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Abstract: Despite newly developed antiepileptic drugs to suppress epileptic symptoms, approximately one third of pa-
tients remain drug refractory. Consequently, there is an urgent need to develop more effective therapeutic approaches to 
treat epilepsy. A great deal of evidence suggests that endogenous nucleosides, such as adenosine (Ado), guanosine (Guo), 
inosine (Ino) and uridine (Urd), participate in the regulation of pathomechanisms of epilepsy. Adenosine and its ana-
logues, together with non-adenosine (non-Ado) nucleosides (e.g., Guo, Ino and Urd), have shown antiseizure activity. 
Adenosine kinase (ADK) inhibitors, Ado uptake inhibitors and Ado-releasing implants also have beneficial effects on epi-
leptic seizures. These results suggest that nucleosides and their analogues, in addition to other modulators of the nucleo-
side system, could provide a new opportunity for the treatment of different types of epilepsies. Therefore, the aim of this 
review article is to summarize our present knowledge about the nucleoside system as a promising target in the treatment 
of epilepsy. 
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1. INTRODUCTION 

Epilepsy is a neurological disorder characterized by 
chronically recurrent seizures [1-3]. It may also be associated 
with neurobehavioral comorbidities (e.g., impaired cognitive 
functions, abnormal social behavior and increased risk of 
psychiatric disorders) [4]. Various types of brain illnesses, 
such as central nervous system (CNS) infections, traumatic 
brain injury, stroke and febrile seizures, can induce processes 
that may lead to the generation of an epileptic brain (epilep-
togenesis) [3]. As one of the cellular mechanisms of epilep-
togenesis [3], the excessive discharge of highly synchronized 
and hyperexcitable neurons in different brain areas, includ-
ing the cerebral cortex, hippocampus and several subcortical 
structures, may induce different types of epileptic seizures 
[5-7]. Excessive excitatory neurotransmission (e.g., via the 
glutamatergic system) and/or a decrease in inhibitory neuro-
transmission (e.g., via the GABAergic system) may disrupt 
the excitatory/inhibitory balance, which may excite or exac-
erbate epileptic seizures [5-8].  

Approximately 50 million people suffer from epilepsy 
worldwide and approximately 30% of patients are drug 
refractory [9]. This refractory state is possibly due to seizure-
induced adaptive mechanisms, such as overexpression of the 
P-glycoprotein and the multidrug-resistance-associated pro-
tein [10-12]. Although the pathomechanisms (mechanisms of 
pathological processes) of different types of epilepsies 
 
*Address correspondence to this author at the Department of Zoology, Uni-
versity of West Hungary, Savaria Campus, Szombathely, Károlyi Gáspár tér 
4., 9700 Hungary; Tel: 0036 94/504 409; Fax: 0036 94/504 404; 
E-mail: zskovacs@ttk.nyme.hu 

have been elucidated [1-7, 13-18], epilepsy treatment is 
mainly based on the suppression of symptoms by antiepilep-
tic drugs [19, 20], which have severe adverse effects [21, 
22]. Consequently, there is an urgent need to develop new 
therapeutic approaches to find safer and more effective 
antiepileptic strategies to prevent and cure epilepsy. 

Nucleosides, such as adenosine (Ado), guanosine (Guo), 
inosine (Ino) and uridine (Urd), participate in the synthesis 
of DNA and RNA and are involved in gene transcription, the 
storage and conversion of energy and the regulation of 
physiological and pathophysiological processes in the brain 
(e.g., sleep, memory, Parkinson’s disease, psychiatric disor-
ders and epilepsy) [23-34]. In addition, genetic disorders of 
purine or pyrimidine metabolism may be associated with 
different diseases [35-38]. De novo synthesis of nucleosides 
is limited in the adult brain [39]. Therefore, nucleoside 
transport into the brain via the blood-brain barrier and a sal-
vage mechanism supply brain cells with nucleosides [40, 
41]. The nucleosides may be metabolized intracellularly or 
extracellularly (Fig. 1) [40-42] and transported via the nu-
cleoside transporters expressed in brain cells (Table 1) [40, 
41, 43]. There is considerable evidence for neuromodulatory 
functions of nucleosides. Adenosine and Guo can be released 
from synaptosomes [44-49] and may then bind to their spe-
cific receptors [32, 50, 51]; thus, Ado, Guo and most likely 
Urd [52] may be signaling molecules (neuromodulators or 
neurotransmitters) in the brain. Area-, age- and gender-
dependence of nucleoside levels and/or nucleoside metabo-
lism, nucleoside transporters and nucleoside receptors in the 
brain have been described previously, suggesting that nu-
cleosides have different physiological and pathophysiological
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Fig. (1). Pathways of nucleoside metabolism, nucleoside transport and signal transduction mechanisms of nucleoside receptors. Abbrevia-
tions: I: nucleoside transporters; II: ATP channels and transporters; 1: nucleoside mono- and diphosphate kinases and nucleoside di- and 
triphosphate phosphatases; 2: GMPR, GMP reductase; 3: GMPS, GMP synthetase; 4: IMPDH, IMP dehydrogenase; 5: AMPDA, AMP 
deaminase; 6: ASL, adenylosuccinate lyase; 7: ASS, adenylosuccinate synthetase; 8: UCK, uridine-cytidine kinase; 9: 5’NT, 5’-nucleotidase 
(cN); 10: ADK, adenosine kinase; 11: UP, uridine phosphorylase; 12: PNP, purine nucleoside phosphorylase; 13: GDA, guanine deaminase; 
14: XO, xanthine oxidase; 15: ADA, adenosine deaminase; 16: MTAP, 5’-deoxy-5’-methylthioadenosine phosphorylase; 17: SAHH, adeno-
sylhomocysteinase; 18: HGPRT, hypoxanthine phosphoribosyltransferase (hypoxanthine-guanine phosphoribosyltransferase); 19: APRT, 
adenine phosphoribosyltransferase; 20: ecto-ATPase; 21: ecto-ADPase; 22: ecto-5’NT, ecto-5’-nucleotidase (eN); 23: ecto-ADA, ecto-
adenosine deaminase; 24: DPD, dihydropyrimidine dehydrogenase; A1, A2A, A2B and A3: different subtypes of adenosine receptors; Ade: 
adenine; Ado: adenosine; ADP, adenosine diphosphate; AMP: adenosine monophosphate; ATP: adenosine triphosphate; DHU: dihydrouracil; 
Gi, G0, Gs, Gq, Golf: G-proteins (Gi: inhibitory, Gs: stimulatory and so on); GMP: guanosine monophosphate; Gn: guanine; GTP: guanosine 
triphosphate; Guo: guanosine; GuoR: Guo receptor; Hyp: hypoxanthine; IMP: inosine monophosphate; Ino: inosine; MTA: 5’-deoxy-5’-
methylthioadenosine; SAH: S-adenosylhomocysteine; UA: uric acid; UMP: uridine monophosphate; Ura: uracil; Urd: uridine; UrdR: Urd 
receptor; UTP: uridine triphosphate; Xn: xanthine. 

roles in different brain areas and that these roles may be 
modulated by age and gender [30, 31, 53-57]. Among their 
diverse neuromodulatory functions, nucleosides may have a 
role in the modulation of epileptic activity as well [27, 33, 
58-69]. Therefore, drugs or nucleoside derivatives effective 
on nucleoside uptake, nucleoside receptors or nucleoside 
metabolism may be useful for the treatment of different dis-

eases in the CNS, such as epilepsy [31]. Adenosine kinase 
(ADK) inhibitors, Ado uptake inhibitors and Ado-releasing 
implants have also been shown to be effective in treating 
epileptic seizures [27, 32, 65, 67]. In addition, not only Ado 
but also non-Ado nucleosides (e.g., Guo, Ino and Urd) 
showed antiseizure/anticonvulsant activity in various epi-
lepsy models and are potential candidates involved in 
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Table 1. Selectivity of the Nucleoside Transporters and Signaling Mechanisms of Ado Receptors in the CNS 

Nucleoside Transporters and Nucleoside Receptors in the CNS 

A. NUCLEOSIDE TRANSPORTERS 

A.1. EQUILIBRATIVE NUCLEOSIDE TRANSPORTERS (ENTs) 

Substrate Selectivity 
Transporter Type (Protein) 

Purines Pyrimidines Nucleobases 

“es” (ENT1) + + - 

“ei” (ENT2) + + + 

“es” (ENT3) + + + 

(ENT4) Ado - - 

A.2. CONCENTRATIVE NUCLEOSIDE TRANSPORTERS (CNTs) 

Substrate Selectivity 

Transporter Type (protein) 

Purines Pyrimidines Nucleobases 

N1/cif; (CNT2) + Urd (Cyt) - 

N2/cit; (CNT1) Ado + - 

N3/cib; (CNT3) + + - 

N4/cit-like Ado, Guo + - 

N5/cs Ado and Ado analogues - - 

N6/csg Guo - - 

B. ADENOSINE RECEPTORS 

Receptor Type G-protein and Signal Transduction Pathways 

A1 receptor G-protein coupling: 

- Gi, G0 

Messenger pathways (second messengers): 

- cAMP ; Ca2+ channels (N, P, Q type)  

- K+ channel (e. g., GIRK) ; PLC/IP3/DAG  

A2A receptor G-protein coupling: 

- Gs, Golf 

Messenger pathways (second messengers): 

- cAMP  

- Ca2+ channels ; PLC/IP3/DAG  

A2B receptor G-protein coupling: 

- Gs, Gq 

Messenger pathways (second messengers): 

- cAMP ; PLC/IP3/DAG  

A3 receptor G-protein coupling: 

- Gi, Gq 

Messenger pathways (second messengers): 

- cAMP ; PLC/IP3/DAG  

Abbreviations: Ado: adenosine; cAMP: cyclic adenosine monophosphate; CNT1/CNT2/CNT3 transporters: CNT1/CNT2/CNT3 subtype of concentrative nucleoside transporters; 

Cyt: cytosine; DAG: diacylglycerol; ENT1/ENT2/ENT3/ENT4 transporters: ENT1/ENT2/ENT3/ENT4 subtype of equilibrative nucleoside transporters; “ei”: equilibrative, NBTI (S-

(4-nitrobenzyl)-6-thioinosine) insensitive type of ENTs; “es”: equilibrative, NBTI sensitive type of ENTs; Gi, G0, Gs, Gq, Golf: G-proteins; GIRK: G-protein-dependent inwardly rectify-

ing K+ channels; Guo: guanosine; IP3: inositol 1,4,5-triphosphate; PLC: phospholipase C; Urd: uridine 
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epilepsy [58, 60-64, 70]. In this review, we summarize what 
is known about the nucleoside system in the brain in relation 
to its potential application against epileptic seizures. 

2. THE NUCLEOSIDE SYSTEM IN THE BRAIN 

The metabolism of nucleosides is well understood in the 
brain [30, 41, 71-77]. Purines and pyrimidines are synthe-
sized (de novo) from precursor molecules such as carbon 
dioxide, aspartate, 5-phosphoribosyl-1-pyrophosphate 
(PRPP), glutamine, glycine and formyl groups, as well as 
from aspartate and carbamyl-phosphate. Purine and 
pyrimidine bases connect to a D-ribose in ribonucleosides or 
to a 2-deoxy-D-ribose in deoxyribonucleosides [78-80].  

The catabolism of nucleotides may occur through several 
different routes in the brain [30, 40, 41, 72]. Adenosine 
triphosphate (ATP), Urd triphosphate (UTP) and Guo 
triphosphate (GTP) are degraded to their corresponding mo-
nophosphates, namely, Ado monophosphate (AMP), Urd 
monophosphate (UMP) and Guo monophosphate (GMP), 
respectively, by nucleoside di- and triphosphate phospha-
tases (Fig. 1). Metabolism of AMP can lead to the produc-
tion of Ado or Ino monophosphate (IMP), whereas GMP 
may degrade to Guo and IMP. The synthesis of Ado from S-
adenosylhomocysteine (SAH) by adenosylhomocysteinase 
(SAHH, S-adenosylhomocysteine hydrolase) has also been 
demonstrated [81]. Additionally, GMP IMP, IMP GMP, 
AMP IMP and IMP AMP conversions have been demon-
strated in the CNS. The converting enzymes are as follows: 
cytoplasmic 5’-nucleotidase (5’NT, cN), GMP reductase 
(GMPR), GMP synthetase (GMPS), IMP dehydrogenase 
(IMPDH), AMP deaminase (AMPDA), adenylosuccinate 
lyase (ASL) and adenylosuccinate synthetase (ASS) (Fig. 1). 
5’-Nucleotidase also metabolizes UMP to Urd. The degrada-
tion pathway of Ado and Guo can lead to uric acid (UA) via 
Ino, hypoxanthine (Hyp), xanthine (Xn) (Fig. 1) and via 
guanine (Gn) and Xn (Fig. 1) by purine nucleoside phos-
phorylase (PNP), Gn deaminase (GDA), Xn oxidase (XO) 
and Ado deaminase (ADA) [41, 71, 73, 74].  

Urd may be metabolized to dihydrouracil (DHU) via 
uracil (Ura) by dihydropyrimidine dehydrogenase (DPD) and 
Urd phosphorylase (UP). The extracellular (EC) level of Ado 
is maintained and regulated by ecto-5’-nucleotidase (ecto-
5’NT, eN, e5’NT), ecto-Ado kinase (ecto-ADK) and ecto-
Ado deaminase (ecto-ADA) [72, 75, 76] (Fig. 1). The intra-
cellular (IC) salvage mechanism maintains the synthesis of 
ribo- and deoxyribonucleotides by preserving the purine and 
pyrimidine nucleosides and their bases. For instance, Hyp 
and Gn may be converted to IMP and GMP by Hyp phos-
phoribosyltransferase (HGPRT; hypoxanthine-guanine phos-
phoribosyltransferase) (Fig. 1), whereas Ado, adenine (Ade) 
and Urd are converted to AMP and UMP by ADK, Ade 
phosphoribosyltransferase (APRT) and Urd-cytidine (Cyd) 
kinase (UCK), respectively [30, 77]. 

Nucleosides are released from brain cells by reverse 
transport through specific transporters at the cell membrane 
[43] (Table 1). All six (N1-N6) concentrative nucleoside 
transporters (CNT transporters), which are sodium-
dependent and unidirectional, are present in the CNS. Ex-
pression of equilibrative nucleoside transporters (ENT1-
ENT4; bidirectional by facilitated diffusion) (Table 1) has 

also been demonstrated in the brain [30, 43, 82]. The S-(4-
nitrobenzyl)-6-thioinosine (NBTI) sensitive ENTs (“es”) are 
inhibited by low levels of NBTI (on the order of nM concen-
trations), whereas NBTI insensitive ENTs (“ei”) are inhib-
ited by higher concentrations of NBTI (on the order of M). 
Nucleoside base transporters are also detected in the brain 
[30, 43, 82].  

Expression of G-protein-coupled Ado receptor subtypes 
(Gi and G0 or Gq: A1 and A3 receptor; Gs and Golf or Gq: A2A, 
A2B receptor) has been detected in the CNS [30, 32]. Signal-
ing mechanisms activated by Ado receptors [32] are summa-
rized in (Fig. 1 and Table 1). In addition, a great deal of evi-
dence suggests that both Urd [83, 84] and Guo [50, 51] may 
bind to their selective receptors, most likely the G-protein-
coupled receptors UrdR and GuoR, in the CNS (Fig. 1). 

3. MODULATORY ROLE OF NUCLEOSIDES ON 

EPILEPTIC ACTIVITY 

The modulatory role of Ado in different brain diseases 
involving epilepsy has been investigated extensively [31, 32, 
85-87], and some of the drugs that have effects on the adeno-
sinergic system (e.g., ADK inhibitors) may also be used in 
the treatment of epileptic seizures [32, 86]. However, non-
Ado nucleosides, such as Guo, Ino and Urd, may also de-
crease the EC level of the excitatory neurotransmitter gluta-
mate and/or increase GABAergic inhibition [88-90] and par-
ticipate in pathophysiological processes of epilepsy [58-64]. 
Consequently, not only Ado [27, 33, 65-67] but also non-
Ado nucleosides (e.g., Ino, Guo and Urd) and their deriva-
tives may be potential drugs in the treatment of different 
types of epilepsies. Therefore, in this review, we focused on 
the effects of Ado, Ino, Guo and Urd on epileptic activity. 

3.1. Adenosine 

Adenosine, a neuromodulator agent, is the primary in-
hibitor of neuronal activity. Consequently, it may serve as an 
endogenous anticonvulsant molecule. Its inhibitory action is 
mainly exerted by A1 receptors, although A2A receptors may 
also be involved in different epilepsy models [91-96] (Table 
3). A1 receptor expression has been observed both presynap-
tically and postsynaptically. Presynaptic receptors decrease 
the release of neurotransmitters, whereas they stabilize the 
membrane potential postsynaptically [97-100]. It is likely 
that Gi/0 proteins are involved in these actions [99, 101]. It 
has also been demonstrated in the hippocampus that gluta-
mate increases the Ado level via NMDA receptor activation, 
which may inhibit glutamate release presynaptically via A1 
receptors [102]. The inhibition by Ado may be sufficient (i) 
to regulate the spreading of seizures, (ii) to decrease epileptic 
activity (Table 3) and (iii) for seizure termination [96, 101, 
103-108]. An increase in the Ado level in epileptic brain 
tissue has been demonstrated [109-112]. Consequently, in-
creasing the Ado level in the brain by specific inhibitors of 
nucleoside metabolic enzymes (e.g., ADA and ADK inhibi-
tors) and nucleoside transporters (Table 2; Fig. 2A and 2B), 
or by Ado-releasing grafts (in which Ado metabolizing en-
zymes are inactivated) (Table 4), ketogenic diets or direct 
(focal) infusion of Ado (Table 4) may have seizure-
preventing/decreasing effects [110, 113-121]. 
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Table 2. Effects of Nucleoside Metabolic Enzyme Inhibitors and Nucleoside Transporter Inhibitors on Seizures in Different Type of 

Epilepsy Models 

Inhibitor Name Seizure Model Effects of Inhibitors Ref. 

Nucleoside Metabolic Enzyme Inhibition 

Mg2+-free condition, electrically-induced (rat hip-
pocampal slices) epileptiform activity 

Decreased epileptiform activity [135] 

Mg2+-free artificial cerebrospinal fluid-evoked (rat 
neocortical slices) epileptiform activity 

Decreased epileptiform activity [141] 

Maximal electroshock(MES)-induced seizures in 
rats 

Anticonvulsant effect [139, 141] 

Bicuculline-induced (rat prepiriform cortex) sei-
zures 

Anticonvulsant effect [134] 

5'-iodotubercidin 

(ADK inhibitor) 

Kainic acid-induced (hippocampus) seizures in 
mouse 

Seizure suppression [93] 

Maximal electroshock(MES)-induced seizures in 
rats 

Anticonvulsant effect [139, 141] 

Mg2+-free artificial cerebrospinal fluid-evoked (rat 
neocortical slices) epileptiform activity 

Decreased epileptiform activity [141] 

5'-amino-5'-deoxyadenosine 

(ADK inhibitor) 

Bicuculline-induced (rat prepiriform cortex) sei-
zures 

Anticonvulsant effect [134, 143] 

Maximal electroshock(MES)-induced seizures in 
rats 

Anticonvulsant effect [141] 5'-deoxy-5-iodotubercidin 

(ADK inhibitor) 

Mg2+-free artificial cerebrospinal fluid-evoked (rat 
neocortical slices) epileptiform activity 

Decreased epileptiform activity [141] 

Maximal electroshock(MES)-induced seizures in 
rats 

Anticonvulsant effect [141] GP683 

(and other ADK inhibitor analogues) 

Mg2+-free artificial cerebrospinal fluid-evoked (rat 
neocortical slices) epileptiform activity 

Decreased epileptiform activity [141] 

Mg2+-free artificial cerebrospinal fluid-evoked (rat 
neocortical slices) epileptiform activity 

Increased epileptiform activity [141] 

Bicuculline-induced (rat hippocampal slices; Mg2+-
free condition) epileptiform activity 

Decreased epileptiform activity [170] 

Vestibular stimulation of genetically seizure-prone 
epilepsy-like (EL) mouse 

Seizure reduction [171] 

EHNA 

(ADA inhibitor) 

Pentylenetetrazole-induced (tail vein infusion) 
seizures in mice 

Increased seizure latency [171] 

Bicuculline-induced (rat prepiriform cortex) sei-
zures 

Anticonvulsant effect [134, 143] 2'-deoxycoformycin 

(ADA inhibitor) 

Mg2+-free artificial cerebrospinal fluid-evoked (rat 
neocortical slices) epileptiform activity 

Increased epileptiform activity [141] 

Bicuculline-induced (rat hippocampal slices; Mg2+-
free condition) epileptiform activity 

Decreased epileptiform activity [170] 

Vestibular stimulation of genetically seizure-prone 
epilepsy-like (EL) mouse 

Seizure reduction [171] 

Mouse threshold maximal electroshock (tran-
sauricular electrodes) seizure 

Increased in current required to 
elicit tonic hind limb extension 

[171] 

Rat supramaximal electroshock (transauricular 
electrodes) seizure 

Protective effect [171] 

Kindling (rat amygdala) model Seizure reduction [171] 

BW534U87 

(ADA and voltage-gated Na+ channel inhibitor) 

Pentylenetetrazole-induced (tail vein infusion) 
seizures in mice 

Increased seizure latency [171] 
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(Table 2) contd…. 

Inhibitor Name Seizure Model Effects of Inhibitors Ref. 

Nucleoside Metabolic Enzyme Inhibition 

Allopurinol 

(XO inhibitor) 
Epileptic patients with tonic clonic generalized 
seizure, generalized tonic, generalized atonic, or 
complex partial seizure, etc. 

Seizure reduction [172-176] 

Nucleoside Transporter Inhibition 

Pentylenetetrazole-induced (intravenous applica-
tion) seizures in mice 

Increased seizure threshold [215] 

Mg2+-free artificial cerebrospinal fluid-evoked (rat 
neocortical slices) epileptiform activity 

Decreased epileptiform activity [141] 

Bicuculline-induced (rat hippocampal slices) 
epileptiform activity 

Decreased epileptiform activity [168] 

Dipyridamole 

Lithium-pilocarpine-induced status epilepticus in 
rats 

Protective effect [216] 

Mg2+-free artificial cerebrospinal fluid-evoked (rat 
neocortical slices and human neocortical slices) 
epileptiform activity 

Decreased epileptiform activity [141, 219] NBTI 

Bicuculline-induced (rat prepiriform cortex) sei-
zures 

Anticonvulsant effect [134] 

Bicuculline-induced (rat prepiriform cortex) sei-
zures 

Anticonvulsant effect [134, 143] Dilazep 

Kainic acid-induced (rat prepiriform cortex) sei-
zures 

Seizure protection [214] 

Ketamine-induced (intraperitoneal injection) 
epileptiform activity 

Decreased epileptiform activity [217] 

Kindling (rat amygdala) model Seizure suppression [213] 

Theophylline-induced (intravenous application) 
seizures 

Proconvulsant effect [224] 

Papaverine 

Bicuculline-induced (rat prepiriform cortex) sei-
zures 

Anticonvulsant effect [134] 

Soluflazine Mg2+-free condition, electrically-induced (guinea-
pig hippocampal slices) epileptiform activity 

Decreased epileptiform activity [218] 

Abbreviations: ADA: adenosine deaminase; ADK: adenosine kinase; BW534U87: (1-[(2,6-difluorophenyl)-methyl]-1H-1,2,3-triazolo[4,5-c]) pyridine-4-amine mono hydrochloride); 

GP683: 4-(N-phenylamino)-5-phenyl-7-(5'-deoxyribofuranosyl)pyrrolo[2, 3-d]pyrimidine; EHNA: erythro-9-(2-hydroxy-3-nonyl)adenine; NBTI: S-(4-nitrobenzyl)-6-thioinosine; 

Ref.: references; XO: xanthine oxidase 

 
Table 3. Effects of Adenosine Receptor Agonists and Antagonists on Seizures in Different Type of Epilepsy Models 

Drug Name Seizure Model Effects of Drugs Ref. 

Ado Receptor Agonists 

Kainic acid-induced (rat prepiriform cortex) seizures Anticonvulsant effect [214] 

Kindling (rat amygdala, caudate nucleus) model Seizure reduction [119, 272] 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in rats Seizure reduction [256] 

Bicuculline-induced (rat prepiriform cortex) seizures Seizure protection [267] 

Bicuculline-induced (rat hippocampal slices) epileptiform activity Decreased epileptiform activity [168] 

Bicuculline-induced (tail vein infusion) seizures in rats Increased seizure threshold [143] 

NECA 

(non-selective 
adenosine receptor 
agonist) 

Audiogenic seizures (audiogenic-seizure-sensitive DBA/2 mice) Seizure prevention [95] 
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(Table 3) contd…. 

Drug Name Seizure Model Effects of Drugs Ref. 

Ado Receptor Agonists 

Kindling (rat amygdala, and hippocampus) model Seizure suppression, seizure 
prevention 

[115, 116, 213, 258-260] 

Pilocarpine-induced (intraperitoneal injection) seizures in rats Blocked seizure appearance [258, 261] 

Pilocarpine-induced (hippocampus) seizures in rats Seizure protection [262] 

Lithium-pilocarpine-induced status epilepticus in rats Protective effect [216] 

Pentylenetetrazole-induced (intravenous application) seizures in rats Increased seizure threshold [265] 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in rats Partial seizure protection [204] 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in 
mice 

Increased seizure latency [118] 

Pentylenetetrazole-induced seizures in rats Suppressed/abolished tonic 

phase of generalized tonic-
clonic seizures 

[255] 

Kainic acid-induced (intraperitoneal injection) seizures in mice Increased seizure latency [118] 

Electroshock-induced seizures in rats Protective effect [263] 

Bicuculline-induced (rat prepiriform cortex) seizures Seizure protection [267] 

Bicuculline-induced (rat hippocampal slices) epileptiform activity Decreased epileptiform activity [168] 

3-mercaptopropionic acid-induced (intraperitoneal injection) seizures 

in mice 

Increased seizure latency [118] 

3-nitropropionic acid-induced (intraperitoneal injection) seizures in 
mice 

Anticonvulsant effect [266] 

2-CLA 

(A1 receptor ago-

nist) 

Mg2+-free condition-induced (human neocortical slices) epileptiform 
activity 

Decreased/blocked epileptiform 
activity 

[219] 

Kindling (rat piriform cortex, hippocampus, and amygdala) model Anticonvulsant effect [273-277] 

Lithium-pilocarpine-induced status epilepticus in rats Protective effect [216] 

Pentylenetetrazole-induced (subcutane, and intraperitoneal injection) 
seizures in mice 

Protective effect [237] 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in 
mice 

Increased seizure latency [118] 

Pentylenetetrazole-induced (intravenous application) seizures in rats Increased seizure threshold [265] 

Bicuculline-induced (rat prepiriform cortex) seizures Seizure protection [267] 

Bicuculline-induced (rat hippocampal slices) epileptiform activity Decreased epileptiform activity [168] 

Kainic acid-induced (intraperitoneal injection) seizures in mice Increased seizure latency [118] 

3-mercaptopropionic acid-induced (intraperitoneal injection) seizures 
in mice 

Increased seizure latency [118] 

CHA 

(A1 receptor ago-
nist) 

Electrical stimulation rat models of status epilepticus Seizure suppression [257] 

Maximal electroshock (MES; ear-clip electrodes)-induced seizures 

in mice 

Increased electroconvulsive 

threshold 

[285] 

Kainic acid-induced (hippocampus) seizures in mice Seizure suppression [92] 

Genetically epilepsy-prone rat (GEPR-9 strain; activation of seizures 
by auditory stimulus) 

Seizure suppression [94] 

CCPA 

(A1 receptor ago-

nist) 

Pilocarpine-induced (hippocampus) seizures in rats Seizure protection [253] 
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(Table 3) contd…. 

Drug Name Seizure Model Effects of Drugs Ref. 

Ado Receptor Agonists 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in rats 
and in mice 

Seizure reduction, anticonvul-
sant effect 

[254, 256] 

Pentylenetetrazole-induced seizures in rats Suppressed/abolished tonic 
phase of generalized tonic-

clonic seizures 

[255] 

Bicuculline-induced (intraperitoneal injection) seizures in mice Anticonvulsant effect [254] 

Audiogenic seizures (audiogenic-seizure-sensitive DBA/2 mice) Seizure prevention [95] 

 

PPS (perforant path stimulation) rat model of status epilepticus Decreased progression from 

self-terminating seizures to self-

sustaining status epilepticus 
(SSSE) and decreased severity 

of SSSE 

[68] 

Kainic acid-induced (intraperitoneal injection) seizures in rats Delayed status epilepticus pres-
entation 

[235] 

4-aminopyridine-induced (rat hippocampal slices) epileptiform activity Decreased epileptiform bursting 

duration 

[269] 

3-mercaptopropionic acid-induced seizures Increased seizure latency [271] 

Aminophylline-induced (intraperitoneal application) seizures in mice Delayed time to onset of clonic 
convulsions 

[279] 

Bicuculline-induced (rat prepiriform cortex) seizures Seizure protection [267] 

Electrical stimulation rat models of status epilepticus Seizure suppression [257] 

CPA 

(A1 receptor ago-

nist) 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in rats Seizure protection [204] 

Pentylenetetrazole-induced (intravenous application) seizures in rats Increased seizure threshold [265] D-PIA 

(A1 receptor ago-
nist) 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in 
mice 

Increased seizure latency [118] 

Penicillin-induced (rabbit cortex) epileptiform activity Prevents the spreading of the 
epileptic activity 

[106] 

Potassium-induced (rat hippocampal slices) epileptiform activity Blocked epileptiform bursting [280] 

Bicuculline-induced (rat hippocampal slices) epileptiform activity Decreased epileptiform activity [168] 

Kindling (rat amygdala, hippocampus, caudate nucleus) model Seizure reduction [119, 272] 

Pilocarpine-induced seizures in rats Anticonvulsant effect [270] 

3-mercaptopropionic acid-induced (intraperitoneal injection) seizures 
in mice 

Increased seizure latency [118] 

Kainic acid-induced (intraperitoneal injection) seizures in mice Increased seizure latency [118] 

Pentylenetetrazole-induced (intravenous application) seizures in rats Increased seizure threshold [265] 

L-PIA 

(A1 receptor ago-

nist) 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in 
mice 

Increased seizure latency [118] 

Pilocarpine-induced (intraperitoneal injection) seizures in rats Reduced seizure occurrence [268] 

Pilocarpine-induced (intraperitoneal injection) seizures in rats Anticonvulsant effect [180] 

R-PIA 

(A1 receptor ago-
nist) 

4-aminopyridine-induced (rat hippocampal slices) epileptiform activity Decreased epileptiform bursting 
duration 

[269] 
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(Table 3) contd…. 

Drug Name Seizure Model Effects of Drugs Ref. 

Ado Receptor Agonists 

3-nitropropionic acid-induced (intraperitoneal injection) seizures in 
mice 

Anticonvulsant effect [266] 

Bicuculline-induced (rat prepiriform cortex) seizures Seizure protection [267] 

 

Hypoxia-induced convulsions in mice Prolonged latency to convul-
sions 

[278] 

S-PIA 

(A1 receptor ago-

nist) 

Bicuculline-induced (rat prepiriform cortex) seizures Seizure protection [267] 

Audiogenic seizures (audiogenic-seizure-sensitive DBA/2 mice) Seizure prevention [95] 

Electroshock (ear-clip electrodes)-induced seizures in mice Increased electroconvulsive 
threshold 

[428] 

APNEA 

(A1/A3 receptor 
agonist) 

Kindling (rat amygdala) model Enhanced anticonvulsive effect 
of antiepileptic drugs (e.g. car-

bamazepine and valproate) 

[296] 

Kindling (rat piriform cortex) model Proconvulsant effect [273, 276] 

Audiogenic seizures (audiogenic-seizure-sensitive DBA/2 mice) Seizure prevention [95] 

CGS 21680 

(A2A receptor 

agonist) 

Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats (animal model of 
human absence epilepsy) 

Increased absence epileptic 
activity 

[302] 

CPCA 

(A2A receptor 

agonist) 

Genetically epilepsy-prone rat (GEPR-9 strain; activation of seizures 
by auditory stimulus) 

Seizure suppression [94] 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in rats Seizure reduction [256] 2-HE-NECA 

(A2A receptor 

agonist) 
Audiogenic seizures (audiogenic-seizure-sensitive DBA/2 mice) Seizure prevention [95] 

Ado Receptor Antagonists 

Kindling (rat piriform cortex, hippocampus, and amygdala) model Proconvulsant effect/no effect 
on seizures 

[273-277, 281] 

Mg2+-free artificial cerebrospinal fluid-evoked epileptiform activity Increased occurrence of sei-
zures/enhanced duration and 

intensity of epileptiform activity 

[300] 

Mg2+-free condition-induced (rat hippocampal slices) epileptiform 
activity 

Induced persistent epileptiform 
discharges 

[303] 

CPT 

(A1 receptor an-

tagonist) 

4-aminopyridine-induced (rat hippocampal slices; Mg2+-free condi-
tion) epileptiform activity 

Enhanced discharge rate [140] 

Audiogenic seizures (audiogenic-seizure-sensitive DBA/2 mice) Proconvulsant effect [95] DPCPX 

(A1 receptor an-

tagonist) 
Pilocarpine-induced (intraperitoneal injection) seizures in rats Proconvulsant effect [180] 

Pilocarpine-induced (intraperitoneal injection) seizures in rats Reduced seizure occurrence [268] 

Audiogenic seizures (audiogenic-seizure-sensitive DBA/2 mice) Proconvulsant effect [95] 

SCH 58261 

(A2A receptor 
antagonist) 

Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats (animal model of 
human absence epilepsy) 

Decreased absence epileptic 
activity 

[302] 

Audiogenic seizures (audiogenic-seizure-sensitive DBA/2 mice) Proconvulsant effect [95] DPMX 

(A2A receptor 

antagonist) 
Pilocarpine-induced (intraperitoneal injection) seizures in rats Proconvulsant effect [180] 
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(Table 3) contd…. 

Drug Name Seizure Model Effects of Drugs Ref. 

Ado Receptor Antagonists 

KF 17837 

(A2A receptor 
antagonist) 

Audiogenic seizures (audiogenic-seizure-sensitive DBA/2 mice) Proconvulsant effect [95] 

Kindling (rat amygdala) model Anticonvulsant effect [301] 

Mg2+-free artificial cerebrospinal fluid-evoked epileptiform activity Decreased epileptiform activity [300] 

ZM 241385 

(A2A receptor 
antagonist) 

Pentylenetetrazole-induced seizures in rats Moderately suppressed tonic 
phase of generalized tonic-
clonic seizures 

[255] 

MRS 1191 

(A3 receptor 
antagonist) 

Mg2+-free artificial cerebrospinal fluid-evoked epileptiform activity Decreased epileptiform activity [300] 

Abbreviations: 2-CLA: 2-chloroadenosine; 2-HE-NECA: 2-hexynyl-5'-N-ethyl-carboxamidoadenosine; Ado: adenosine; APNEA: N6-2-(4-aminophenyl)ethyladenosine; CCPA: 2-

chloro-N6-cyclopentyladenosine; CGS 21680: (2-(4-(2-carboxyethyl)-phenylamino)-5'-N-ethylcarboxamidoadenosine; CHA: N6-cyclohexyladenosine; CPA: N6-cyclopentyl-

adenosine; CPCA: 5’-(N-cyclopropyl)-carboxamido-adenosine; CPT: 8-cyclopentyl-1,3-dimethylxanthine; DPCPX: 8-cyclopentyl-1,3-dipropylxanthine; D-PIA: D-N6-(2-

phenylisopropyl) adenosine; DPMX: 3,7-dimethyl-1-propylxanthine; KF 17837: (E,18%-Z,82%)7-methyl-8-(3,4-dimethoxystyryl)-1,3-dipropylxanthine; L-PIA: L-N6-(2-

phenylisopropyl) adenosine; MRS 1191: 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate; NECA: 5’-(N-ethyl)carboxamido-

adenosine; Ref.: references; R-PIA: R-N6-(2-phenylisopropyl) adenosine; SCH 58261: 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo-(4,3-c)1,2,4-triazolo(1,5 -c)-pyrimidine; S-

PIA: S-N6-(2-phenylisopropyl) adenosine; ZM 241385: 4-(2-[7-amino-2-[2-furyl]-[1,2,4] triazolo [2,3-a]{1,3,5}triazin-5-yl-amino] ethyl)phenol 
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Fig. (2). The chemical structure of some ADK, ADA and XO inhibitors and nucleoside transporter blockers previously used in epilepsy re-
search. Abbreviations: EHNA: erythro-9(2-hydroxy-3-nonyl)adenine; NBTI: S-(4-nitrobenzyl)-6-thioinosine. 
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Table 4. Effects of Nucleosides on Seizures in Different Type of Epilepsy Models 

Nucleoside Name Seizure Model Effects of Nucleosides Ref. 

Direct (focal) Application of Urd 

Pentylenetetrazole-induced (mice) seizures Anticonvulsant effect [350] 

Penicillin (frog cortex)- and penicillin plus pentylenetetrazole-induced 

seizures 
Anticonvulsant effect [351, 352] 

Bicuculline-induced seizures Anticonvulsant effect [354] 

Electroconvulsive model in rats Anticonvulsant effect [353] 

Kindling (rat hippocampus) model 
Antiepileptogenic and anticon-

vulsant effect 
[63, 64] 

Urd 

Lithium-pilocarpine-induced (intraperitoneal) status epilepticus in rats Reduced EEG spike frequency [63] 

Direct (focal) Application of Guo 

Quilonilic acid-induced (intracerebroventricular application) seizures 

in mice and in rats 
Seizure prevention [60-62, 368, 373-377] 

Guo 

-dendrotoxin-induced (intracerebroventricular application) seizures 

in mice 
Seizure prevention [371] 

Direct (focal) Application of Ino 

Quilonilic acid-induced (intracerebroventricular application) seizures 

in mice 
Seizure prevention [392] 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in mice Increased seizure latency [118, 390] 

Bicuculline-, pentylenetetrazole- and picrotoxin-induced (tail vein 

infusion and intraperitoneal injection) seizures in mice 
Increased seizure threshold [58] 

Ino 

Caffeine-induced seizures in mice Seizure reduction [391] 

Direct (focal) Application of Ado 

Bicuculline-induced (rat hippocampus) seizures (focally injected Ado 

by infusion pump into hippocampus) 
Seizure prevention [117] 

Kainic acid-induced (intraperitoneal injection) seizures in rats (deliv-

ery of Ado by osmotic micropump into hippocampus) 
Seizure reduction [138] 

Lithium-pilocarpine-induced status epilepticus in rats (intraperitoneal 

application of Ado) 
Protective effect [216] 

Penicillin-induced (rat cortex) epileptiform activity (intracortical and 

intracerebroventricular application of Ado) 
Decreased epileptiform activity [120] 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in rats Seizure protection [204] 

Pentylenetetrazole-induced (intraperitoneal injection) seizures in mice Increased seizure latency [118] 

Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats (animal model of hu-

man absence epilepsy) 
Increased absence epileptic activity [309] 

4-aminopyridine-induced (rat hippocampal slices; Mg2+-free condi-

tion) epileptiform activity 
Decreased epileptiform activity [140] 

Bicuculline-induced (rat hippocampal slices) epileptiform activity Decreased epileptiform activity [168] 

Ado 

Mg2+-free condition-induced (human neocortical slices) epileptiform 

activity 
Decreased epileptiform activity [219] 
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(Table 4) contd…. 

Nucleoside Name Seizure Model Effects of Nucleosides Ref. 

Adenosine-releasing Polymers (Brain Implants) 

Kindling (rat hippocampus) model (Ado releasing synthetic polymer 

implanted into rat lateral ventricle) 
Seizure reduction [114] 

Kindling (rat hippocampus) model (Ado releasing silk-based polymer 
implanted into rat infrahippocampal fissure) 

Seizure suppression and retarda-
tion of kindling acquisition 

[407, 408] 

Gene Therapy, Ado-releasing Cells (Brain Implants) 

Downregulation of ADK by adenoassociated virus 8(AAV8)-mediated 
RNA interference in the hippocampus of spontaneously epileptic Adk-

tg/ADK overexpressing transgenic mouse 

Seizure reduction [414] 

Mouse model of focal epileptogenesis, kainic acid-induced (mouse 

amygdala) seizures (human mesenchymal stem cells with a knock-
down of ADK by lentiviral RNAi transplanted into mouse infrahippo-

campal fissure) 

Seizure reduction [410-412] 

Kindling (rat hippocampus) model (encapsulated Ado releasing cells, 
fibroblasts, myoblasts, glial precursor cells and baby hamster kidney 

cells implanted into the rat lateral ventricle) 

Seizure suppression [113, 417, 419, 420] 

Kindling (rat hippocampus) model (Ado releasing mouse embryonic 

stem cell-derived neural progenitor cells implanted into rat infrahippo-
campal fissure) 

Suppressed kindling epilepto-

genesis 
[422] 

 

Mouse model of focal epileptogenesis, kainic acid-induced (mouse 
amygdala) seizures (Ado releasing mouse embryonic stem cell-derived 

neural progenitor cells implanted into mouse infrahippocampal fissure) 

Lack of spontaneous seizures [165] 

Abbreviations: ADK: adenosine kinase; Ado: adenosine; Guo: guanosine; Ino: inosine; Ref.: references; Urd: uridine 

3.1.1. Modulation of Adenosine Levels and Epileptic Activ-

ity by Metabolic Enzymes 

Regionally different Ado levels have been demonstrated 
in the human brain tissue [56]. The highest Ado concentra-
tions (17.2-23.9 pmol/mg) were measured in the vestibular 
nuclei, cochlear nuclei and cerebellar cortex, while the low-
est levels (1.4-2.4 pmol/mg) were demonstrated in the en-
torhinal cortex, locus coeruleus, habenula and zona incerta. 
Different cortical areas and limbic areas may be involved in 
epileptogenesis; the entorhinal cortex and hippocampus con-
tained low to medium levels of Ado [56]. In addition, the 
highest Ado immunoreactivity was determined in the py-
ramidal cells of the hippocampus and granule cells of the 
dentate gyrus [122]. Approximately two-fold higher EC Ado 
levels were measured in the rat striatum (1.92 M) than in 
the hippocampus (0.93-0.95 M) and thalamus (0.95 M) 
[112, 123-126]. In addition, uneven distributions of ADA 
activity and ADK activity, which may regulate Ado levels in 
the brain tissue, were revealed in the different brain areas. 
For example, the activity of ADA was intermediate to low in 
the hippocampus and intermediate to high in the cortical 
areas [31, 127-129], and intermediate/low and very low lev-
els of ADK activity were demonstrated in the cortex and 
hippocampus, respectively [31, 93, 130]. ADA activity de-
creased with age in the cortex and hippocampus [131], which 
may induce an increase in Ado levels in elderly people. In-
deed, concentrations of Ado exhibit age-dependent altera-
tions in the human cerebral cortex (Ado concentration was 

higher in the elderly compared with middle-aged subjects) 
[57] and in all areas of the rat brain [132]. The highest level 
of SAH in the rat striatum and its modification by age has 
also been demonstrated [132, 133], suggesting that SAHH 
activity is also unevenly distributed and may change with 
age in the brain.  

Because of its lower Km value (ADK: 2.0 M; ADA: 
17.0 M) [130], ADK may be the key enzyme in Ado-level 
modulation [66, 134]; thus, inhibition of ADK by ADK in-
hibitors (e.g., 5’-iodotubercidin, 5'-amino-5'-deoxyadenosine, 
5'-deoxy-5-iodotubercidin (Fig. 2A) and 4-(N-phenylamino)-
5-phenyl-7-(5'-deoxyribofuranosyl)pyrrolo[2,3-d]pyrimidine 
/GP683) (Table 2), which disrupts the metabolic clearance of 
Ado, induces an increase in the release of neuroprotective 
endogenous Ado [135-137]. An increased concentration of 
Ado enhances A1-mediated presynaptic inhibition in the hip-
pocampus [136] and decreases the seizure activity in differ-
ent models of epilepsy, such as the maximal electroshock 
(MES) seizure model, the kainic acid mouse and rat models, 
the Mg2+-free condition-induced epilepsy model and the 
bicuculline-induced seizure model [93, 134, 135, 138-143]. 
The role of ADK in the modulation of epileptic activity was 
strengthened by Gouder et al. [93] in the epileptic hippo-
campus in which overexpressed ADK decreased the level of 
Ado [27, 144] and increased epileptic activity, whereas re-
duced ADK activity by the ADK inhibitor 5’-iodotubercidine 
decreased epileptic activity. Astrocytes play crucial role in 
ADK-dependent modulation of Ado levels [27, 135, 144, 
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145] because ADK expression was greatest in the astrocytes 
in the adult brain [146], and the largest Ado release was 
measured from astrocytes (derived indirectly from degrada-
tion of astrocyte-released ATP and directly via nucleoside 
transporters) [29, 147-150]. It has also been demonstrated 
that an increase of ADK expression under pathological con-
ditions may cause an Ado deficiency, which may be consid-
ered a pathological hallmark of epilepsy [151]. 

Epilepsy-precipitating effects, such as hypoxia, brain in-
jury and inflammation, may induce A2A receptor upregula-
tion and an increase in Ado levels [152]. Rapid, acute down-
regulation of ADK expression has also been demonstrated 
after status epilepticus [93], which may increase Ado levels 
transiently and decrease epileptic activity (initial seizure 
suppression) by an endogenous astrocyte-based antiseizure 
mechanism in the brain [27, 65]. However, a subsequent 
high, acute Ado concentration promotes glial activation and 
astrogliosis, one of the relevant features of the epileptic brain 
[153], via stimulation of A2A receptors [154, 155]. The ex-
pression of ADK by glial fibrillary acidic protein (GFAP)-
positive astrocytes and the overexpression of ADK in paral-
lel with the formation of astrogliosis has been observed [27, 
65, 93, 156]. Additionally, although A1 receptors may reduce 
astrogliosis [157], expression of astrocytic A1 receptors may 
be reduced by epileptogenesis [158-161]. A2A receptors are 
upregulated by high Ado levels [27]; thus, the crucial role of 
Ado receptor expression in astrogliosis, the astrogliosis-
induced increase in ADK activity and the disruption of Ado 
homeostasis have been suggested in epilepsy [151, 156, 162, 
163]. It was concluded that (i) upregulation of ADK in 
chronic epilepsy mainly occurs in astrocytes via Ado-
receptor-induced astrogliosis in the adult brain, (ii) high 
ADK activity in astrocytes results in a decrease of Ado con-
centration, which may induce chronic recurrent seizures, (iii) 
consequently, ADK may be the link between astrogliosis and 
neuronal dysfunction in epilepsy and (iv) astrogliosis and 
concomitant epileptic seizures may be prevented by Ado 
receptor modulation [65, 93, 164, 165]. In addition, it has 
been demonstrated that not only neurons but also astrocytes 
may contribute to the initiation, maintenance and spread of 
seizures and the astrocytic basis of seizure activity [144, 153, 
166]. Clinically used antiepileptics, such as carbamazepine 
and vigabatrin, modulate the physiological processes in the 
brain and induce undesirable side effects [153, 167], but as-
trocytes may be new therapeutic targets by which to reduce 
epileptic activity without suppressing the physiological neu-
ral activity.  

Inhibition of both ADA and SAHH caused minimal ef-
fects on the Ado level under basal conditions and/or electri-
cal stimulation [136, 137], whereas the effect of ADA in the 
modulation of Ado concentration was more significant when 
the Ado level was increased by energy depletion [137]. In 
addition, ADA may induce burst firing [168] and increase 
the amplitudes of extracellularly recorded field potentials 
[169] in the hippocampus. The results are controversial re-
garding the effect of ADA inhibition on epileptic activity 
(Table 2). While increased epileptiform activity induced by 
both the ADA inhibitor 2'-deoxycoformycin and erythro-9-
(2-hydroxy-3-nonyl)adenine (EHNA) (Fig. 2B) was ob-
served in a Mg2+-free artificial cerebrospinal fluid (ACSF)-
induced model [141], it has also been demonstrated that the 

ADA inhibitor BW534U87 decreased epileptic activity with 
minimal side effects in (i) a bicuculline-induced (rat hippo-
campal slices) epilepsy model, (ii) a seizure-prone epilepsy-
like (EL) mouse model, (iii) mouse threshold maximal elec-
troshock seizures, (iv) rat supramaximal electroshock sei-
zures, (v) a kindling rat model and (vi) a pentylenetetrazole 
(PTZ)-induced seizure model in mice [170, 171]. In bicu-
culline- and PTZ-induced seizures and in the genetically 
seizure-prone epilepsy-like mice, EHNA and/or 2'-
deoxycoformycin were also effective against seizures [134, 
143, 170, 171].  

It was observed that the application of the XO inhibitor 
allopurinol (Table 2; Fig. 2C) as adjunctive therapy is effec-
tive in seizure reduction [172-176], in which allopurinol may 
act via a decrease of Ado and/or Guo degradation and an 
HGPRT-induced increase in Ado and Guo levels (Fig. 1) 
[30, 173]. Because of its relatively mild and negligible side 
effects, it was concluded that allopurinol may be an effective 
and safe adjuvant against intractable epilepsy [173].  

Increased e5’NT activity has been demonstrated in rat 
models of epilepsy induced by kainic acid, pentylenetetrazol 
and pilocarpine [177-181] and in patients with temporal lobe 
epilepsy [182]. In addition, the convulsant effect of e5’NT 
inhibition by , -methyleneadenosine-5’-diphosphate (APCP) 
has been demonstrated in rats [134]. These results suggest 
that enhanced activity of e5’NT after epileptic seizures may 
be an adaptive response, which increases the concentration 
of EC Ado and, as a consequence, the anti-epileptic effects 
via A1 receptors; thus, modulation of e5’NT activity may be 
a new promising therapeutic tool against epilepsy. 

3.1.2. The Specific Role of Adenosine in Inflammation-
induced Epilepsy 

Inciting effects (e.g., status epilepticus and infection) 
may induce glial and neuronal activation in affected brain 
areas [183-185], which enhance the synthesis of proinflam-
matory cytokines (e.g., interleukin-1  (IL-1 ) and tumor 
necrosis factor  (TNF- )) [185-188]. Both IL-1  and TNF-  
may increase EC glutamate levels, which may induce hyper-
excitability and seizures [153, 189]. A lipopolysaccharide 
(LPS)-induced increase in IL-1  may also result in cortical 
epileptiform discharges [190], and the induction of IL-1  
expression in astrocytes may have a role in the occurrence of 
absence seizures [191]. Because IL-1  and LPS increased 
ADK expression in astrocyte cultures [156], the link between 
the LPS-induced increase in IL-1  and absence epileptic 
activity [192, 193] may be the decreased level of endogenous 
anticonvulsant Ado by ADK. In addition, LPS and IL-1  
induced the release of ATP from hippocampal slices [194], 
which may be metabolized extracellularly to Ado by ectonu-
cleotidases [72, 75, 76] resulting in stimulation of A2A recep-
tors, which may downregulate the expression of A1 receptors 
[195] and enhance Ado uptake by ENT transporters [196]. 
All of these effects may increase epileptic activity by de-
creased Ado-induced inhibition via A1 receptors. An A2A 
receptor antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)-
pyrazolo-(4,3-c)1,2,4-triazolo(1,5-c)-pyrimidine (SCH 
58261) prevented the LPS-induced increase in the IL-1  
concentration in the hippocampus [152, 197], whereas the 
A2A receptor agonist (2-(4-(2-carboxyethyl)-phenylamino)-
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5'-N-ethylcarboxamido-adenosine (CGS 21680) decreased 
the release of TNF-  [198]. Because glial cells contain Ado 
receptors [152, 199-201] the adenosinergic system may de-
crease inflammation-induced epilepsy via A1 receptors. 
Adenosine reduces astrocyte proliferation via A1 receptors, 
whereas A2 receptors may induce it [201]; thus, high A1 re-
ceptor expression inhibits astrocyte proliferation, while A2A 
receptor upregulation increases it [201], which also suggests 
the link between the adenosinergic system and inflammation-
induced epileptic activity. In addition, the anti-inflammatory 
action of ADK inhibitors has been demonstrated in different 
animal models [142, 202, 203]. Thus, ADK inhibitors may 
also have antiseizure activity. These results suggest that a 
therapeutic increase in Ado levels may decrease the risk of 
inflammation-induced epileptic seizures.  

Fewer side effects were induced by ADK inhibitors than 
by intraperitoneally administered Ado-receptor-agonists, the 
effects of which included hypothermia, ataxia, cardiovascu-
lar side effects and sedation [118, 141, 204, 205]. Systemic 
application of ADK inhibitors as potential antiepileptic drugs 
is limited [86] by their cardiovascular and hypothermic side 
effects [141, 206], their sedative effect and their CNS hemor-
rhaging effect [93]. In addition, Boison et al. [207] demon-
strated lethal hepatic steatosis in ADK knockout mice. 

3.1.3. Inhibition of Nucleoside Transporters 

Nucleoside transporters are also unevenly distributed in 
the brain. Medium to high ENT1 levels have been demon-
strated in the human brain areas (e.g., cerebral cortex, basal 
ganglia and thalamus), whereas these brain areas contained 
intermediate to low levels of ENT2. The hippocampus 
showed low ENT1 and ENT2 levels, but intermediate and 
high ENT3 and ENT4 expression have been demonstrated in 
the human brain [208-210]. High CNT2 and CNT3 activity 
have been demonstrated in the human hippocampus, whereas 
intermediate to low expression was revealed in the cerebral 
cortex [211, 212].  

Inhibitors of nucleoside transporters may increase the EC 
level of Ado, which may result in seizure suppression. In-
deed, Ado uptake inhibitors, such as papaverine and/or 
dipyridamole, dilazep, hexobendine, soluflazine or NBTI 
(Fig. 2D), (i) attenuated the amygdale-triggered (kindling) 
seizure activity [213] and the burst-firing of neurons of hip-
pocampal slices in the bicuculline-induced epilepsy model 
[168]; (ii) decreased PTZ-, pilocarpine-, bicuculline- and 
kainic-acid-induced seizures [134, 143, 214-216] and keta-
mine-induced epileptiform activity [217]; (iii) had depressant 
effects on synaptic responses [169]; (iv) inhibited epilepto-
genic population spikes (PS) [218] and (v) depressed epilep-
tiform activity in a Mg2+-free medium [141, 219] (Table 2). 
The Ado uptake inhibitor, midazolam, depresses excitatory 
synaptic transmissions in the hippocampus [220]. In addi-
tion, Ado uptake inhibitors have less severe adverse effects 
compared to Ado receptor agonists [221, 222]. Some contro-
versial results were described in relation to nucleoside trans-
porter inhibition, e.g., papaverine may have pro- and anti-
convulsant effects in different models [134, 213, 217, 223-
225]. These results suggested that although Ado transport 
inhibitors may be effective antiepileptic drugs in several 

types of epilepsies, one has to be cautious regarding their 
applicability. 

3.1.4. Adenosine Receptor Agonists and Antagonists 

It has been revealed that A1 receptors are expressed at 
medium to high density in the cerebral cortex, hippocampus 
and in some thalamic nuclei. High A2A receptor density has 
been demonstrated in the basal ganglia, whereas medium to 
low levels were found in several brain areas, such as the 
cerebral cortex, thalamus and hippocampus [208, 226, 227]. 
In general, Ado levels in different brain areas show correla-
tions with the distribution of Ado receptors. For example, 
low or moderate Ado concentrations in the human cerebral 
cortex and hippocampus correlate well with the medium to 
high A1 receptor expression in these brain regions [30, 56] 
suggesting the involvement of Ado and its receptors in the 
modulation of hippocampal and cortical activity in patho-
logical conditions such as epilepsy. It has also been sup-
ported by the demonstration of an epilepsy-induced decrease 
in A1 receptor expression in chronic seizures [67, 158-160, 
228] and adaptive changes in Ado receptors after seizures 
[111]. Activation of A2B receptors by elevated Ado levels 
may induce the release of proinflammatory interleukin-6 (IL-
6) from astrocytes leading to increased expression of A1 re-
ceptors and their functions in the brain [229, 230], which 
may explain (i) the increase of A1 receptor expression after 
seizures parallel with increasing Ado level and (ii) the higher 
level of IL-6 in the brain areas (e.g., in the hippocampus and 
cortex) of epileptic patients and rats [186, 231-233], which 
may have a protective effect against subsequent seizures 
[230]. In addition, an increase in A1 receptor density has 
been demonstrated in the epileptic tissue, for example, in 
PTZ kindling mice and kainic-acid-treated rats, which may 
also be an adaptive/protective mechanism against hyperex-
citability-induced seizures and convulsions [96, 230, 234-
239].  

Age-related decrease in A1 receptor density was detected 
in both the cortex and hippocampus, whereas expression of 
A2A receptors was increased in these brain areas with age 
[240-245]. Changes in Ado receptor density may result in an 
imbalance between inhibitory (A1 receptor) and excitatory 
(A2A receptor) processes [242, 246-248], which could shift 
the excitatory/inhibitory balance toward excitation in elderly 
people. In addition, A2A receptor activation may inhibit A1 
receptors [98, 249, 250]. As a consequence, the increased 
risk of excitation and the consequent excitation-induced 
pathological processes may increase the sensitivity to epilep-
tic seizures in elderly people [57, 251, 252].  

Activation of A1 receptors by acute administration of 
their selective agonists, such as 2-chloro-N6-cyclopentyl-
adenosine (CCPA) (Table 3; Fig. 3A), decreased the pro-
gression from self-terminating seizures to self-sustaining 
status epilepticus (SSSE) and decreased the severity of SSSE 
in a rat model of status epilepticus [68]. In addition, CCPA 
decreased the seizure activity in kainic-acid-induced epilepsy 
[92], pilocarpine-induced seizures [253] and bicuculline- as 
well as PTZ-induced convulsions [254-256]. Both A1 recep-
tor agonists N6-cyclohexyl-adenosine (CHA) and N6-
cyclopentyl-adenosine (CPA) (Table 3) suppressed the de-
velopment of status epilepticus in electrical stimulation mod-
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els in rats [257]. An Ado analogue A1 receptor agonist 2-
chloroadenosine (2-CLA) (Table 3) showed antiseizure ef-
fects in amygdaloid and hippocampal kindled rats [115, 116, 
213, 258-260], pilocarpine-induced seizures [216, 258, 261, 
262], electroshock-induced seizures [263], Mg2+-free condi-
tions [219, 264], PTZ-induced seizures [118, 204, 255, 265], 
3-nitropropionic-acid-induced seizures [266], kainic-acid- 
and 3-mercaptopropionic-acid-induced seizures [118] and 
bicuculline-induced seizures [168, 267].  

In addition, not only 2-CLA but also Ado receptor ago-
nists 5’-(N-ethyl)carboxamidoadenosine (NECA; non-
selective Ado receptor agonist) (Fig. 3B) [143, 168, 214, 
256] and/or CPA [204, 235], CHA (Fig. 3A) [118, 168, 216, 
237] and D-, L-, R- and S-N6-(2-phenylisopropyl) adenosine 
(D-, L-, R- and S-PIA; A1 agonists) (Table 3; Fig. 3A) [118, 
168, 180] were effective against bicuculline- and/or kainic-
acid-, pilocarpin-, 3-nitropropionic-acid-, 3-mercaptopropionic-
acid- and PTZ-induced seizures/epileptiform activity as well 
as 4-aminopyridine-induced epileptiform bursting activity 
[235, 265-271] and in the rat kindling model [119, 272-277]. 
It has also been demonstrated that R-PIA prolonged the la-
tency to convulsions in a hypoxia-induced model [278] and 
CPA delayed the time onset of clonic convulsions in amino-
phylline-induced seizures [279]. L-PIA blocked potassium-
induced epileptic activity [280] and prevented the spreading 
of penicillin-induced epileptic activity [106].  

The proconvulsant effect of the selective A1 receptor an-
tagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT) (Table 
3), has also been demonstrated in kindled rats [273-277, 
281]. The antiseizure role of A1 receptors was recently 
strengthened because (i) A1 receptor knockout mice showed 
spontaneous hippocampal seizures and high sensitivity to 
status epilepticus [282, 283] and (ii) seizure-activity-limiting 
effects of Ado (A1 receptor)-induced attenuation of depolar-
izing GABAA receptor signaling has been demonstrated 
[284]. In addition, CCPA enhanced the antiseizure effect of 
carbamazepine in the mouse maximal electroshock seizure 
model [285]. It has also been demonstrated that a ketogenic 
(low-carbohydrate and high-fat) diet, which decreases the 
glucose level and increases the metabolism of ketones, may 
decrease seizure activity [286-288] by several hypothetic 
pathways, for example via enhanced levels of Ado and in-
creased activation of A1 receptors [121, 289-292]. A keto-
genic-diet-induced low glucose level may induce ATP re-
lease from neurons, and ATP may be metabolized subse-
quently to Ado, which hyperpolarizes the membrane by 
opening K+-channels and decreases the release of excitatory 
neurotransmitters via A1 receptors. In addition, Ado attenu-
ated the amplitudes of extracellularly recorded field poten-
tials in the CA1 region of the hippocampus [169], decreased 
the excitability of postsynaptic cells [293] and inhibited neu-
rotransmitter release in the hippocampus [169, 293, 294] by 
increasing K+ conductance [295]. The A1/A3 receptor ago-
nist, N6-2-(4-aminophenyl)ethyladenosine (APNEA) (Table 
3), increased the seizure threshold in electroshock-induced 
seizures in mice and enhanced the anticonvulsive effect of 
antiepileptic drugs [296]. All of these results suggest that 
Ado may have an endogenous anticonvulsant/antiepileptic 
effect [70, 143, 168, 297] via mainly its A1 receptors, but the 
antiseizure effect of A2A receptors has also been suggested 
(Table 3) [94, 95, 256, 298].  

In a genetic-epilepsy-prone rat (generalized brain stem 
epilepsy in GEPR-9 strain), both CCPA and the A2A receptor 
agonist, 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA) 
suppressed brainstem seizures [94]. CCPA, A2A receptor 
agonists (CGS 21680 and 2-hexynyl-5'-N-ethylcarboxamido-
adenosine (2-HE-NECA)), APNEA and NECA prevented 
the development of audiogenic seizures in audiogenic-
seizure-sensitive DBA/2 mice [95]. CCPA, 2HE-NECA and 
NECA decreased PTZ-induced seizures strengthening that 
both A1 and A2A receptor stimulation is involved in the sup-
pression of seizures [95, 256]. Thus, the activation of not 
only A1 receptors but also A2A receptors may have antiepi-
leptic potential in certain types of epilepsies [299]. However, 
the A2A receptor effect on epileptic seizures is controversial. 
Reduced seizure occurrence and seizure reduction have been 
demonstrated by the application of A2A receptor agonists 
(e.g., CPCA) [94, 95, 256] and A2A receptor antagonists 
(e.g., SCH 58261 and ZM 241385) [255, 268, 300, 301] (Ta-
ble 3; Fig. 3D), and not only A1 receptor antagonists (e.g., 
CPT) [300] (Table 3) but also A2A receptor agonists (e.g., 
CGS 21680) (Fig. 3C) [302] and A2A receptor antagonists 
(e.g., SCH 58261) [95] may also induce/enhance epileptic 
activity [140, 273-276, 303]. PTZ- and pilocarpine-induced 
seizures were reduced in A2A receptor knockout mice [304, 
305]. In addition, for example, the A2 selective ligand, 2-
phenylaminoadenosine (CV-1808), had no seizure-
decreasing effect [267]. Nevertheless, excessive stimulation 
of A2A receptors in the brainstem may be involved in the 
pathomechanism of SUDEP (sudden unexpected death in 
epilepsy) [306, 307]. Rebola et al. [308] suggested that A2A 
receptor antagonists may be more promising anticonvulsant 
drugs than A1 agonists because they observed a long-term 
decrease and increase in A1 and A2A receptor density, respec-
tively, after kindling- and kainic-acid-induced convulsion 
[308]. In addition, A2A receptor antagonists may potentiate 
the neuroprotective effects of A1 receptors [195]. Seizure-
promoting modulatory effects on epileptic activity of A3 re-
ceptors have also been suggested. For example, the A3 recep-
tor antagonist MRS 1191 decreased the epileptiform activity 
[300] (Table 3; Fig. 3E). 

The results described above suggest that purinergic 
mechanisms exhibit an ameliorating influence on various 
types of epilepsy via both antiseizure/antiepileptogenic ef-
fects. However, Ado and its receptors may have different 
roles in the modulation of different types of epilepsies. In 
addition, effects of Ado and Ado receptor agonists and an-
tagonists may depend on the seizure model used (Table 3) 
and place/mode of drug application. For example, CGS 
21680 was proconvulsant and anticonvulsant in three differ-
ent animal models [95, 273, 276, 302]. Adenosine decreased 
or increased epileptic activity in PTZ- [118, 204], bicu-
culline- [117, 168], pilocarpine- [216], kainic-acid- [138], 
Mg2+-free [140, 219] and penicillin-induced models [120] as 
well as in the animal model of human absence epilepsy [309] 
(Table 4), and focally applied Ado was more effective 
against penicillin-induced epileptiform activity than intrac-
erebroventricularly injected Ado [120]. In addition, Ado 
receptor agonists and antagonists as well as nucleoside 
transport inhibitors may have different effects on seizures in 
the mature brain compared with the immature brain because 
of (i) the level and distribution of endogenous Ado, (ii) the 
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affinity of Ado receptors for Ado, (iii) the distribution of 
Ado receptors and Ado transporters and (iv) the ratio of dif-
ferent types of Ado receptors and, consequently, the physio-
logical and pathophysiological role of Ado in different brain 
areas may be changed by age [31, 57, 310-313]. In addition, 
several other methodological circumstances, such as post 
mortem delay of brain tissue samples, age, gender, the spe-
cies of experimental animals (subjects) and the type of sol-
vent used, [30, 57, 314, 315] may modify the experimental 
results and effects of the applied drugs on epileptic seizures. 

To obtain a complete antiepileptic profile of Ado and to 
reveal the exact modulatory effect of Ado and its analogs on 
different type of epilepsies, there is a need to investigate them 
in parallel in different in vivo and in vitro epilepsy models by 
similar methods (e.g., similar animal and slice models, as well 
as similar application mode/area of drugs, animal species and 
age of animals). In addition, Ado receptor (e.g., A1) agents, at 
least fully selective agonists, (i) cause numerous side effects, 
(ii) have low blood-brain barrier permeability and short half-
life and (iii) may induce adaptive changes (such as receptor 

downregulation); thus, their clinical potential may be limited 
[118, 141, 256, 316-319]. However, partial agonists may pre-
vent the desensitization [319], and, thus, their application in 
epilepsy may be more promising. 

3.1.5. Recently Developed Drugs Acting on the Adenosi-
nergic System and Their Structure-activity Relationships 

Advances in medicinal chemistry and structure-activity 
relationships produced a large number of novel drugs acting 
on the adenosinergic system, a promising drug target for a 
variety of disorders including epilepsy. The newly developed 
drugs may have advantages over the older drugs such as 
higher potency, better selectivity, enhanced bioavailability 
and less toxicity. Although most of these drugs have not 
been investigated for their effects in epilepsy models, they 
represent promising future directions in this research field. 

Different classes of non-nucleoside molecules were de-
veloped as inhibitors of ADK, such as pteridine-, pyrazolo- 
and pyrido-pyrimidine-based inhibitors of ADK [320, 321]. 
ABT-702 (Fig. 4A), a pyridopyrimidine inhibitor demon-
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Fig. (3). The chemical structure of some drugs acting on adenosine receptors and used in epilepsy research. Abbreviations: CCPA: 2-chloro-N6-
cyclopentyladenosine; CGS 21680: (2-(4-(2-carboxyethyl)-phenylamino)-5'-N-ethylcarboxamidoadenosine; CHA: N6-cyclohexyladenosine; MRS 
1191: 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate; NECA: 5’-(N-ethyl)carboxamidoadenosine; 
R-PIA: R-N6-(2-phenylisopropyl) adenosine; ZM 241385: 4-(2-[7-amino-2-[2-furyl]-[1,2,4] triazolo [2,3-a]{1,3,5}triazin-5-yl-amino] ethyl)phenol. 
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strated the highest potency among the orally available com-
pounds [322]. Further structure-activity studies established 
that the 4-amino pyrimidine fragment and the aryl ring in the 
C(7) position are crucial pharmacophoric elements for pyri-
dopyrimidines. However, although substances with higher in 
vitro potency have been produced, their in vivo efficacy re-
mained suboptimal [323]. Coformycin and 2´-deoxycofor- 
mycin are outstandingly potent inhibitors of ADA. In fact, 
their almost irreversible blockage of ADA causes immuno-
suppressive side effects and toxicity. Nonetheless, crystal-
lography revealed that the heterocyclic nitrogens do not form 
hydrogen bonds with the enzyme [324]. Instead, the hetero-
cyclic ring interacted only with the Zn2+ ion in the active site, 
while the sugar hydroxyl groups formed hydrogen bonds 
with amino acids Asp 19 and His 117. Therefore, it was pos-
sible to develop less potent analogues containing the imi-
dazo[4,5-e][1,2,4]triazepine ring system (Fig. 4B) by remov-
ing the ribose moiety [325]. While coformycin and 2´-
deoxycoformycin have been shown to act through so-called 
transition state inhibition of ADA, there are other modes of 
action, such as ground state inhibition of ADA. The structure 
of these drugs, including EHNA, resembles Ado, the en-
dogenous substrate of the enzyme. Docking of EHNA to the 
ADA crystal structure revealed that the Ade NH2 group 
formed a hydrogen bond with Asp 295 and 296, while the 2´-
hydroxy group formed a hydrogen bond with the N hydrogen 
of His 17 and the S hydrogen of Cys 153 [326]. Modifica-
tions of the structure of EHNA using the 1- and 2-alkyl de-
rivatives of the 4-aminopyrazolo[3,4-d]pyrimidine nucleus 
(Fig. 4C) also led to potent inhibitors of ADA [326]. Struc-
ture-based drug design and metabolic considerations led to 
the development of additional non-nucleoside ADA inhibi-
tors (Fig. 4D) with oral bioavailability [327]. Molecular 
modeling simulations suggested that the imidazolecarbox-
amide and the hydroxyl group of this compound are at the 
same binding positions as the Ade and hydroxyl group of 
EHNA, while the 2,3-dichlorophenyl ring stabilizes the 
compound metabolically [327].  

Another potential way of elevating the Ado level in the 
brain is by blocking SAHH. Following the crystallization of 
the enzyme, novel inhibitors were developed, including ha-
loneplanocin A analogues [328], among which fluoronepla-
nocin A was found to be the most potent (Fig. 4E). Halone-
planocin A analogues exert their inhibition by being oxidized 
to their 3´-keto form by NAD+ bound to SAHH, thereby 
maintaining the co-factor permanently in its reduced form 
NADH. However, the low bioavailability of these products 
led to further research to find SAHH inhibitors. Based on the 
ability of the Red Sea sponge product, ilimaquinone, to in-
hibit SAHH [329], a new structural class of inhibitors of 
SAHH was developed (Fig. 4F). Structure-activity studies on 
these compounds also revealed that the quinine moiety of 
ilimaquinone serves as a ribose mimic [329]. 

ENTs are 11 transmembrane (TM) domain proteins with 
their N-termini in the cytoplasm and the C-termini in the EC 
space. Mutagenesis studies revealed that multiple TMs con-
tribute to ENT function and that TMs 5 and 8 contain the 
largest number of operationally important residues [43]. Be-
cause the crystal structure of ENTs is not known, the struc-
ture of already available inhibitors was used for the rational 
design of novel inhibitors. Different classes of compounds 
were shown to inhibit ENTs present in the brain [330]. 

Modifications of NBTI, including LUF5942, were found to 
be potent inhibitors with lowered polar surface area [331]. 
The most potent and selective inhibitor of ENT1 is nitroben-
zylmercaptopurine riboside (NBMPR) (Fig. 5A). Toxicity, 
selectivity and in vivo efficacy issues led to the development 
of some constrained analogues of NBMPR (Fig. 5B) as 
ENT1 inhibitors. The most suitable substitution position of 
the nitro group was explored by varying its position on the 
aromatic ring of the tetrahydroisoquinone moiety [332, 333]. 
In addition, novel fluorescent substrates have also been pro-
duced for probing transporter activity [334].  

Mammalian CNTs contain at least 13, and possibly 15, 
TMs. Permeant selectivity, drug interactions and cation cou-
pling are primarily located in the C-terminal half of the pro-
tein, especially TMs 7, 8, 11 and 12 [43]. In contrast to ENTs, 
CNTs demonstrate some substrate specificity [43, 335] (Table 
1). CNT1 transports pyrimidine nucleosides and to some de-
gree, Ado, CNT2 transports purine nucleosides and Urd, while 
CNT3 transports both classes with the ability to create a 10-
fold higher concentration gradient due to 2:1 Na+-nucleoside 
coupling, suggesting that it might play a role under special 
circumstances [336]. There are fewer compounds available for 
the inhibition of concentrative nucleoside transporters than for 
equilibrative nucleoside transporters. The most commonly 
used non-specific inhibitor of CNTs is phloridzin (Fig. 5C). 
Thus, recently developed non-nucleoside drugs for the inhibi-
tion of different classes of CNTs represent significant ad-
vances in the field by providing experimental tools for the 
involvement of these transporters in diseases including epi-
lepsy [337]. The most potent selective inhibitor of CNT1 was 
a coumarin derivative (Fig. 5D), while the most active com-
pound, which was selective for CNT3, was 6-hydroxy-7-
methoxyflavone (Fig. 5E). In addition, selective CNT2 inhibi-
tors (Fig. 5F) have also been patented [338]. Structure-activity 
studies performed using the flavone structure pointed to sig-
nificant differences between CNTs [337]. The flavone-binding 
site of CNT1 and CNT2 was quite stringent and that of CNT3 
was tolerant in line with the lack of specificity of its nucleo-
side transport. Electrostatic interactions were dominant for all 
three CNTs, but hydrophobic interactions also played some 
role. In contrast, hydrogen-bonding interactions were impor-
tant only for CNT2 and CNT3. 

Drugs acting on Ado receptors have enormous potential 
in a variety of illness. Consequently, great efforts have been 
devoted to the medicinal chemistry of relevant compounds, 
which resulted in significant progress in the field [339]. In 
epilepsy, A1 receptor agonists and A2A receptor antagonists 
have the largest potential as therapeutic agents based on their 
inhibitory-excitatory activities and the abundance of these 
receptors in some brain regions. However, some data sup-
ports that antagonists acting on A2B receptors and agonists of 
A3 receptors may also have neuroprotective functions [340]. 
Furthermore, A1 receptor antagonists and A2A receptor ago-
nists are also considered useful experimental tools. An issue 
in the development of drugs acting on Ado receptors is that 
the receptors demonstrate an unusually high species depend-
ence. In particular, the affinity of drugs is often different in 
rodents and human [341]. Therefore, the results of animal 
experimentation have to be carefully interpreted. Another 
important point is the relatively fast desensitization of Ado 
receptors [342], which argues for the use or partial agonists 
in in vivo experiments. 
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The pharmacology of the A1 receptor has recently been 
reviewed [343]. Most A1 receptor agonists are N6-substituted 
Ado derivatives (e.g., selodenoson) (Fig. 6A). Another bene-

ficial effect of N6-substitution is the escape from degradation 
by ADA. Recently, non-nucleoside 2-amino-3,5-
dicyanopyridine derivative A1 receptor agonists (e.g., ca-
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padenoson) (Fig. 6B) were also developed. Furthermore, 
allosteric enhancers of the A1 receptor were identified [344], 
of which an example is shown (Fig. 6C). Because the struc-
ture of the allosteric site is not known at the atomic level, 
subsequent structure-activity studies were performed, which 
demonstrated the importance of the 2-amino group of the 2-
amino-3-aroyl-thiophene moiety. Furthermore, electron-
withdrawing substituents on the benzoyl moiety and alkyl 
and aryl groups in the 4- and 5-positions of the thiophene 
ring also promoted allosteric enhancement activity [344]. 
Adenosine receptor antagonists were originally developed by 
the modification of the caffeine (Xn) structure. There are still 
such A1 receptors antagonists produced (e.g., L-97-1) (Fig. 
6D). In general, modification of xanthines at the 8-position 
with aryl or cycloalkyl groups led to selectivity for the A1 
receptor. In addition, A1 receptor antagonists with different 
structures, typically containing nonpurine heterocyclic core 
structures, have also been synthesized (e.g., FK-453) (Fig. 
6E). Substitution of Ado at the 2-position, especially with 
(thio)ethers, secondary amines and alkynes, resulted in com-
pounds selective for the A2A receptor.  

Some A2A receptor agonists, including sonedenoson (Fig. 
6F), have also been clinically evaluated [345]. However, 
hypotensive side effects hinder their therapeutic applications. 
A2A receptor antagonists (e.g., istradefylline) have been pro-
duced by the modification of xanthines at the 8-position with 
alkenes. In turn, very potent drugs, selective for the A2A re-
ceptor were also developed by changing the heterocyclic 
structure (e.g., to triazolopyrimidine in vipadenant) (Fig. 
6G). Selective A2B receptor antagonists have also been de-
veloped [346]. PSB-1115 (Fig. 6H) is water-soluble and 
therefore appropriate for in vivo studies, although its affinity 
and selectivity is suboptimal compared to some other A2B 
receptor antagonists.  

The structure-activity relationship of drugs acting on the 
A3 receptor revealed that N6-benzyl and alkyl substituents 
favored binding to the A3 receptor [347]. The prototypical A3 

receptor agonist is Cl-IB-MECA (Fig. 6I), which has a 2000-
fold affinity to the A3 compared to the A1 receptor. Cl-IB-
MECA, the currently available A3 receptor agonist, is a nu-
cleoside derivative [341]. 

3.2. Non-adenosine Nucleosides: Uridine, Guanosine and 

Inosine 

Distribution of non-Ado nucleosides is also uneven in 
both the brain tissue and EC space [30, 56]. Highest Ino 
(101.5-161.5 pmol/mg) and/or Guo (19.5-26.1 pmol/mg) and 
Urd (43.9-55.1 pmol/mg) levels were measured in the cau-
date nucleus, substantia innominata, nucleus basalis, co-
chlear nuclei, temporal cortex, occipital cortex and medial 
geniculate body in the human brain. The lowest concentra-
tions of Ino (29.8-39.5 pmol/mg) and/or Guo (4.1-5.1 
pmol/mg) and Urd (15.7-16.7 pmol/mg) have been demon-
strated in the ventral anterior nucleus, habenula, zona incerta, 
paraventricular nucleus, preoptic area, inferior colliculus and 
locus coeruleus. Medium non-Ado nucleoside levels were 
found in the hippocampus (Ino/Guo/Urd, pmol/mg: 
53.7/12.7/38.3) and cortical areas (except temporal and oc-
cipital cortex) in the human brain. Extracellular levels of Ino 
and Guo were regionally different in rat brain areas. Their 

concentrations in the rat striatum, hippocampus and thalamus 
were 1.50-2.00, 0.42-1.37 and 0.52 M, respectively, for Ino 
and 0.50, 0.26 and 0.17 M, respectively, for Guo. Concen-
trations of Urd were similar in the rat thalamus (0.76 M) 
and hippocampus (0.71 M) [112, 123-126]. Activity of 
PNP was intermediate to high in the cerebral cortex and 
thalamus [348], whereas intermediate levels of GDA activity 
were demonstrated in the hippocampus and parietal cortex of 
the human brain. The thalamus showed a high level of GDA 
[349]. Higher Ino levels in elderly rather than middle-aged 
human samples and higher non-Ado nucleoside (Urd, Ino 
and Guo) levels in female samples compared with male sam-
ples have also been demonstrated in cortical samples [57]. 

Nucleoside transporters may release/uptake not only Ado 
but also non-Ado nucleosides (Table 1); thus, the antiepilep-
tic effect of nucleoside transporter inhibition may also be in 
relation to decreased uptake of Ino and/or Guo and Urd. In-
deed, the anticonvulsant effect of Urd has been demon-
strated. Uridine reduced penicillin-, bicuculline- and PTZ-
induced seizures and was effective in electroconvulsive 
models (Table 4) but did not protect against maximal elec-
troshock-induced convulsions and 3-aminopyridine-induced 
seizures [112, 350-354]. However, it has been postulated that 
Urd may have a role in the initiation and termination of epi-
leptic activity depending on its concentration [352]. More 
recently, Urd was found to be antiepileptogenic in hippo-
campal kindling models and in lithium-pilocarpine-induced 
status epilepticus in rats [63, 64]. In addition, an increased 
Urd level was detected in 3-aminopyridine-(3-AP)-induced 
epileptic seizures, which most likely inhibits neuronal activ-
ity [112], and Urd reduces the firing rate of neurons in the 
hippocampus [59]. It has also been demonstrated by Dobolyi 
et al. [59] that Urd administration had no effect on the EC 
Ado concentration; thus, direct involvement of the adenosi-
nergic system in an Urd-induced decrease in epileptic activ-
ity is not likely. However, indirect interaction between puta-
tive Urd receptors and Ado receptors has been demonstrated 
[83] as they may act together and result in anticonvulsant 
activity. Urd has been described to bind to a putative Urd 
receptor and the GABAA receptor [83, 84, 90, 354-356] sug-
gesting that activation of both receptors by Urd may lead to a 
decrease in seizure susceptibility. As an increased Urd level 
may result in enhanced concentration of UTP [357] and UTP 
can change neuronal activity via its receptors [358], an indi-
rect inhibitory effect of Urd on epileptic activity via 
UTP/UDP [76, 359] receptors can be postulated. However, 
UTP was ineffective in 4-aminopyridine (4-AP)-induced 
epileptiform activity [140]. Uridine has already been tested 
in human studies [360-364], and a decrease in seizure activ-
ity in response to Urd has been demonstrated in humans 
[363-365]. Uridine is also found in mother's milk and may be 
useful as a nutritional supplement during early postnatal de-
velopment [366, 367]; consequently, Urd is a well tolerable 
drug, which showed low toxicity [63, 64, 360, 361]. These 
results suggest that Urd and/or its analogues [83, 356] may 
be effective and safe drugs to treat epilepsy [31].  

Guanosine also has antiseizure effects in rodent epilepsy 
models, most likely via Guo-induced modulation of the glu-
tamatergic system [60-62, 368-371]. Guo may bind to its 
putative (uncloned) G-protein-coupled receptors in the brain 
[50, 51]. Guanosine levels increased after PTZ-induced 
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Fig. (6). The chemical structure of some recently developed agonists and antagonists of adenosine receptors. These compounds may be useful 
tools for further evaluation of adenosine actions in epilepsy. Abbreviations: A: Selodenoson is an N6-substituted adenosine derivatives A1 
receptor agonist; B: Capadenoson, a derivative of 2-amino-3,5-dicyanopyridine is an A1 receptor agonist; C: a 2-amino-3-aroyl-4-
[(arylpiperazin-1-yl)methyl]thiophene allosteric agoinst of the A1 receptor; D: L-97-1 is an A1 receptor antagonist; E: FK-453 is an A1 recep-
tor antagonist containing a non-purine heterocyclic core; F: Sonedenoson is an A2A receptor agonists; G: Vipadenant is an A2A receptor an-
tagonist; H: PSB-1115 is a selective A2B receptor antagonists; I: Cl-IB-MECA is the prototypical A3 receptor agonist. 

seizures [372], and Guo exerts a protective effect on quino-
linic acid (QA)-induced seizures [60-62, 368, 373-377] (Ta-
ble 4) and -dendrotoxin-induced seizures [371] likely by 
stimulation of astrocytic glutamate uptake [89, 373, 377, 
378]. It has been demonstrated that GMP- and GTP-induced 
decreases in seizures may be related to their conversion to 
Guo [89, 368, 375]. Involvement of the adenosinergic system 
in antiepileptic effects of Guo has been suggested because 
Guo induces stimulation of Ado release from astrocytes 
[379]. In addition, Guo, released mainly from astrocytes, 
stimulates astrocyte proliferation possibly via increased level 
of Ado [380, 381]. However, (i) intraperitoneal administra-
tion of Ado enhanced [309], (ii) an Ado receptor (A1 and A2) 
antagonist (theophylline) decreased [382] and (iii) activation 
of A2A receptor triggered/maintained [302] the absence epi-
leptic activity in WAG/Rij rats. In addition, the involvement 
of the adenosinergic system in the Guo-induced decrease in 
QA-induced seizure activity was excluded [62, 89]. All of 

these data support the idea that the Guo-induced increase in 
Ado levels in the brain may not decrease epileptic activity, at 
least not in relation to absence epilepsy and QA-induced 
seizure activity. However, the modulatory role of the adeno-
sinergic system appears to be different in different types of 
epilepsies (e.g., theophylline enhanced the epileptiform ac-
tivity induced by bicuculline) [168]; thus, the additive antie-
pileptic effect of Guo and Ado in several epilepsy models 
(types) may not be fully explored. To summarize, Guo 
and/or its analogues may be potential antiepileptic drugs [62] 
because (i) Guo decreases glutamate concentration via 
upregulation of astrocytic glutamate uptake, consequently, 
(ii) Guo may shift the excitation/inhibition balance toward 
inhibition and (iii) Guo is a safe and well-tolerated drug for 
human use [62, 371, 383, 384].  

During bicuculline-, kainic-acid-, PTZ- and electroshock-
induced seizures and 3-AP-induced epilepsy [112, 372, 385-
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388], as well as electrical or chemical depolarization [389], 
the level of the Ado metabolites Ino and/or Hyp were also 
increased. It has been demonstrated that Ino (i) increased the 
latency to PTZ-induced seizures [118, 390], (ii) antagonized 
caffeine-induced seizures [391], (iii) has a role in the electro-
shock-induced increase in the threshold to PTZ-induced sei-
zures [387], (iv) had an anticonvulsant effect on QA-induced 
seizures [392] and (v) raised the threshold of seizures in-
duced by PTZ, bicuculline and picrotoxin [58] (Table 4). 
Interestingly, a synthetic Hyp derivative, AIT-082 (4-[[3-
(1,6-dihydro-6-oxo-9-purin-9-yl)-1-
oxopropyl]amino]benzoic acid), may exert its neuroprotec-
tive effect against kainic-acid-induced status epilepticus 
(longer latency, shorter duration) partly via Ino [393]. Early 
increases in Ino levels may play a role in the generation and 
propagation of seizures, but subsequent elevation of Ino 
and/or Hyp concentration may be responsible for seizure 
termination [386, 394]. Inosine and/or Hyp may be endoge-
nous ligands of benzodiazepine receptors [395-399] and the 
picrotoxin binding site [400] in the nervous system. Picro-
toxin, PTZ and bicuculline are inhibitors of GABAA recep-
tors (which may produce seizures), and this receptor also 
contains a benzodiazepine binding site [401]. Thus, benzodi-
azepine receptor ligands, such as diazepam [8] and likely 
Ino, may enhance GABA-mediated inhibition and may de-
crease seizure activity. It has been concluded that antisei-
zure/anticonvulsant effect of endogenous Ino [58] may corre-
late with its interaction with inhibitory GABAA receptors 
(benzodiazepine receptors) [386, 390, 399, 402]. Recently, it 
was discussed that Ino may also bind to Ado receptors (A1, 
A2A, A3) [403]; thus, the anticonvulsant effect of Ino may 
involve adenosinergic mechanisms as well. However, Gan-
zella et al. [392] demonstrated a decrease in seizures in re-
sponse to Ino that was independent of the benzodiazepine 
and Ado receptors, which may involve Guo-induced astro-
cytic glutamate uptake [392]. Although (i) Ino binding site 
(binding to benzodiazepine receptors, to Ado receptors 
and/or to own specific Ino receptors, if any), (ii) interaction 
of Ino with other transmitter systems and (iii) modulators as 
well as exact signaling mechanism induced by Ino are not 
disclosed, these results suggest that Ino may also be a poten-
tial therapeutic agent in epilepsy. 

4. NEW DEVELOPMENTS 

Despite the ameliorating effect of ADK inhibition on epi-
leptic seizures, side effects of systemic application of ADK 
inhibitors [93, 141] may limit their therapeutic use. In addi-
tion, systemic application of very high Ado doses may lead 
to astrogliosis-induced ADK expression and epileptic sei-
zures; thus, focal application of Ado-releasing brain implants 
and in vivo gene therapies [67] may be a promising way to 
excite the anticonvulsant properties of Ado without severe 
side effects. In addition, a decrease in efficiency of the en-
dogenous anticonvulsant Ado by efflux carriers via 
multidrug resistance-associated proteins is unlikely because 
of (i) the effective uptake mechanism of Ado via nucleoside 
transporters and (ii) the ADK-modulated Ado salvage 
mechanism, as described by Boison [65]. Direct administra-
tion of different drugs intraventricularly or intrathecally into 
the cerebrospinal fluid (CSF) would provide a solution for 
some of the problems regarding ADK inhibition. Admini-

stration of drugs via catheters has both advantages (e.g., the 
total amount of injected drugs reach the brain) and disadvan-
tages (e.g., penetration of drugs from CSF into brain tissue 
may be limited) [404].  

To overcome the disadvantages concomitant with the di-
rect infusion of drugs to CSF and to ensure the chronic de-
livery/long-term release of antiepileptic agents, Ado-
releasing brain transplants (cells and polymers) were devel-
oped and applied. To enhance the Ado level and deliver it 
focally, intraventricular implantation of Ado-releasing (20-
50 ng/day) synthetic biocompatible polymer (ethylene vinyl 
acetate copolymers) was applied in kindled rats (Table 4) 
[114], and this treatment decreased the seizure activity. 
Adenosine-releasing silk-base polymers may be a more suit-
able strategy for drug delivery than synthetic polymers be-
cause of their biocompatibility and slow biodegradation, thus 
avoiding the need for removal of the synthetic polymer 
which limits their clinical application [33, 67, 405, 406]. 
Wilz et al. [407] developed silk-based polymers that release 
0-1000 ng/day and 0-819 ng/day of Ado in vivo and in vitro, 
respectively. Based on kindled rats, which were intrahippo-
campally implanted with silk-based polymers, they con-
cluded that approximately 1000 ng/day Ado effectively de-
crease seizures, which could provide an opportunity for a 
safe decrease of epileptic seizures (Table 4) [407, 408]. 
These results suggest that focal synthetic-polymer-based and 
silk-based-polymer drug-delivery systems may release suffi-
cient amounts of Ado to decrease epileptic activity. In addi-
tion, these systems may be safe without side effects. 

Adenosine kinase may also be a therapeutic target for 
gene therapy [67, 409-416]. Downregulation of ADK, thus 
increasing Ado levels, by adeno-associated virus 8 (AAV8)-
mediated RNA interference (RNAi) in astrocytes (Table 4) 
[413, 414] and lentiviral RNAi-mediated downregulation of 
ADK in human mesenchymal stem cells [410-413] were 
developed by which the seizure activity was reduced in mice. 
In an encapsulated Ado-biodelivery cell system, the cells are 
(i) genetically modified (result in ADK deficiency, IC accu-
mulation of Ado and Ado release) to synthesize and release a 
therapeutic dose of Ado and (ii) encapsulated (enclosed in 
semi-permeable membrane). A semi-permeable membrane 
prevents, for example, graft-cell-host-cell interactions and 
graft rejection, but permits the delivery of Ado to the sur-
rounding cells [67]. Encapsulated Ado-releasing (e.g., ap-
proximately 19 ng/h/105 cells) [417] cells (fibroblasts, 
myoblasts, baby hamster kidney cells and mouse embryonic 
stem cells) were implanted intraventricularly. Focal Ado 
delivery, in the nanomolar range, by Ado-releasing encapsu-
lated implants (i) effectively decreased the epileptic activity 
in the kindling model (Table 4) [113, 150, 416-421], (ii) did 
not cause receptor desensitization or central and peripheral 
side effects, such as sedation and hypothermia resulting from 
the equilibration of Ado levels by nucleoside transporters 
[65, 419], but (iii) usability may be restrained by limited 
long-term viability [67]. Implantation of Ado-releasing neu-
ronal precursor cells into the rat hippocampus prior to kin-
dling suppressed epileptogenesis (Table 4) [412, 422]. Intra-
hippocampal transplantation of Ado-releasing cells sup-
pressed seizures in a kainic acid mouse model [165]. In addi-
tion, Ado accumulation, which may result in side effects, is 
precluded by EC metabolism of Ado by ecto-ADA [72, 75, 
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76]. Despite these results, implantation of Ado-releasing 
cells has advantages (e.g., there is no need to refill the sys-
tem as with pumps and polymers) and disadvantages (e.g., 
the lack of control of drug release and the unknown long-
term effects) [404].  

All of these promising preclinical results suggest that im-
plantation of biodegradable Ado-releasing polymers and 
cells as well as gene therapy may be a safe and effective tool 
for the prevention and treatment of epileptogenesis and epi-
lepsy via increasing Ado levels through the activation of 
mainly A1 receptors. However, before clinical application of 
Ado augmentation therapy [67] new findings are needed, 
such as conclusive demonstration of (i) therapeutic index, (ii) 
long-term efficacy and (iii) usability in different types of 
epilepsies. 

Although the binding and signaling mechanism of non-
Ado nucleosides (Urd, Guo and Ino) as well as their exact 
effect on epileptic activity have not been established yet, the 
available data suggest an expansion of the adenosiner-
gic/purinergic hypothesis in relation to epileptic activity [93, 
423]; therefore, we discussed that not only Ado but also en-
dogenous Urd, Guo and Ino might have a crucial role in the 
modulation of the epileptic activity and sensitivity to epilep-
tic seizures. Consequently, even if we have only sporadic 
data on the distribution and function of metabolic enzymes 
of Urd, Guo and Ino under different pathological conditions 
(e.g., epilepsy) in brain areas, we cannot exclude the possi-
bility that their metabolic enzyme inhibitors are potential 
antiepileptic drugs, which increase the levels of non-Ado 
nucleosides. In addition, analogues of Ado-releasing im-
plants, including Urd-, Guo- and Ino-releasing implants, may 
also be effective antiepileptic approaches. Silk fibroin encap-
sulation [406] may be a usable method to test this hypothe-
sis. However, more detailed studies are necessary to reveal 
this novel possibility. In addition, the anti-inflammatory ef-
fects of not only Ado [197, 198, 201, 424] but also of Urd 
and Ino have been demonstrated [403, 424-426]; thus, inves-
tigation of the effect of Urd and Ino on inflammation-
induced exacerbation of epileptic activity [192, 193] may 
also be an interesting and promising novel drug discovery 
target in epilepsy research. 

5. SUMMARY AND PERSPECTIVES 

It has been demonstrated that impaired Ado-mediated in-
hibition may correlate with epilepsy. Adenosine and its 
metabolic enzymes, receptors and nucleoside transporters are 
unevenly distributed in the brain. In addition, Ado (i) is re-
leased under seizure activity, (ii) inhibits neuronal and sei-
zure activity, (iii) increases seizure threshold, (iv) terminates 
seizures and (v) prevents the spreading of seizures via its 
receptors (mainly by A1 receptors). These results suggest that 
Ado is an endogenous anticonvulsant/antiepileptogenic 
modulator, and purinergic mechanisms may be involved in 
the pathomechanism of the seizures.  

Because seizure-induced increases in the endogenous 
anticonvulsant Ado levels result in decreased epileptic activ-
ity via activation of Ado receptors, Ado-based antiepileptic 
therapies are currently under development. Application of (i) 
Ado receptor agonists, (ii) Ado receptor antagonist, (iii) nu-
cleoside transporter inhibitors, as well as (iv) the modulation 

of Ado metabolism (e.g., by ADK inhibitors) and (v) implan-
tation of Ado-releasing cells/polymers may also be useful 
methods to therapeutically increase the level of the endoge-
nous antiepileptic agent Ado and enhance Ado signaling. 
However, Ado receptor agonists and antagonists as well as 
ADK inhibitors may cause severe side effects, and Ado-
releasing polymers have also several disadvantage. Conclu-
sively, implantation of Ado-releasing stem cells/neuronal 
progenitor cells may be a more effective and attractive op-
tion to decrease epileptic activity, including in pharmaco-
resistant types of epilepsies, without the induction of severe 
side effects. 

Because of the limited efficacy of antiepileptic therapy, 
approximately one third of epileptic patients are refractory to 
the available antiepileptic drugs, and the treatment of their 
epileptic syndromes remains unsolved. Thus, finding safe 
and well-tolerated drugs, such as Ado, Urd, Ino and Guo or 
other endogenous molecules (by which serious side effects 
may well be avoidable), or developing their analogues re-
mains a high priority and a great need in epilepsy research. 
All available evidence suggests that the enhancement of en-
dogenous antiepileptic mechanisms by increasing nucleoside 
levels in the brain may be a safe and effective therapeutic 
approach for the treatment of epilepsy. This review article 
presented literature data supporting the notion that not only 
Ado but also Urd, Ino and Guo, (i) may play important roles 
as endogenous anticonvulsant signaling/modulator molecules 
and (ii) may represent new pharmacological tools to treat 
different types of epilepsies. However, all drugs, which exert 
their effects on the purinome, affected receptors or changed 
nucleoside levels by acting on transporters and metabolic 
enzymes of the purinergic system [427] induced both ame-
liorating effects and pathological changes in the CNS. Thus, 
further studies are necessary (i) to reveal the exact effects of 
endogenous nucleosides and their analogues on the epileptic 
activity, (ii) to identify specific receptors of Urd, Ino and 
Guo (if any) and to disclose their signal transduction mecha-
nisms, (iii) to explore the therapeutic indexes of nucleosides 
and their safety profiles (with emphasis on the relatively 
neglected nucleosides Urd, Ino and Guo as opposed to Ado), 
(iv) to test nucleoside-releasing implants (e.g., half-life, me-
tabolism, storage and absorption of nucleosides) and (v) to 
investigate these promising therapeutic tools in both in vivo 
and in vitro models of different types of epilepsies under 
similar conditions before clinical application.  
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ABBREVIATIONS 

2-CLA = 2-chloroadenosine 

2-HE-NECA = 2-hexynyl-5'-N-ethyl-carboxa 
mido-adenosine 

3-AP = 3-aminopyridine 

5’NT = 5’-nucleotidases 

A1 receptor = A1 subtype of adenosine receptors 

A2A receptor = A2A subtype of adenosine receptors 

A2B receptor = A2B subtype of adenosine receptors 

A3 receptor = A3 subtype of adenosine receptors 

A-286501 = N7-((1'R,2'S,3'R,4'S)-2',3'-
dihydroxy-4'-amino-cyclopentyl)-
4-amino-5-bromo-pyrrolo[2,3-
a]pyrimidine 

ABT-702 = 4-amino-5-(3-bromophenyl)-7-(6-
morpho linopyridin-3-yl)pyrido[2, 
3-d] pyrimidine 

ACSF = Artificial cerebrospinal fluid 

ADA = Adenosine deaminase 

Ade = Adenine 

ADK = Adenosine kinase 

Ado = Adenosine 

AMP = Adenosine monophosphate 

AMPDA = AMP deaminase 

APCP = , -methyleneadenosine-5’-
diphosphate 

APNEA = N6-2-(4-aminophenyl) ethyladeno 
sine 

APRT = Adenine phosphoribosyltransferase 

ASL = Adenylosuccinate lyase 

ASS = Adenylosuccinate synthetase 

ATP = Adenosine triphosphate 

CCPA = 2-chloro-N6-cyclopentyl-adenosine 

CGS 21680 = (2-(4-(2-carboxyethyl)-phenyla 
mino)-5'-N-ethylcarboxamido-
adenosine 

CHA = N6-cyclohexyl-adenosine 

Cl-IB-MECA = 2-chloro-N6-(3-iodobenzyl)-
adenosine-5’-N-methylcarboxa 
mide 

cN = Cytoplasmic 5’-nucleotidases 

CNS = Central nervous system 

CNT transporters = Concentrative nucleoside trans-
porters 

CNT1/T2/T3 transporters CNT1/CNT2/CNT3 subtype of 
concentrative nucleoside trans-
porters 

CPA = N6-cyclopentyl-adenosine 

CPCA = 5’-(N-cyclopropyl)-carboxamido-
adenosine 

CPT = 8-cyclopentyl-1,3-dimethylxan 
thine 

CSF = Cerebrospinal fluid 

CV-1808 = 2-phenylaminoadenosine 

DHU = Dihydrouracil 

DPD = Dihydropyrimidine dehydrogenase 

D-PIA = D-N6-(2-phenylisopropyl) adeno-
sine 

EC = Extracellular 

EHNA = Erythro-9-(2-hydroxy-3-nonyl) 
adenine 

“ei” transporters = Equilibrative, NBTI insensitive 
type of ENTs 

ENT transporters = Equilibrative nucleoside trans-
porters 

ENT1/T2/T3/T4 transporters ENT1/ENT2/ENT3/ENT4 sub-
type of equilibrative nucleoside 
transporters 

“es” transporters = Equilibrative, NBTI sensitive type 
of ENTs 

GABA = Gamma amino butyric acid 

GDA = Guanine deaminase 

GFAP = Glial fibrillary acidic protein 

GMP = Guanosine monophosphate 

GMPR = GMP reductase 

GMPS = GMP synthetase 

Gn = Guanine 

GP683 = 4-(N-phenylamino)-5-phenyl-7-
(5'-deoxyribofuranosyl)pyrrolo 
[2,3-d]pyrimidine 

GTP = Guanosine triphosphate 

Guo = Guanosine 

HGPRT = Hypoxanthine phosphoribosyl-
transferase (hypoxanthine-guanine 
phosphoribosyltransferase) 

Hyp = Hypoxanthine 

IC = Intracellular 

IL-1  = Interleukin-1  

IMP = Inosine monophosphate 

IMPDH = IMP dehydrogenase 

Ino = Inosine 

L-PIA = L-N6-(2-phenylisopropyl) adeno-
sine 

LPS = Lipopolysaccharide 
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NBMPR = Nitrobenzylmercaptopurine ri-
boside 

NBTI = S-(4-nitrobenzyl)-6-thioinosine 

NECA = 5’-(N-ethyl)carboxamidoadeno 
sine 

NMDA receptor = N-methyl-D-aspartate receptor 

PNP = Purine nucleoside phosphorylase 

PRPP = 5-phosphoribosyl-1-pyrophos 
phate 

PTZ = Pentylenetetrazole 

QA = Quinolinic acid 

RNAi = RNA interference 

R-PIA = R-N6-(2-phenylisopropyl) adeno-
sine 

SAH = S-adenosylhomocysteine 

SAHH = Adenosylhomocysteinase (S-
adenosylhomocysteine hydrolase) 

SCH 58261 = 5-amino-7-(2-phenylethyl)-2-(2-
furyl)-pyrazolo-(4,3-c)1,2,4-
triazolo(1,5 -c)-pyrimidine 

S-PIA = S-N6-(2-phenylisopropyl) adeno-
sine 

TNF-  = Tumor necrosis factor  

UA = Uric acid 

UCK = Uridine-cytidine kinase 

UDP = Uridine diphosphate 

UMP = Uridine monophosphate 

UP = Urd phosphorylase 

Ura = Uracil 

Urd = Uridine 

UTP = Uridine triphosphate 

WAG/Rij rats = Wistar Albino Glaxo/Rijswijk rats 

Xn = Xanthine 

XO = Xanthine oxidase 
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