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RESEARCH ARTICLE ABSTRACT
Q Boid inclusion body disease (BIBD) is a severe and transmissible disease of snakes worldwide.
. Reptarenaviruses have been identified as the aetiological agents of BIBD. We determined the almost
Cuf:)edcalftégr complete genome sequence of an arenavirus detected in a female red-tailed boa that had succumbed in a

private collection in Hungary. We used a combination of next generation sequencing and Sanger
sequencing methods. Based on the analysis of the obtained sequence data, the virus, tentatively named
Coldvalley virus, seemed to belong to the Reptarenavirus genus of the Arenaviridae family. This clas-
sification was confirmed by the genome structure (bisegmented single-stranded RNA) characteristic of
the genera Mammarenavirus and Reptarenavirus. The pairwise comparison of the nucleotide and amino
acid sequences, as well as the topology of the maximum likelihood phylogenetic trees, suggested that the
newly-characterised Coldvalley virus can be classified into the species Rotterdam reptarenavirus.
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INTRODUCTION

Boid inclusion body disease (BIBD) is a transmissible, often fatal disease commonly
encountered among captive snake collections worldwide. The disease mainly affects the
members of the families Boidae and Pythonidae (Argenta et al., 2020). BIBD was first rec-
ognised in the 1970s (Schumacher et al., 1994). The name of the disease originated from the
large eosinophilic inclusions described in the cytoplasm of almost all cell types of the infected
animals. Until description of the causative agents as reptarenaviruses, the diagnosis of BIBD
had been based on the detection of inclusions by light microscopy in blood smears and tissue
samples (Wozniak et al., 2000; Stenglein et al., 2012; Hetzel et al., 2013; Stenglein et al., 2017).
Infected animals manifesting clinical illness show poor body condition and variable nervous
system signs, including opisthotonus (stargazing), head tremors, disorientation, regurgitation
and loss of co-ordination. Infection of blood cells may lead to immunosuppression which
might be accompanied by secondary infections (e.g. bacterial, fungal, and protozoal) and
neoplastic diseases (Carlisle-Nowak et al., 1998).

Reptarenaviruses (family Arenaviridae) are medium-sized, enveloped viruses with linear,
single-stranded, ambisense RNA genome. Their bisegmented genome consists of a large (L)
and a small (S) genome segment. The 7.5-kb-long L segment encodes the RNA-dependent
RNA polymerase (RdRp; also called L protein) and the zinc-binding matrix protein (Z). The

S segment is 3.5 kb in length and contains the genes of the glycoprotein precursor (GPC) and
’j Journals the nucleoprotein (NP) (Radoshitzky et al.,, 2019). The number of studies describing the
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genetic diversity of reptarenaviruses from different reptile
collections is relatively low (Bodewes et al., 2013; Turchetti
et al, 2013; Stenglein et al., 2015; Abba et al.,, 2016; Keller
et al,, 2017; Stenglein et al., 2017; Argenta et al,, 2020). Yet,
these low number of studies described a marked genetic
diversity among arenaviruses infecting snakes. The genetic
variability of reptarenaviruses is maintained through several
mechanisms. The RdRp of reptarenaviruses lacks proof-
reading ability, therefore the accumulation of point muta-
tions during replication is a major evolutionary mechanism
that leads to divergence and creates novel genetic lineages
over time. Additionally, reassortment and recombination
between the genomic segments of reptarenaviruses result in
new constellation of genes as reported previously (Hepojoki
et al,, 2015; Stenglein et al., 2015).

The main goal of our study was to characterise the
genome and determine the phylogeny and classification of a
reptarenavirus detected by PCR in a dead boa constrictor.
To this end, we applied virus-specific RT-PCRs and viral
metagenomics.

MATERIALS AND METHODS

Tissue samples (liver, stomach, intestine, kidney, ovary,
heart, trachea, tongue, oesophagus) were collected from an
adult, female, captive red-tailed boa (Boa constrictor) that
had succumbed at a private owner in Hungary in 2012.
Information about the body condition and health status of
the snake prior to death was not available. For a targeted
examination to check the presence of reptarenavirus in the
specimen, RNA was extracted with the TRI Reagent (Mo-
lecular Research Center) and was reverse transcribed (RT)
using random hexamer primers and AMV Reverse Tran-
scriptase (Promega). Amplification of a fragment of the viral
GPC gene of reptarenaviruses was attempted by a consensus
PCR with degenerate primers (Stenglein et al., 2012). In the
25-pl volume, the reaction mixture contained 3 Ul reverse-
transcribed DNA, 400 pM dNTP mixture, 1x DreamTaq
buffer and 2.5 U DreamTaq DNA polymerase (Thermo
Fisher Scientific) and 500nM MDS-435 (5'-TAYA-
CAACCAMMGCYCTGTT-3') and 500nM MDS-400 (5'-
TTCATTTCTTCATGRACTTTRTCAATC-3') primers. In
the sequence of the primers, we used the nucleotide ambi-
guity codes recommended by the International Union of
Pure and Applied Chemistry. The cycling protocol consisted
of a denaturation step at 95 °C 3 min, 45 cycles of the steps at
95°C 305, 47°C 30s, and 72°C 1 min, followed by a last
elongation step at 72°C 7min. The PCR products were
purified from agarose gel using Gel/PCR DNA Fragments
Kit (Geneaid). The products were directly sequenced
applying BigDye™ Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems) and ABI PRISM 3100 Avant Genetic
Analyser (Applied Biosystem).

Based on its estimated highest virus content, the liver
sample was selected and prepared for next generation
sequencing (NGS) with Ion Torrent PGM™ using a protocol

described previously (Bényai et al., 2014). Sanger sequencing
was carried out in order to confirm the NGS data and to
generate sequence information missing from the viral met-
agenomics approach.

The NGS reads were assembled with the CLC Bio soft-
ware (http://www.clcbio.com), and the assembled contigs
and sequences, obtained by Sanger method, were aligned
and edited with the Geneious Prime® v.2020.2.4 (Kearse
et al,, 2012), TranslatorX, and AliView software (Abascal
et al., 2010; Larsson, 2014). BLAST was used for sequence
identification (Altschul et al., 1990). Phylogenetic analysis
and pairwise identity values were obtained with the MEGA
X software (Kumar et al., 2018). Recombination analysis was
made with the RDP4 software (Martin et al., 2015).

Virus isolation from homogenised tissue samples was
also attempted. VH 2 (Russell’s viper heart, ATCC CCL-
140) cells were plated for isolation of the arenavirus from the
liver, stomach, intestine, kidney, heart and trachea. The cells
were cultured in Dulbecco’s Modified Eagle Medium (Lonza
Bioscience) supplemented with 5V/V% fetal bovine serum
(Thermo Fisher Scientific), 1 V/V% Penicillin-Streptomycin-
Amphotericin B Mixture (Lonza Bioscience) and 1V/V%
Non-Essential Amino Acid Solution (Lonza Bioscience) in a
24-well multidish (Thermo Fisher Scientific), and were
maintained at 28 °C with 5% CO,. Three blind passages were
carried out, the cells were examined daily using light mi-
croscope and the cultures were treated three-times with
freezing and thawing cycles before nucleic acid purification
and RT-PCR using the above-described method.

RESULTS

The reverse transcription PCR (RT-PCR) targeting the GPC
gene of arenaviruses gave positive results and the sequencing
confirmed the presence of an arenavirus in all the 9 exam-
ined organs of the red-tailed boa. BLAST analysis of the first
sequences suggested that a virus most similar to the Uni-
versity of Helsinki virus (UHV) was identified. Attempts for
the isolation in cell culture remained unsuccessful, arenavi-
rus RNA could not detected even after the third blind pas-
sage. A large fragment of the viral genome sequence could be
determined by the viral metagenomics approach, directly
from the liver sample. After combining this with the sup-
plementary information, obtained from the Sanger
sequencing, two contigs were assembled and, based on
bioinformatics analyses, oneL and one S segment was
identified. The combined nucleotide sequence was 8,755
bases in length and covered the whole L and the partial S
genome segments (Table 1). The obtained partial genome
sequence was deposited in the GenBank database under
accession numbers MZ818775 and MZ818776, respectively.

The genomic organisation of the newly detected reptar-
enavirus, that we propose to name Coldvalley arenavirus,
was similar to that of members of the genus Reptarenavirus.
The L segment encoded the RdRp in the virus genome-
complementary sequence and the Z in the virus genome-
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Table 1. General features of the novel reptarenavirus (Coldvalley
arenavirus) genome

Genome segment L S
Length of the segment (nt) 6,860 1,895*
Reference UHV-3 UHV-3
(KR870032) (KR870019)
Coverage to reference 100% 56.8%
Length of the 5 end (nt) 87 ND
Length of the OFR (nt) 348 6,207 ND 1,755
Encoded protein Z RdRp GPC NP
Protein size (aa) 115 2,068 NA 584
Length of the IGR (nt) 172 111*
Length of the 3’ end (nt) 47 29

*partial sequence; ND: not determined; ORF: open reading frame;
IGR: noncoding intergenic region; Z: zinc-binding matrix protein;
RdRp: RNA-dependent RNA polymerase; GPC: glycoprotein
precursor; NP: nucleoprotein.

sense sequence, while the S segment encoded the NP in the
virus genome-complementary sequence. No additional
sequence from the GPC could be obtained. The phylogenetic
analyses and pairwise identity calculations revealed that the
sequence of the Coldvalley arenavirus was most similar to,
and grouped together on the phylogenetic trees with, the
sequences of multiple strains named University of Helsinki
vrus 3 (UVH-3).

DISCUSSION

Isolation and propagation of reptarenaviruses using
mammalian (Vero, Vero E6, A549, BHK-21, HEK293FT),
reptilian (VH 2, IgH 2, JK, I/1Ki, V/5Lu, V/1Liv, VII/2Liv),
and arthropod (tick cell line, RAE/CTVMI1, BME/CTVM2)
cell lines have been reported with various degrees of success
(Stenglein et al., 2012; Hetzel et al., 2013; Abba et al., 2016;
Korzyukov et al., 2016; Keller et al., 2017; Korzyukov et al.,
2020). Unfortunately, the virus isolation attempts in our
study remained unsuccessful. It is conceivable that the organ
samples processed in our study contained insufficient
quantity of infective virions for the inoculation, or the
virions could not bind to, or enter the cells. Other potentially
susceptible cell lines, such as for example the JK and I/1Ki of
boa origin were not available in our laboratory (Hepojoki
et al., 2015).

According to the current taxonomic demarcation
criteria, the classification of reptarenaviruses is based on
pairwise sequence comparisons of coding complete genomes
and on some biological properties (e.g. host range, trans-
mission patterns and pathobiology). Nucleotide (nt) identi-
ties higher than 40% and 35% for the L and S segments,
respectively, appoint members into the same genus. These
viruses also have to form a monophyletic clade in the
maximum-likelihood trees generated based on the nt
sequences of RdRp and NP. Two arenaviruses should be
classified in a common species if their nt sequence identity
values are higher than 80% and 76% for the S and L

segments, respectively, and the amino acid (aa) sequence
similarity values are higher than 88% in case of the NP.
There are currently five accepted species of the genus
Reptarenavirus: California reptarenavirus, Golden reptar-
enavirus, Giessen reptarenavirus, Ordinary reptarenavirus
and Rotterdam reptarenavirus (Radoshitzky et al., 2019).

The pairwise identity calculations showed 98.8-99.3% nt
identity in case of the complete L segments, 98.8-99.3% nt
and 99.3-99.4% aa identity for RdRp, 98.6-99.7% nt and
97.9-100% aa identity for Z, and 98.8% nt and 98.9% aa
identity for the NP compared to the available UHV-3
strains. The three genes tested were found to be identical in
length, with high nt identity values (RdRp 6145/6207, NP
1752/1736, Z 340/345 identical nt/full nt). Few nt changes
resulted in changes in the aa sequence (RdRp 2050/2068, NP
578/584, Z 113/115 identical aa/full aa). However, different
genomic regions of the novel sequence shared similarly high
identity values with that of other reptarenaviruses, e.g. with
the RdRp and Z of UHV-4 (KX527590, KR870027) and L20
strains, as well as an UHV-1 strain (KR870020) (up to 99.2%
nt and 99.5% aa identity), and with the NP of ROUTV
(KC508669) and UHV-2 (KR8700016) strains (up to 98.5%
nt and 98.9% aa identity). Although the complete sequence
of the S segment of the Coldvalley arenavirus could not be
determined, the identity values and phylogeny of the avail-
able sequences appointed this virus to be a member of the
genus Reptarenavirus.

Besides the above-mentioned sequences, the RdRp of
UHV-1 (KF297881) and ROUTV (KC508670) strains, type
sequences of the Rotterdam species (Reptarenavirus genus),
showed relatively high nt and aa identities with the Cold-
valley arenavirus sequences (82.1-87.2% nt and 84.9-87.8%
aa identity) and with each other (86.7% nt and 90.7% aa),
and also clustered together on the phylogenetic trees.
Regarding the NP, the ROUTV (KC508669) strain grouped
together with the Coldvalley arenavirus (98.5% nt and 98.9%
aa identity), while the UHV-1 (KF297880) represented a
slightly more distant cluster (77.6% nt and 85.0% aa iden-
tity). This finding suggested potential recombination events
among variable reptarenaviruses that have been described in
other studies (Stenglein et al., 2015). We also performed a
recombination analysis (data not shown) according to which
no recombination affected the UHV-3, but rather did the
UHV-1 strains. Co-infection is a common event among
reptarenaviruses and reassortment of the S and L segments
leads to unbalanced segment ratio in the progeny virions,
where the number of the detected L segments usually exceed
the number of the S segments (Hepojoki et al., 2015). This
phenomenon may be related to the function of the S
segment that codes for the viral glycoprotein, responsible for
the cell entry, as well as NP, encoded also by this segment
that plays a role in viral replication (Keller et al., 2017). This
segment may be strongly affected by selection constraint and
the most effective S segments may spread among the prog-
eny virions during co-infection.

Despite the availability of numerous complete reptar-
enavirus genome segment sequences in the GenBank, in
most cases the individual S and L segments cannot be
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Fig. 1. Maximum-likelihood phylogenetic trees based on the nt sequence of the RNA-dependent RNA polymerase (RdRp) (A), and the
nucleoprotein (NP) (B) genes of reptarenaviruses. The tree was constructed with MEGAX software with 1,000 bootstrap replicates using the
best-fit model of nucleotide evolution with MEGAX (GTR+G+I and K2+G+1I for the RdRp and NP, respectively). The percentage of
replicate trees in which the associated taxa clustered together in the bootstrap analyses is shown next to branch nodes (when >70%). The virus
sequences are marked with the GenBank accession number and the abbreviated name of the isolate. Symbols demonstrate the classified
reptarenavirus species: @- Giessen reptarenavirus, ll- Ordinary reptarenavirus, 4~ California reptarenavirus, W — Golden reptarenavirus,
A - Rotterdam reptarenavirus. Abbreviations: ArSV-1 — Arabuta snake virus 1, ArBV-1 - Aramboia boa virus 1, ABV - Aurora borealis virus,
BSV-1 - Bis spoeter virus, CASV - California Academy of Science Virus, FStV-1 - Frankfurter Strasse virus 1, GauV-1 - Gaucho virus 1,
GOGYV - Golden Gate virus, HKV-1 - Hans Kompis virus 1, HJV-1 - Hipoen jatkoon virus 1, KaBV-1 - Kaltenbach virus 1, KePV-1 - Keijut
pohjoismaissa virus 1, KUKV-1 - Kiva uusi kaarme virus, KMHV-1 - Kuka mitae haeh virus 1, MNTV-1 - Mistd nit4 tulee virus 1, PVaV-1
- Peilihimmeli vakooja virus 1, PJV-1 - Peto jauhoski virus 1, PAV-1 - Porto Alegre virus 1, SauV-1 - Saudades virus 1, SVaV-1 - Suri
Vanera virus - SVaV, TSMV-1 - Tavallinen suomalainen mies virus, UGV - University of Giessen virus, UHV - University of Helsinki virus

matched to each other. This fact and the occurrence of
reassortment complicate the simple classification of reptar-
enavirus strains.

At present in the GenBank, the L and S sequences are
available only from one UHV-3 isolate (GenBank acc. no.
KR870032 and KR870019, respectively) collected from a
red-tailed boa in Germany in 2012 (Hepojoki et al., 2015).
This German strain and the Coldvalley arenavirus from
Hungary showed close genetic relationship, and were
detected in the same time interval from the same host spe-
cies, implying common origin of these viruses. There are a
number of additional, closely related strains (such as

additional UHV-3, UHV-1, UHV-4, 1L20) found in red-
tailed boas. Unfortunately, complete genome sequences are
scarce, but the phylogenetic analyses and common host
species suggest that UHV-3, together with the Coldvalley
arenavirus, belong to the species Rotterdam reptarenavirus.
According to our knowledge this is the first described
reptarenavirus infection and nearly complete genome
sequence in Hungary.

The popularity of boas in exotic animal collections and
the intense trade of reptiles may contribute to the intensive
spread of these viruses, while the potential for mutation,
recombination and reassortment may promote successful
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infection of variable hosts. Indeed, multiple reptarenavirus
infection in the same animal is known (Hepojoki et al., 2015;
Stenglein et al., 2015; Keller et al., 2017). The possible long
incubation period (weeks or months for boas) and unap-
parent infections require the implementation of rigorous
quarantine. The genomic characterisation of individual viral
strains may lead to the development of effective tools against
the infection as no vaccine against BIBD is currently avail-
able (Hetzel et al., 2020).
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