
Proc. of the International Conference on Electrical, Computer and Energy Technologies (ICECET)
9-10 December 2021, Cape Town-South Africa

LADA: Locality Aware Distributed Addressing for
Edge/Fog Computing Infrastructures

Mohammed B. Alshawki
Eotvos Lorand University

Budapest, Hungary
Furtwangen University
Furtwangen, Germany

Peter Ligeti
Department of Computeralgebra

Eotvos Lorand University
Budapest, Hungary

ligetipeter@inf.elte.hu

Christoph Reich
Faculty of Informatics
Furtwangen University
Furtwangen, Germany

 christoph.reich@hs-furtwangen.de

Abstract—In edge/fog computing infrastructures, the resources
and services are offloaded to the edge and computations are
distributed among different nodes instead of transmitting them
to a centralized entity. Distributed Hash Table (DHT) systems
provide a solution to organizing and distributing the compu-
tations and storage without involving a trusted third party.
However, the physical locations of nodes are not considered
during the creation of the overlay which causes some efficiency
issues. In this paper, Locality aware Distributed Addressing
(LADA) model is proposed that can be adopted in distributed
infrastructures to create an overlay that considers the physical
locations of participating nodes. LADA aims to address the
efficiency issues during the store and lookup processes in DHT
overlay. Additionally, it addresses the privacy issue in similar
proposals and removes any possible set of fixed entities. Our
studies showed that the proposed model is efficient, robust and
is able to protect the privacy of the locations of the participating
nodes.

Index Terms—DHT, Distributed scheme, Location aware
scheme

I. INTRODUCTION

The nodes in the storage systems with centralized managing
entity store the data in a trusted third party such as a cloud
server that usually has a high computation and storage power.
The fully centralized scheme affects negatively the efficiency
as the system grows. Edge/fog computing scheme, comparing
to the cloud computing tries to distribute the computations
among many edge nodes. One of the challenges in the edge/fog
computing is that how to manage the addressing and allocation
of the participating nodes and their services and resources, as
a centralized managing entity might turns into the bottleneck
in the system. This issue can be addressed by using distributed
techniques such as Distributed Hash Tables (DHT), as it allows
the participating nodes to locally generate their own identifiers

This research has been partially supported by Application Domain Specific
Highly Reliable IT Solutions project which has been implemented with the
support provided from the National Research, Development and Innova-
tion Fund of Hungary, financed under the Thematic Excellence Programme
TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme, by
the European Union, co-financed by the European Social Fund EFOP-3.6.3-
VEKOP-16-2017-00001.

and be positioned in the network based on their generated
identifiers.

DHT creates a logical overlay on top of the physical
underlay network and position the nodes in the logical overlay
based on their identifiers. The identifiers are generated as a
result of hashing an information using a collision resistant hash
function and using its output as the identifiers of the nodes.
Although the randomness of the hash function is one of the
required features in DHT, it may cause some efficiency issues
if used without considering the physical location of nodes.

The location mismatch between the underlay network and
DHT overlay in terms of locations of nodes leads to some
inefficiency in accessing the nodes. The reason is the differ-
ence in the closeness values between underlay and overlay.
This difference happens because the physical path of two
underlying nodes and their closeness value is different from
the logical path of those nodes in the DHT overlay and their
closeness. Some researchers proposed solutions that remove
this mismatch by creating a connection between the under-
lay and the overlay to address this issue. These proposals
utilize different techniques such as the Autonomous System
Numbers (ASNs) of the participating nodes [1], distance
to the known landmarks in the system [2] or clustering [3].
Each of the proposed solutions has its advantages that help to
overcome the DHT locality issue. On the other side, some
privacy and efficiency issues have to be addressed in the
edge/fog computing infrastructure. Locality Aware Distributed
Addressing (LADA) proposes a locality aware overlay that
aims to overcome the privacy and efficiency issues in the DHT
overlay. We presented a preliminary and abstract version of
this paper at MaCS2020. In this paper, we describe and study
the processes and effectiveness of Region-based DHT [4]. The
main contributions of our paper are as following:
• A locality aware overlay that can be applied in edge/fog

computing infrastructure.
• Privacy preserving addressing approach for private par-

ticipants.
• Removing any centralized organizing entity or predefined

members during overlay creation.

978-1-6654-4231-2/21/$31.00 © 2021 IEEE

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

le
ct

ric
al

, C
om

pu
te

r a
nd

 E
ne

rg
y

Te
ch

no
lo

gi
es

 (I
CE

CE
T)

 |
 9

78
-1

-6
65

4-
42

31
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
EC

ET
52

53
3.

20
21

.9
69

87
91

The rest of this paper is organized as follows. In the
next section the DHT is briefly explained and some DHT
based proposals are reviewed. In section three, LADA and its
different components are explained. Section four analyses the
proposed model and discusses the results. Finally, in section
five our conclusions are listed.

II. LITERATURE REVIEW

Using DHT as a distributed storage technology, a logical
overlay of nodes can be created on top of the underlay
network. The resulted overlay and its features are used in
different fields such as decentralised resource discovery mod-
els [5], [6] as an alternative to the trusted third party schemes.
There are a number of implementations such as Pastry [7],
Chord [8], Kademila [9] and Tapestry [10] that can be used
to create a DHT overlay in a given environment. There is
no centralized organizing entity that controls the joining and
leaving processes of the nodes. Any node in DHT can be join
freely the created DHT overlay by using a collision-resistant
one-way hash function that is used in DHT for both node
allocation and data responsibility definition. Upon joining the
DHT overlay, a new node uses the hash function to create its
own seemingly unique identifier. This is done be feeding the
hash function with some unique information such as the IP
address of the node, and using the output of the function as
the identifier of the node. The generated identifier indicates
the logical position of the newly joined node in the overlay.
Since the physical location of nodes is not considered during
the identifier generation, there is no match in term of closeness
between the physical underlay network and the logical DHT
overlay.

As in hash tables [11], the DHT is used to store and then
retrieve the data by using a hash function. DHT is designed
to work in a distributed scheme. The stored data in the DHT
consists of a pair of key/value parameters. The key parameter
is generated by feeding an attribute of the stored data such
as its name or type to the hash function. The value parameter
includes the necessary information to find the actual location
of the required data. The same hash function can be used
for both key generation in the key/value pair and the identifier
generation of the participating nodes. This makes the mapping
between the stored pair and the nodes works by matching the
keys with the identifiers of the nodes in the overlay. If no
exact identifier during matching process has been found, a
closeness function will be used to determine the identifier of
a close node in the DHT overlay that is responsible for storing
the pair of key/value. Later, a similar process will be used to
retrieve the stored value of a given key. It is noteworthy to
mention that for n participating nodes in the overlay, it takes
at most O(log(n)) steps to find a node that is responsible for
storing a specific data based on the key parameter of the stored
pairs. This feature makes the DHT scalable and efficient when
it implements in large scale networks. However, ignoring the
physical location of nodes during overlay creation [7]–[10]
adds a significant delay to the applications that run over it [5],
[6]. To address this issue some researchers proposed solutions

that removes this mismatch by creating a connection between
the underlay and the overlay.

Wu et al. [1] proposed a model called locality aware DHT
that uses ASNs of the participating nodes to create the first part
of the identifiers. This guarantees that the nodes with the same
autonomous system number will have close positions as their
identifiers will have similar prefixes. Its dependence on the IP
addresses of the participating nodes lead to different identifier
when the IP address of the node modifies. Toda et al. [3]
proposed a model of identifier generation for SkipGraph, a
DHT based implementation for data storage, that generates
the identifiers of the generated overlay based on a number of
clusters. The clusters are created based on a predefined list of
hotspots. The newly joined node gets a randomized identifier
that might be modified based on the locality information. By
joining a new node and assigning an initial random identifier,
likely the identifiers of Olog(n) nodes may be changed. This
procedure requires a significant traffic by joining any new node
to the system, that specifically affects the systems with churn.

Authors in [2] proposed LANS, a locality aware identifier
assignment algorithm that is based on known landmarks. The
landmarks are defined prior to the start of the system at
the initialization phase. The identifiers of nodes consists of
prefix and body parts. At system setup the landmarks, that are
considered churn free, are assigned with a dynamic prefixes.
The newly joined node contacts the landmarks and computes
its coordinates based on the latency of the communication to
compute the prefix part of the identifier based on the latency
between the newly joined node and each of the landmarks.
The known points are considered to be fixed and can not
be updated during the system operation. In addition, in the
models that include a predefined set of known points, the
known points might turn into single point of failure and attack.
The main feature that LADA adds to distributed addressing is
locality aware creation of the overlay. It does that considering
the privacy of the participating nodes, without requiring a
predefined and fixed list of nodes, a centralized organizing
node or a need to update of any subset of nodes’ identifiers.

III. LOCALITY AWARE DISTRIBUTED ADDRESSING

LADA uses a collision-resistance hash function that gen-
erates a d-bit digest output to generate the identifiers of the
participating nodes. The identifier of a node in LADA consists
of three parts of representative region, sub region and local
data. In the following sections, the sub-regions and regions
sets, the different types of lookup, the approaches of identifier
generations and the parallelism and replications are discussed.

A. Sub-regions:

LADA consists of local regions (sub-regions) that are
grouped into a number of regions sets. Each region set includes
a number of sub-regions, among which, one representative
sub-region. The model uses a hash function that generates a
fixed d bits digest out of any given input. LADA consists of
maximum 2d/2 region sets, each with a maximum of 2d/2−1
sub-regions and one set representative sub-region. A region

set does not have to reach the maximum number of sub-
regions, and can be created even with one sub-region, namely
the set representative sub-region. The region sets are created
based on any group of geographical regions. In addition to
the region sets, the special region sets include two regions,
private and public regions. Although it is optional for a node
to be part of its geographically close sub-region, any node in
LADA has to be part of these two special regions. The private
region is used to store any private data, to be accessable only
by a specific group of nodes in the system. These data are
protected by symmetric key cryptography. The public region
on the other hand is used to store any data regardless of
its actual physical location. Storing the data in the public
region protects the privacy of the nodes by storing the data
in LADA without revealing the geographical location of the
data owner. Original DHT implementations can be considered
special cases of LADA that includes only one public region.
Fig. 1 illustrates the structure of LADA.

B. Lookup process

The lookup process in LADA can be done in the private
region, public region or in any give sub-region based on the
physical location of the stored data. Based on that, there
are three main lookup types: local lookup, intra lookup and
regional lookup. The local lookup is done when the requesting
node and the target node both belong to the same sub-region.
This means that they lookup initiator and destination nodes
are in the same geographical region. In this case the lookup
process is initiated directly from the initiator node to the
destination node. In the intra lookup, the sub-regions of both
the initiator of the lookup process and the destination of the
lookup process are different, but belong to the same region set.
The lookup process first initiated to get the access data of a
node in the destination sub-region from the set representative
sub-region. In the second phase, the specific node in the
destination sub-region will be reached. In the regional lookup,
the process starts by targeting the set representative sub-region
of the initiator node, then the set representative sub-region
of the destination node, and finally the specific node in the
destination sub-region.

C. Generation of Identifiers

A collision-resistance hash function is used in LADA during
the process of generating the identifiers of the nodes. Each
identifier in LADA consists of 2d bits, considering the use of
hash functions that generates d bits message digest. A node
in the proposed model might have either two or three distinct
identifiers. The generation of identifiers for each newly joined
process passes through two phases to join both private and
public regions using two different generated identifiers, while
the third phase of identifier generation for the local sub-region
is optional. Fig. 2 illustrates these phases.

A new node in LADA uses the collision-resistant hash
function to generate the d-bits digest based on the given input.
A unique local information of the newly joined node is fed to
the hash function as its input, and the output represents its local

node id. Based on the output, it generates two identifiers that
will be used to identify the node in the two special regions.
The 2d-bits identifiers in private region starts with d zeros,
followed by the output of the used collision-resistant hash
functions. The 2d-bits identifier in public region starts with
d ones followed by the output of the used collision-resistant
hash functions. This means that the two generated identifiers
of the same node in both private and public regions share the
same last d bits. The newly joined node can join its local
sub-region as well.

In order to join its local sub-region, the newly joined node
in LADA has to generate the region id and then concatenate
it with the local node id. As mentioned earlier, the regions
in LADA are divided into multiple sets. Each set of sub-
regions has a set representative sub-region and a number
of other sub-regions. To generate the region id part of an
identifier of a newly joined node, the node first get the location
information of the set representative sub-region and fed that
into the collision-resistant hash function. The most left d/2
bits of the output will be used, and the rest will be dropped.
Then, the newly joined node takes the location information
of the local sub-region it belongs to, and fed that into the
collision-resistant hash function. The most right d/2 bits of
the output will be used, and the rest will be dropped. The
location information of the regions in the system can be
constructed by any form such as a prefix of their geographical
latitude/longitude coordinates, or human-readable names. The
last d/2 bits in the region id part of the identifiers of nodes
in the set representative sub-region is set to d/2-bits of zeros.
Considering the Avalanche effect property [12] in the hash
function algorithms, any given subset of generated digests in
hash functions should be affected equally as any other given
subset of the generated digests. Based on that, the generated
region id part in the identifier of nodes that is based on the
left d/2 bits of the digest of the location information of the set
representative sub-region and the right d/2 bits of the digest
of the location information of the local sub-region should not
affect the randomness of the resulted final region id part in
the generated identifiers.

After generating the region id part of the final identifier,
the local node id that is resulted from hashing A unique local
information of the newly joined node is concatenated to form
the identifier of the node in a local sub-region. Fig. 3 shows
the process of generating an identifier of a node in a local
sub-region in LADA. A new node joins LADA through an
introducer node. As any node in LADA can be an introducer
node, we assume that the introducer node is already joined
in LADA and is know by the newly joined node. The new
node can join LADA by initiate a lookup request for its own
identifiers in the respected sub-regions, namely private, public
and local sub-region. By this process, the identifiers of the
newly joined node and its address data will be registered in a
number of nodes in LADA.

Fig. 1. Structure of LADA

Fig. 2. Identifier generation phases

D. Parallelism and Replications

Two of the most important parameters in DHT based sys-
tems such as Kademlia [9] are the parallelism and the global
replications that are denoted by α and k, respectively. A node
in LADA has d lists, each of them with k-buckets [9]. A list
l in the d lists includes the addresses and their corresponding
identifiers to a maximum of k nodes in the same sub-region in
LADA that shares the same d+ l bits of identifiers. k replicas
of any given data in the LADA overlay is stored in k nodes
that their identifier is close to the hash digest of the data, i.e.
its key. The mapping M

M : D → N

is used to find the subset of nodes in LADA as in 1 that are
responsible to store a replica of the stored data in the overlay,
in which D is the set of all possible keys in LADA and Nrg

is the set of all nodes in the sub-region rg in LADA.

M(d) = {n ∈ Nrg : H(d) ≈ idn,
@n′ ∈ Nrg | dst(idn′ , H(d)) < dst(idn, H(d))}

(1)

The dst function is used to compute the logical distance
between any two nodes in LADA. A node in a sub-region
in LADA also keeps a d/2 lists that include the access data
to a maximum of k nodes in the different representative sets
per list that share the same l bits of identifiers in a given
list l. Additionally, the nodes in a set representative sub-
region keep d/2 lists that includes the access data to some
of the nodes in various sub-regions of the same region set.
This ensures the ability of any node in LADA to access any
representative set sub-region, and then through that, to access
any node in a specific sub-region in that region set. There
are number of researches such as in [13] [14] that focus on
analysing parallelism, replications and other factors to improve
the efficiency and latency in DHT based systems. These results
can be applied in LADA to improve the its efficiency.

IV. ANALYSIS AND DISCUSSIONS

One of the mains goals in LADA is to generate the identi-
fiers in the system such that the close nodes in the underlay
network are positioned in close locations in the overlay. This
property prevent the high latency during the store and lookup
processes among various edge/fog nodes int the system. To
study the performance of the proposed model in the large scale,
PeerSim [15] has been used. The Kademlia implementation 1

of DHT overlay in PeerSim has been slightly modified to fit

1http://peersim.sourceforge.net/

Fig. 3. Identifier generation in LADA

different parts of LADA. During studying the performance
of the proposed model, the randomized latency parameters
in Table I have been assumed that are based on the online
available data 2 of possible communication delay.

TABLE I: Network parameters

type parameter
local connection latency 2 ms

sub-regional latency (local region) 3 - 8 ms
intra-regional latency (region set) 10 - 30 ms

long distance latency 80 - 120 ms

The parallelism and replication factors have been set based
on the used parameters in uTorrent 3, the popular implementa-
tion of Kademlia. They are set to four and eight, respectively.
The simulated LADA overlay is constructed as 200 region
sets. Each region set consists of one set representative sub-
region and 199 other sub-regions. Each sub-region consists of
10 thousand up to 50 thousand participating nodes. The local
lookup in a sub-region in LADA has been studied and the
result is showed in Fig. 4 that states the lookup latency with
different number of participating nodes in the sub-region.

The affect of churn on LADA has been studied to evaluate
its availability and robustness. To study its affect, we intro-
duced different ratio of churn in the system. The experiment
has been done in a region with 10 thousand nodes and lasts for
120 thousand milliseconds, with a new lookup request every
ten milliseconds. During the test and over different intervals
from 100 milliseconds and up to 2000 milliseconds, an existing
node has been randomly removed from LADA or a new node
joined. Fig. 5 shows that the lookup delay is 11 milliseconds
higher in a network with 100 millisecond churn rate (i.e. every
100 ms either a node leaves LADA or a new node joins LADA)
comparing to a network that has no churn. The lookup delay
drops below one millisecond in case that the churn rate is
higher than 1600 milliseconds.

The affect of using a local cache in each system has been
studied. In this experiment, various probability of cache hit
from 5% up to 25% have been used. If the lookup is done for

2https://wondernetwork.com/pings
3https://www.utorrent.com/

1 2 3 4 5

·104

45

46

47

48

49

50

lo
ok

up
D

el
ay

(m
s)

region size

Fig. 4. Sub-region lookup delay

0 500 1,000 1,500 2,000

46

48

50

52

54

56

O
ve

ra
ll

D
el

ay
(m

s)

Churn Rate (ms)

Fig. 5. Churn affect on LADA

a frequently lookup data, the probability of the cache hit is
higher than other less frequently lookup data. The experiment
has been done in a region with 10 thousand nodes, in which
a new lookup request every one milliseconds is issued during
the test of our model. Fig. 6 shows that the lookup delay in
LADA has been improved linearly based on the used cache
and type of the lookup data.

Unlike the models [2], [3] that have a set of known
landmarks, LADA has no single or set of known and preset
landmarks. This property removes any possible single point of
attack and failure or points that might turn into performance
bottleneck in the system. Additionally, new sub-regions and
region sets can be created during the system life cycle and
there is no need for the regions to be predefined prior to the
system initialization. Compared to models that are based on
ASNs of the participating nodes [1], distance to the known
landmarks [2], or clustering [3], the participating nodes in
LADA can join only the private and public regions and store
the data in those two regions. Therefore, by joining only the
public regions, their location data can be kept hidden. It is
noteworthy to mention that this comes in the cost of lookup
delay, since the lookup of the stored data in the public region
is done based on the regional lookup process.

0 0.05 0.1 0.15 0.2 0.25

30

35

40

45

Cache hit probability

D
el

ay
(m

s)

Fig. 6. Cache affect on LADA

V. CONCLUSIONS

This paper proposes a locality aware model for overlay
generation and addressing of nodes (LADA) in a distributed
scheme. The model focuses on edge/fog computing infrastruc-
ture where the computation is distributed among many nodes
in the system. The model considers the physical locations of
the participating nodes during the generation of identifiers that
will be used to position the nodes in the created overlay. The
model increases the efficiency of the lookup in a distributed
scheme. It defines several local regions divided into a number
of region sets. The nodes join the local sub-regions based on
their physical locations, and this guarantees the data will be
stored in a physically close node in the overlay. Additionally,

¨ ¨ ¨

the nodes join private and public regions. The private region
stores the private data that can be later accessed based on a
pre-shared key. The data can be stored in the public region
regardless of the physical location of the node. Therefore
their physical locations can be kept hidden and not revealed.
The future directions can include improvements in creating
different region sets, other identifier generation approaches,
and positioning the newly joined nodes.

REFERENCES

[1] W. Wu, Y. Chen, X. Zhang, X. Shi, L. Cong, B. Deng, and X. Li,
“Ldht: Locality-aware distributed hash tables,” in 2008 International
Conference on Information Networking, pp. 1–5, IEEE, 2008.

[2] Y. Hassanzadeh-Nazarabadi, A. Küpç u, and O. Ozkasap, “Decentralized
and locality aware replication method for dht-based p2p storage sys-
tems,” Future Generation Computer Systems, vol. 84, pp. 32–46, 2018.

[3] T. Toda, Y. Tanigawa, and H. Tode, “Autonomous and
distributed construction of locality aware skip graph,” in 2017 14th
IEEE Annual Consumer Communications & Networking Conference
(CCNC), pp. 33–36, IEEE, 2017.

[4] M. B. Alshawki, P. Ligeti, and C. Reich, “Region-based distributed
hash table for fog computing infrastructure,” in 13th Joint Conference
onMathematics and Informatics, pp. 82–83, 2020.

[5] M. B. Alshawki, B. Crispo, and P. Ligeti, “A decentralized and
scalable model for resource discovery in iot network,” in 2019
International Conference on Wireless and Mobile Computing,
Networking and Com-munications (WiMob), pp. 1–4, IEEE, 2019.

[6] M. B. Alshawki, Y. Yan, P. Ligeti, and C. Reich, “A decentralized
resource discovery using attribute based encryption for internet of
things,” in 2020 4th Cyber Security in Networking Conference (CSNet),
pp. 1–3, IEEE, 2020.

[7] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms and Open
Distributed Processing, pp. 329–350, Springer, 2001.

[8] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM Computer Communication Review, vol. 31, no. 4,
pp. 149–160, 2001.

[9] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International Workshop on
Peer-to-Peer Systems, pp. 53–65, Springer, 2002.

[10] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz, “Tapestry: A resilient global-scale overlay for service de-
ployment,” IEEE Journal on selected areas in communications, vol. 22,
no. 1, pp. 41–53, 2004.

[11] W. D. Maurer and T. G. Lewis, “Hash table methods,” ACM Computing
Surveys (CSUR), vol. 7, no. 1, pp. 5–19, 1975.

[12] Y. Yang, X. Zhang, J. Yu, P. Zhang, et al., “Research on the hash func-
tion structures and its application,” Wireless Personal Communications,
vol. 94, no. 4, pp. 2969–2985, 2017.

[13] R. Jimenez, F. Osmani, and B. Knutsson, “Sub-second lookups on
a large-scale kademlia-based overlay,” in 2011 IEEE International
Conference on Peer-to-Peer Computing, pp. 82–91, IEEE.

[14] S. Roos, H. Salah, and T. Strufe, “On the routing of kademlia-type
systems,” Advances in Computer Communications and Networks, 2017.

[15] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simulator,”
in Proc. of the 9th Int. Conference on Peer-to-Peer (P2P’09), (Seattle,
WA), pp. 99–100, Sept. 2009.

