L′/L for all primitive L-functions mod r,
r ≤ P , as follows (χ0 = χ0( mod 1) is considered as a primitive character
mod 1)

(%0, χ0) ∈ E if %0 = 1,(2.7)

(%i, χi) ∈ E if ∃χi, condχi = ri ≤ P, L(%i, χi) = 0,

βi ≥ 1− H

logX
, |γi| ≤ T,

where zeros of L-functions are denoted by % = β+ iγ = 1−δ+ iγ and condχ
denotes the conductor of χ. Zeros are counted with multiplicity. Let further

A(%) = 1 if % = 1,(2.8)

A(%) = −1 if % 6= 1.

The expected main term of R1(m) is the well-known singular series of
Hardy and Littlewood, arising from the effect of the pole of ζ(s) at s = 1:

(2.9) S(m) := S(χ0, χ0,m) :=
∏
p|m

(
1 +

1

p− 1

)∏
p-m

(
1− 1

(p− 1)2

)
.

However, if we have zeros of moderate height near to the line Re s = 1
then we necessarily have a number of secondary terms with coefficients
S(χi, χj ,m) corresponding to the primitive characters belonging to general-
ized exceptional zeros. We will call these characters generalized exceptional
characters, the corresponding singular series S(χi, χj ,m) generalized excep-
tional singular series. They can be expressed in a very complicated explicit
form, proven in the Main Lemma of [10]. However, the important proper-
ties of it can be incorporated into the following theorem, where we use the
notation and conditions of the present section.

Theorem A (Explicit formula). Let 0 < ε < ε0, 2ε < ϑ < 4
9 − ε be any

numbers, 2 | m ∈
[
X
2 , X

]
. Then there exists P ∈ (Xϑ−ε, Xϑ) such that for

X > X0(ε)

R1(m) =
∑
%i∈E

∑
%j∈E

A(%i)A(%j)S(χi, χj ,m)
Γ(%i)Γ(%j)

Γ(%i + %j)
m%i+%j−1(2.10)

+Oε

(
Xe−cH +

X√
T

+X1−ε
)
,
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where the generalized singular series satisfy

(2.11) |S(χi, χj ,m)| ≤ S(χ0, χ0,m) = S(m);

further for any η small enough

(2.12) |S(χi, χj ,m)| ≤ η,

unless the following three conditions all hold,

(2.13) ri|C(η)m, rj |C(η)m, condχiχj < η−3

where C(η) is a suitable constant depending only on η.

Its proof follows from Theorem 1 [10] and Main Lemma 1 of [10].

Remark 1. A very important feature of the explicit formula is that the
number K of generalized exceptional zeros appearing in (2.10) is by the
log-free zero density theorem of Jutila [4].

(2.14) N∗(α, T,Q)�ε (Q2T )(2+ε)(1−α) for ε > 0, α ≥ 4/5

from which

(2.15) K ≤ Ce2H ,

so it is bounded by an absolute constant (depending on ε), if we choose H as
a sufficiently large absolute constant depending on ε, which we suppose later
on in the proof of Theorem 1. Similarly, we will choose T as a sufficiently
large constant depending on ε.

Remark 2. A very important information of the explicit formula is the re-
lation (2.13) which shows that a generalized exceptional character χi causes
a problem only for the quasi-multiples m of its conductor ri.

Although the quoted explicit formula is in general a good starting point
for the proof of

(2.16) R1(m) > εS(m)m

if ϑ is small enough, the argument breaks down in case of the existence of
a Siegel-zero 1 − δ corresponding to L(s, χ1), in which case we might have
S(χ1, χ1,m) = −S(m) and we cannot show the crucial relation (2.22) if δ
is small enough. In this case the Deuring–Heilbronn phenomenon can help.
This case was worked out as Theorem 2 in [10] which we quote now as
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Theorem B. Let ε′ > 0 be arbitrary. If X > X(ε′), ineffective constant
and there exists a Siegel zero β1 of L(s, χ1) with

(2.17) β1 > 1− h/ logX, condχ1 ≤ X
4
9
−ε′ ,

where h is a sufficiently small constant depending on ε′, then

(2.18) E(X) < X
3
5
+ε′ .

Remark 3. Let us fix a sufficiently small ε > 0. Then in the proof of
Theorem 1 we are entitled to suppose that all L(s, χ) functions mod r ≤ P
satisfy

(2.19) L(s, χ) 6= 0 for s ∈ [1− c0/ logX, 1]

if we choose ϑ ≤ 0.44. In other words, we can suppose that there are no
exceptional zeros 1−δ satisfying δ < c0/ logX with a small but fixed c0 > 0.

The well-known relation (cf. [5], p. 46) (Rew,Re z > 0)

(2.20)
Γ(w)Γ(z)

Γ(w + z)
= B(w, z) =

1∫
0

xw−1(1− x)z−1dx

tells us that
(2.21)
|B(%i, %j)| ≤ |B(Re %i,Re %j)| = B(1, 1) +O(1/ logX) = 1 +O(1/ logX).

Hence, taking into account the relations (2.11)–(2.13) we see that the
estimation (2.16) will follow, if we can show

(2.22)
∑∗

%i,%j∈E
(%i,%j)6=(1,1)

X−δi−δj ≤ 1− 5

2
ε,

where the ∗ means that the additional condition (2.13) is satisfied for the
pairs (%i, %j) of zeros in the summation with η chosen as in (4.3) of Section 4.

The expression (2.22) can be estimated directly by density theorems
and the Deuring–Heilbronn phenomenon, as done in the earlier estimates of
Chen-Liu [1], Hongze Li [6], [7], and Lu [8]. It also resembles the well-studied
problem of the Linnik-constant, with the seemingly major disadvantage that

(†) the zeros do not belong to a fixed modulus q ≤ P

but to a set of different moduli ri ≤ P .
During the proof we will show that this disadvantage can be overwhelmed

thanks to the information (2.13) supplied by the explicit formula.
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3 Contribution of the minor arcs

We will use the same treatment for the minor arcs as all earlier works begin-
ning with the pioneering one of I. M. Vinogradov [13] in which he proved the
ternary Goldbach conjecture, the so-called three primes theorem for every
sufficiently large odd numbers, i.e.

(3.1) 2N + 1 = p1 + p2 + p3, pi ∈ P, for N > N0.

This is based for his estimation of trigonometric sums for primes, sim-
plified later by Vaughan (see [2], Chapter 25)
(3.2)

S(α)�
(
X
√
q

+X4/5 + (Xq)1/2
)

log4X if

∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
, (a, q) = 1.

This implies by Parseval’s identity∑
m≤x

R2
2(m) =

∫
m

|S4(α)|dα(3.3)

≤
(
max
m
|S(α)|

)2 1∫
0

|S(α)|2dα� max

(
X2

P
,X8/5

)
XL9.

Vinogradov chose P = LA (with any large A). This choice makes an
asymptotic evaluation of R1(n) possible for all n ≤ X. On the other hand,
in this case we get a relatively weak upper estimate for the contribution of
the minor arcs due to the moderate size of P (cf. (3.3)). It was the idea of
Vaughan [12] and Montgomery–Vaughan [9] to choose P larger. However,
then we lose the possibility of asymptotic evaluation of R1(n) due to the
possible existence of a Siegel-zero. The situation is somewhat easier by a
result of Landau and Page (see [2], Chapter 14) according to which for a
given large X we might have only at most one Siegel-zero with a character
with conductor ≤ X. Then the idea of [12] and [9] was to evaluate the effect
of the possible single Siegel-zero for R1(n). In [9] they are able to choose
P = Xc in such a way with a small fixed absolute constant c > 0.

In our present work we are able to work with a P = Xϑ for any fixed
constant ϑ < 4/9, e.g. with ϑ = 0.4 or 0.44.

Consequently (choosing P ≥ X2/5) we have

(3.4)
∣∣R2(m)

∣∣ ≤ X1−ε with Oε
(
X3/5+3ε

)
exceptions.
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4 Proof of Theorem 1

We will choose P0 = Xϑ+2ε, so our P will satisfy

(4.1) P ∈
[
Xϑ+ε, Xϑ+2ε

]
.

Thus the exceptional set arising from the minor arcs (2.6) will be o(X1−ϑ)
(cf. (3.3)–(3.4)).

We will distinguish two cases.

Case 1. All zeros of all L-functions with a conductor ≤ P satisfy δ ≥ 5ε/L
i.e. β = Re % ≤ 1− 5ε/L.

Case 2. There exists a (real) Siegel zero with a conductor ≤ P satisfying
δ < 5ε/L i.e. β > 1− 5ε/L.

In Case 1 we consider the set R of the K generalized exceptional zeros
appearing in (2.10) whose number K is bounded by an absolute constant
depending on ε,

(4.2) 0 ≤ K ≤ K(ε)− 1

according to (2.15) since we will choose H as a big constant depending on ε.
(If K = 0 we are ready.)

Let us choose now

(4.3) η =
ε

K2(ε)
,

and write

(4.4) C(η) = C1(ε).

In this case the total contribution of terms not satisfying (2.13) will be really
less than εX in (2.10), so (2.22) will really imply (2.16). Let us divide now
the even numbers m in [X/2, X] into at most 2|R| different classes M(R′)
according to the subsetR′ ⊂ R of generalized exceptional zeros which belong
to primitive characters with moduli dividing C1(ε)m

(4.5) M(R′) =
{
m ∈ [X/2, X], 2 | m, ri | C1(ε)m⇔ ri ∈ R′

}
.

(The subset might be empty for some R′ ⊂ R; for example, if l.c.m.
ri∈R′

[ri] >

XC1(ε).)
We have clearly

(4.6) q(R′) := l.c.m.[ri; ri ∈ R′]
∣∣ C1(ε)m for m ∈M(R′).
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Let us consider now a pair of classes R′1,R′2 and the quantities

(4.7) M(R′1), M(R′2), q(R′1), qR′2).

From (4.5)–(4.7), applied for m and m− 2 we obtain with the notation

(4.8) g.c.d.
(
q(R′1), q(R′2)

)
= d, q(R′1) = q1d, q(R′2) = q2d

the relation

(4.9) d | 2C1(ε).

Hence

(4.10) C1(ε)m ≡ 0 (mod q1), C1(ε)m ≡ 2C1(ε) (mod q2)

which implies that there is an aε(m) with

(4.11) C1(ε)m ≡ aε(m) (mod q1q2).

The number of m ≤ x with (4.11) is by (4.8)–(4.11)

(4.12) �ε
X

q(R1)q(R′2)
+ 1.

This means that from the point of proving Theorem 1 we can restrict
our attention to the case when

(4.13) min
(
q(R′1), q(R′2)

)
≤ X1/5.

Summarizing the content of Sections 2–4 let us suppose that

P ∈
[
X2/5, X2/5+ε

]
, m ≤ X

and

(4.14) R(m) = R(m− 2) = 0.

Taking into account that the mean square of the contribution R2(m) of
the minor arcs is small in case of P ≥ X2/5, i.e., by (3.3)–(3.4) it is sufficient
to show that

(4.15) max
(
R1(m), R1(m− 2)

)
> XL−1/2.
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The arguments of (4.7)–(4.13) show that apart from a possible excep-
tional set of size O(X3/5+ε) we can suppose that (4.13) holds, so WLOG we
can assume that

(4.16) q0 := q(R′1) ≤ X1/5, A := logX/ log q0 ≥ 5.

However, in Case 1, i.e. if there are no Siegel-zeros then the main result
of [11] asserts that if (4.16) holds, then by restricting the set E to E ′ for
L-zeros with cond χ | q0 and cond χiχj < C0(ε) we have to show

(4.17) S :=
∑

%i,%j∈E ′,(%i,%j) 6=(1,1)

q
−A(δi+δj)
0 < 1− 5ε.

This is proved in [11] even for A = 25
7 . The case when the LHS of (4.17)

is maximal is treated in (9.36)–(9.37) of [11] (cf. the notation (2.38) of [11])
and yields (λ1 = δ1 log q0) for A = 5, λ1 small

(4.18) S ≤ e−2Aλ1 + 5λ1 < 1−Aλ1/2 = 1− δ1 logX/2 ≤ 1− 5ε/2.

The arguments of Section 2, actually a summary of the results of [10],
show that (4.17) really proves that if m is not in an exceptional set of size
O(X3/5+ε) estimated in (4.12) then

(4.19) R1(m) > (1− ε)mS(m)

Repeating the arguments for the intervals
[
X · 2−ν−1, X · 2−ν

]
we obtain

(4.20) D(X)�ε X
3/5+ε

Finally in Case 2 Theorem B proves (4.20) even in the sharper form
E(X) �ε X

3/5+ε which clearly implies the same inequality for E(X) re-
placed by D(X), i.e. (4.20).
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