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Balázs Szalontai, Péter Bereczky and Dániel Horpácsi
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I. INTRODUCTION

BEHAVIOUR-preserving program rephrasing (known as
refactoring) is an inevitable step in any software devel-

opment process. The goal of refactoring is to improve the
quality of software source code without altering its observable
behaviour [1].

Refactoring is commonly implemented as a transformation
on a structured representation (such as a parse tree) of the
source code. Admittedly, this approach works well in the
typical scenarios with syntactically valid code; furthermore,
when defined with syntactic rewriting, simple refactoring
steps can be verified for correctness (semantics-preservation)
by using formal methods. On the other hand, syntax-based
approaches need to hardcode the logic of handling the various
combinations of language constructs, and they cannot handle
incomplete or ill-formed code fragments. In contrast, deep
learning-based methods are inherently adaptive, and they can
eliminate the need for hardcoding the vast amount of shapes
and combinations syntactic constructs may take in a program.
Due to its benefits, there has been an ever-growing interest
in using deep neural networks for modifying source code
recently. Some of these techniques, in addition to removing
the burden of hand-crafting refactoring algorithms, come with
the ability of transforming incomplete code fragments as the
model is trained to transform code at the lexical level.
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In this paper, we propose the combination of the above
techniques: we apply deep learning for code refactoring and
train on datasets generated with syntactic rewriting. We show
that processing Erlang source code as a sequence of tokens
and using deep learning methods to apply changes could serve
as a great extension to the existing syntax-based methods,
because our approach is capable of fixing incomplete or
non-compilable code as well, supposing that the parts to
be refactored are already complete. Moreover, we train our
deep learning model on verified refactorings, that is, the
code before and after the transformation are behaviourally
indistinguishable. We present the following contributions:

• We formally define refactoring steps as conditional syn-
tactic rewrite rules, and based on previous work [2], [3],
[4], we verify the correctness of these steps by means of
proving contextual equivalence (based on “CIU” equiva-
lence [5]) between the matching and replacement patterns
of the rewrite rules.

• Then we take the rewrite rules and instantiate the
metavariables with randomly generated expressions,
yielding semantically equivalent expression pairs. We
also generate random context around these expressions
to ultimately obtain the formally verified training data.

• Finally, we train a recurrent neural network to localize
the code to be refactored and a Sequence-to-Sequence
network with Attention Mechanism to carry out the refac-
toring steps autonomously. A very similar approach was
presented in [6]. By using a similar architecture we show,
that this approach is essentially language independent.

The paper is structured as follows. In Section II we discuss
the related work, then in Sections III, IV, and V we show the
above components of our approach. In Section VI we evaluate
our approach, and finally Section VII concludes.

II. RELATED WORK

There have been multiple attempts to transform source code
with deep learning. The goal of such methods is generally
to fix common errors (such as syntactic errors or semantic
bugs) or to refactor code. Although in the current state of
research, such techniques are not yet completely reliable, it is
nevertheless a very active field.

Gupta et al. [7] aim to fix common C language errors
with a Sequence-to-Sequence architecture. Their method is
applied iteratively to fix errors one by one. Tufano et al. [8]
train a recurrent Encoder-Decoder architecture on a dataset
comprising data from pull requests. Their goal is to imitate
human code fixing operations. Chen et al. [9] train a Sequence-
to-Sequence architecture with Attention Mechanism to repair
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programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the

1The small refactoring examples we investigate here are inspired by Poór
et al. [14].

other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of

true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the
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In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the

1The small refactoring examples we investigate here are inspired by Poór
et al. [14].

other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of
true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the
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programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the
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(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the
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programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the
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other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of

true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the
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programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the
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other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of

true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the
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architecture for the task of program repairing. Similarly
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Decoder) architecture with Attention Mechanism to transform
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We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the
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other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
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false -> false
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(a) A correct implementation
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lazy_and(X, Y) ->
if X -> Y;

true -> false
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(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the
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function body. The variables f , x and e denote a function
name, a variable, and an expression, respectively.

Formal semantics and program equivalence: To formally
argue about the preservation of behaviour, we need a formal
semantics of the language, and a suitable program equivalence
definition. If two programs are proved to be equivalent, they
are not distinguishable in any program context, that is, they
can be exchanged.

Previously, we have defined several formal semantics for
Core Erlang [2], [3], [4] which are capable of expressing
program equivalence of Core Erlang expressions, and we
also implemented these semantics in Coq. Core Erlang is an
intermediate language of Erlang in the official implementation;
we utilize this by reasoning about equivalence in Erlang via
the trusted translation from Erlang to Core Erlang.

We use an (extended) version of the frame-stack semantics
we defined previously [4], and the concept of CIU (“closed
instances of use”) equivalence [5]. The termination relation
defined there is denoted by ⟨K, e⟩ ⇓, meaning that expression
e terminates in the frame stack K. The frame stacks describe
continuations, i.e., K includes what should be evaluated next,
once e has terminated. Here, we show a simplified version
of the equivalence definition, and refer to [4] and the Coq
formalisation [17] for further details.

Definition 1 (CIU equivalence). e1 ≡ciu e2
def
= (∀K :

⟨K, e1⟩ ⇓ ⇐⇒ ⟨K, e2⟩ ⇓)

We also showed [4] that reasoning about termination is
sufficient to ensure the behavioural and contextual equivalence
of the expressions (i.e., they evaluate to equivalent values,
and equivalent expressions are interchangeable in arbitrary
syntactic contexts). Based on the CIU equivalence, we can
show the correctness of local refactoring steps.

Definition 2 (Correctness of refactorings). For all expressions
e1, e2 and conditions P , e1 → e2 when P is a correct
refactoring step if P implies e1 ≡ciu e2.

We have already proved the equivalence for the refactoring
steps shown in Figure 2 and Figure 3. The proofs are extensive
and their presentation is out of the scope of this paper, but we
refer to the Coq formalisation [17] for more details.

IV. GENERATION OF TRAINING DATA

To produce training data for the neural networks, we require
two datasets: one dataset should contain (nonidiomatic code,
snippet location) pairs to train the localizer network, while
the other should consist of (nonidiomatic snippet, idiomatic
snippet) pairs to train the refactoring network. We have set
forth some general expectations for generating these datasets.

• The generated code must be syntactically correct and
tokenizable.

• The generated code should share similarity with real-
world code, i.e., it should apply functions of the stan-
dard library, apply other generated functions, use Erlang-
specific values (e.g., ok, false, true), etc.

• The datasets must not only be diverse in terms of code
size but also in the internal structure and meaning.

• Generating the idiomatic alternative must be determinis-
tic, to allow the network to grasp the refactoring proce-
dure.

• In the localizer’s dataset, each nonidiomatic source code
should contain at least one nonidiomatic snippet.

• Sufficient data should be available for training both
networks: we believe that a good starting point would
be to generate about 50.000 training examples in both
datasets.

Based on the verified refactoring rules, we sample loads of
concrete program modules including parts where the proven-
correct refactoring steps can be applied. At the same time
we synthesise the result of the refactoring too, by applying
the rewrite rules.2 With this dual synthesis, we create training
data both for the localizing of refactoring candidates as well
as for the application of the refactoring.

The program generation is based on a stochastic attribute
grammar defining (a subset of) the Erlang programming lan-
guage. In particular, we randomly generate elements of the
language defined by the grammar, where the probabilities
associated with the nonterminal symbols, along with some
constrains carried in attributes, control the shapes and style of
the generated programs; for instance, we can set the maximum
number of functions and expressions within clauses, as well
as we can fine-tune how deeply, and how likely, expressions
get nested. For details about the attribute grammar notation,
we refer to [18].

The data generation process consists of the following main
steps:

• First a module context is generated by a modified variant
of the above-mentioned attribute grammar, which pro-
duces modules that may contain so-called holes (holes
mark the designated locations where code to be refactored
will be emplaced). Holes encode information about their
context (e.g. variable and function names in their scope)
so that the refactoring candidates are generated context-
sensitively.

• Then a refactoring rule is instantiated with the metavari-
ables replaced by randomly generated names and subex-
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Fig. 4: The approach for tokenizing and creating the corresponding variable dictionary. The tokens length and 0 are kept in
their original form, since they hold valuable information.

This guarantees that the contexts will teach various syntactic
ways a refactoring candidate may be happen to be part of
a program, and the refactoring instances themselves show a
wide spectrum of syntactic variety. The generated programs
are fully random, i.e., including programs that implement no
useful behaviour. This is based on the fact that QuickCheck
generators are implemented based on Erlang’s pseudo-random
seeder. We expect this not to cause an issue because the
current rewriting approach is lexical, little to do with the actual
semantics of the program under transformation.

V. APPROACH OF REFACTORING WITH DEEP LEARNING

In this section, we offer a concise summary of the approach
we took to localize and refactor function definitions in Erlang
source code. First, we explain how we transformed a given
piece of source code into a sequence of tokens that served
as input to the models. Second, we introduce the neural
network architecture that we trained to localize nonidiomatic
code chunks. Finally, we describe the method for generating
an alternative for the localized chunk using a Sequence-to-
Sequence architecture with Attention Mechanism.

A. Preprocessing Source Code

To transform source code into a sequence of tokens, we
undertake multiple steps. We utilize the Erlang module tok
to tokenize the source code. Using this module, we obtain
not only the tokens themselves, but also their types, such
as atom, integer, variable, etc. To tackle the challenge of
handling the unlimited number of valid identifiers, numbers,
variables, etc., present in code, we replace these tokens with
their type and a unique index. There are some exceptions to
this process: the tokens that hold valuable information are not
replaced, such as length, 0, true, etc. We drew inspiration
for this approach from the work of Chirkova et al. [19]. When
generating an idiomatic alternative, we invert the changes
made to these tokens that appear in the model’s output. The
process is visualized on Figures 4 and 5: Figure 4 shows
how a function implementation is turned into a sequence of
tokens and its corresponding dictionary. Figure 5 shows how
the changes are inverted for an idiomatic alternative generated
by the refactoring model.

B. Localizing Nonidiomatic Functions

Localizing nonidiomatic patterns (i.e., refactoring candi-
dates) in source code is solved as a sequence tagging task.

atom0 ( [ ] ) -> atom1 . +
f atom0
A var0
hello atom1

↓
f ( [ ] ) -> hello .

↓
f([]) -> hello.

Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
outputs.
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network architecture that we trained to localize nonidiomatic
code chunks. Finally, we describe the method for generating
an alternative for the localized chunk using a Sequence-to-
Sequence architecture with Attention Mechanism.

A. Preprocessing Source Code

To transform source code into a sequence of tokens, we
undertake multiple steps. We utilize the Erlang module tok
to tokenize the source code. Using this module, we obtain
not only the tokens themselves, but also their types, such
as atom, integer, variable, etc. To tackle the challenge of
handling the unlimited number of valid identifiers, numbers,
variables, etc., present in code, we replace these tokens with
their type and a unique index. There are some exceptions to
this process: the tokens that hold valuable information are not
replaced, such as length, 0, true, etc. We drew inspiration
for this approach from the work of Chirkova et al. [19]. When
generating an idiomatic alternative, we invert the changes
made to these tokens that appear in the model’s output. The
process is visualized on Figures 4 and 5: Figure 4 shows
how a function implementation is turned into a sequence of
tokens and its corresponding dictionary. Figure 5 shows how
the changes are inverted for an idiomatic alternative generated
by the refactoring model.

B. Localizing Nonidiomatic Functions

Localizing nonidiomatic patterns (i.e., refactoring candi-
dates) in source code is solved as a sequence tagging task.

atom0 ( [ ] ) -> atom1 . +
f atom0
A var0
hello atom1

↓
f ( [ ] ) -> hello .

↓
f([]) -> hello.

Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
outputs.
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Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
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to a fully connected layer to obtain the final output, where
the fully connected layer has one unit and uses the sigmoid
activation function. This result indicates which chunks are to
be refactored (1 for IN) and which are not (0 for OUT). The
Adam optimizer is used with a learning rate of 0.001, and
binary cross-entropy is the loss function.

We based the selection of hyperparameters on previous
work [6] and on intuition. This is the case for both the localizer
and refactoring component. Since our current goal is to prove
that using deep learning for refactoring nonidiomatic Erlang
code is a viable option, we did not focus on optimizing the
hyperparameters too much.

C. Generating Idiomatic Alternative

The idiomatic alternative is generated using a recurrent
Sequence-to-Sequence architecture with Attention Mecha-
nism. That is, we first feed the tokenized nonidiomatic code
to the encoder, and then expect the decoder to generate the
idiomatic alternative token-by-token.

The encoder component (Figure 7) aims to produce a
hidden representation of the input sequence. This is achieved
through the use of a recurrent neural network consisting of
four BiLSTM layers with 64 units each. First, the tokens
of the input sequence are embedded into a 64-dimensional
vector space. Next, the sequence of tokens is fed into the four
BiLSTM layers in the following way: the input sequence is
fed into two BiLSTM layers, then the outputs of these layers
are fed into another BiLSTM layer each. The resulting outputs
of the two latter BiLSTM layers are concatenated to produce
the final output of the encoder, which serves the hidden
representation of the code chunk. Additionally, the BiLSTM
layers are followed by 20% of dropout. This architecture
is designed with the aims of (1) obtaining two independent

representations of the same code chunk by using parallel
BiLSTM layers, and (2) acquiring a higher-level representation
by using such a stacked architecture.

The decoder uses a single LSTM layer with 256 units to
generate an output sequence element-by-element. The LSTM
layer takes as input the fixed-length vector representation
produced by the encoder, along with the previously generated
output token (which is of the idiomatic code). For the first
element of the output sequence, a special START token is
used in place of the previous output. An attention layer is used
to compute the attention weights between the encoder output
and the decoder outputs. The attention weights are used to
compute the context vector, which then gets concatenated with
the decoder outputs. The concatenated vector is passed through
a fully connected layer with softmax activation to obtain the
final decoder outputs, which determines the next token of the
idiomatic code. We use the Adam optimizer with the learning
rate of 0.001 and categorical crossentropy as the loss function.

VI. EVALUATION AND EXPERIMENTS

In this section, we first present the measured accuracy of
the two main components of our approach: the localizer and
refactoring models. Then we showcase experiments on our
method’s capability to perform refactoring steps on Erlang
code. Finally, we make notes about the usability of our method
on real-world codes.

Both the localizer and refactoring models were evaluated
on a test set that was separated from the training data before
the training process: 10% for the localizer and 4% for the
refactoring model. The accuracy of the localizer model is the
ratio of the correctly classified code chunks divided by the
total number of chunks in the test set: this ratio turned out
to be 99.09%. For the refactoring component, we measured
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to a fully connected layer to obtain the final output, where
the fully connected layer has one unit and uses the sigmoid
activation function. This result indicates which chunks are to
be refactored (1 for IN) and which are not (0 for OUT). The
Adam optimizer is used with a learning rate of 0.001, and
binary cross-entropy is the loss function.

We based the selection of hyperparameters on previous
work [6] and on intuition. This is the case for both the localizer
and refactoring component. Since our current goal is to prove
that using deep learning for refactoring nonidiomatic Erlang
code is a viable option, we did not focus on optimizing the
hyperparameters too much.

C. Generating Idiomatic Alternative

The idiomatic alternative is generated using a recurrent
Sequence-to-Sequence architecture with Attention Mecha-
nism. That is, we first feed the tokenized nonidiomatic code
to the encoder, and then expect the decoder to generate the
idiomatic alternative token-by-token.

The encoder component (Figure 7) aims to produce a
hidden representation of the input sequence. This is achieved
through the use of a recurrent neural network consisting of
four BiLSTM layers with 64 units each. First, the tokens
of the input sequence are embedded into a 64-dimensional
vector space. Next, the sequence of tokens is fed into the four
BiLSTM layers in the following way: the input sequence is
fed into two BiLSTM layers, then the outputs of these layers
are fed into another BiLSTM layer each. The resulting outputs
of the two latter BiLSTM layers are concatenated to produce
the final output of the encoder, which serves the hidden
representation of the code chunk. Additionally, the BiLSTM
layers are followed by 20% of dropout. This architecture
is designed with the aims of (1) obtaining two independent

representations of the same code chunk by using parallel
BiLSTM layers, and (2) acquiring a higher-level representation
by using such a stacked architecture.

The decoder uses a single LSTM layer with 256 units to
generate an output sequence element-by-element. The LSTM
layer takes as input the fixed-length vector representation
produced by the encoder, along with the previously generated
output token (which is of the idiomatic code). For the first
element of the output sequence, a special START token is
used in place of the previous output. An attention layer is used
to compute the attention weights between the encoder output
and the decoder outputs. The attention weights are used to
compute the context vector, which then gets concatenated with
the decoder outputs. The concatenated vector is passed through
a fully connected layer with softmax activation to obtain the
final decoder outputs, which determines the next token of the
idiomatic code. We use the Adam optimizer with the learning
rate of 0.001 and categorical crossentropy as the loss function.

VI. EVALUATION AND EXPERIMENTS

In this section, we first present the measured accuracy of
the two main components of our approach: the localizer and
refactoring models. Then we showcase experiments on our
method’s capability to perform refactoring steps on Erlang
code. Finally, we make notes about the usability of our method
on real-world codes.

Both the localizer and refactoring models were evaluated
on a test set that was separated from the training data before
the training process: 10% for the localizer and 4% for the
refactoring model. The accuracy of the localizer model is the
ratio of the correctly classified code chunks divided by the
total number of chunks in the test set: this ratio turned out
to be 99.09%. For the refactoring component, we measured

INFOCOMMUNICATIONS JOURNAL 5

Input 
tokenized

code chunk

Embedding
64-dim

Convolution
filters: 128

kernel size: 5

Avg pool

MinMax pool
Fully connected

64 units
20% dropout

Concatenate
Fully connected

1 unit
sigmoid activation

Fully connected
64 units
20% dropout

BiLSTM BiLSTM
32-dim    32-dim

20% dropout   20% dropout

BiLSTM BiLSTM
32-dim    32-dim

20% dropout   20% dropout

Fig. 6: Proposed neural network architecture to localize refactoring candidates

Input
tokenized

nonidiomatic snippet

Embedding
64-dim

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

Concatenate
hidden representation

Fig. 7: Proposed architecture of the encoder of the refactoring model

to a fully connected layer to obtain the final output, where
the fully connected layer has one unit and uses the sigmoid
activation function. This result indicates which chunks are to
be refactored (1 for IN) and which are not (0 for OUT). The
Adam optimizer is used with a learning rate of 0.001, and
binary cross-entropy is the loss function.

We based the selection of hyperparameters on previous
work [6] and on intuition. This is the case for both the localizer
and refactoring component. Since our current goal is to prove
that using deep learning for refactoring nonidiomatic Erlang
code is a viable option, we did not focus on optimizing the
hyperparameters too much.

C. Generating Idiomatic Alternative

The idiomatic alternative is generated using a recurrent
Sequence-to-Sequence architecture with Attention Mecha-
nism. That is, we first feed the tokenized nonidiomatic code
to the encoder, and then expect the decoder to generate the
idiomatic alternative token-by-token.

The encoder component (Figure 7) aims to produce a
hidden representation of the input sequence. This is achieved
through the use of a recurrent neural network consisting of
four BiLSTM layers with 64 units each. First, the tokens
of the input sequence are embedded into a 64-dimensional
vector space. Next, the sequence of tokens is fed into the four
BiLSTM layers in the following way: the input sequence is
fed into two BiLSTM layers, then the outputs of these layers
are fed into another BiLSTM layer each. The resulting outputs
of the two latter BiLSTM layers are concatenated to produce
the final output of the encoder, which serves the hidden
representation of the code chunk. Additionally, the BiLSTM
layers are followed by 20% of dropout. This architecture
is designed with the aims of (1) obtaining two independent

representations of the same code chunk by using parallel
BiLSTM layers, and (2) acquiring a higher-level representation
by using such a stacked architecture.

The decoder uses a single LSTM layer with 256 units to
generate an output sequence element-by-element. The LSTM
layer takes as input the fixed-length vector representation
produced by the encoder, along with the previously generated
output token (which is of the idiomatic code). For the first
element of the output sequence, a special START token is
used in place of the previous output. An attention layer is used
to compute the attention weights between the encoder output
and the decoder outputs. The attention weights are used to
compute the context vector, which then gets concatenated with
the decoder outputs. The concatenated vector is passed through
a fully connected layer with softmax activation to obtain the
final decoder outputs, which determines the next token of the
idiomatic code. We use the Adam optimizer with the learning
rate of 0.001 and categorical crossentropy as the loss function.

VI. EVALUATION AND EXPERIMENTS

In this section, we first present the measured accuracy of
the two main components of our approach: the localizer and
refactoring models. Then we showcase experiments on our
method’s capability to perform refactoring steps on Erlang
code. Finally, we make notes about the usability of our method
on real-world codes.

Both the localizer and refactoring models were evaluated
on a test set that was separated from the training data before
the training process: 10% for the localizer and 4% for the
refactoring model. The accuracy of the localizer model is the
ratio of the correctly classified code chunks divided by the
total number of chunks in the test set: this ratio turned out
to be 99.09%. For the refactoring component, we measured
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to a fully connected layer to obtain the final output, where
the fully connected layer has one unit and uses the sigmoid
activation function. This result indicates which chunks are to
be refactored (1 for IN) and which are not (0 for OUT). The
Adam optimizer is used with a learning rate of 0.001, and
binary cross-entropy is the loss function.

We based the selection of hyperparameters on previous
work [6] and on intuition. This is the case for both the localizer
and refactoring component. Since our current goal is to prove
that using deep learning for refactoring nonidiomatic Erlang
code is a viable option, we did not focus on optimizing the
hyperparameters too much.

C. Generating Idiomatic Alternative

The idiomatic alternative is generated using a recurrent
Sequence-to-Sequence architecture with Attention Mecha-
nism. That is, we first feed the tokenized nonidiomatic code
to the encoder, and then expect the decoder to generate the
idiomatic alternative token-by-token.

The encoder component (Figure 7) aims to produce a
hidden representation of the input sequence. This is achieved
through the use of a recurrent neural network consisting of
four BiLSTM layers with 64 units each. First, the tokens
of the input sequence are embedded into a 64-dimensional
vector space. Next, the sequence of tokens is fed into the four
BiLSTM layers in the following way: the input sequence is
fed into two BiLSTM layers, then the outputs of these layers
are fed into another BiLSTM layer each. The resulting outputs
of the two latter BiLSTM layers are concatenated to produce
the final output of the encoder, which serves the hidden
representation of the code chunk. Additionally, the BiLSTM
layers are followed by 20% of dropout. This architecture
is designed with the aims of (1) obtaining two independent

representations of the same code chunk by using parallel
BiLSTM layers, and (2) acquiring a higher-level representation
by using such a stacked architecture.

The decoder uses a single LSTM layer with 256 units to
generate an output sequence element-by-element. The LSTM
layer takes as input the fixed-length vector representation
produced by the encoder, along with the previously generated
output token (which is of the idiomatic code). For the first
element of the output sequence, a special START token is
used in place of the previous output. An attention layer is used
to compute the attention weights between the encoder output
and the decoder outputs. The attention weights are used to
compute the context vector, which then gets concatenated with
the decoder outputs. The concatenated vector is passed through
a fully connected layer with softmax activation to obtain the
final decoder outputs, which determines the next token of the
idiomatic code. We use the Adam optimizer with the learning
rate of 0.001 and categorical crossentropy as the loss function.

VI. EVALUATION AND EXPERIMENTS

In this section, we first present the measured accuracy of
the two main components of our approach: the localizer and
refactoring models. Then we showcase experiments on our
method’s capability to perform refactoring steps on Erlang
code. Finally, we make notes about the usability of our method
on real-world codes.

Both the localizer and refactoring models were evaluated
on a test set that was separated from the training data before
the training process: 10% for the localizer and 4% for the
refactoring model. The accuracy of the localizer model is the
ratio of the correctly classified code chunks divided by the
total number of chunks in the test set: this ratio turned out
to be 99.09%. For the refactoring component, we measured
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to a fully connected layer to obtain the final output, where
the fully connected layer has one unit and uses the sigmoid
activation function. This result indicates which chunks are to
be refactored (1 for IN) and which are not (0 for OUT). The
Adam optimizer is used with a learning rate of 0.001, and
binary cross-entropy is the loss function.

We based the selection of hyperparameters on previous
work [6] and on intuition. This is the case for both the localizer
and refactoring component. Since our current goal is to prove
that using deep learning for refactoring nonidiomatic Erlang
code is a viable option, we did not focus on optimizing the
hyperparameters too much.

C. Generating Idiomatic Alternative

The idiomatic alternative is generated using a recurrent
Sequence-to-Sequence architecture with Attention Mecha-
nism. That is, we first feed the tokenized nonidiomatic code
to the encoder, and then expect the decoder to generate the
idiomatic alternative token-by-token.

The encoder component (Figure 7) aims to produce a
hidden representation of the input sequence. This is achieved
through the use of a recurrent neural network consisting of
four BiLSTM layers with 64 units each. First, the tokens
of the input sequence are embedded into a 64-dimensional
vector space. Next, the sequence of tokens is fed into the four
BiLSTM layers in the following way: the input sequence is
fed into two BiLSTM layers, then the outputs of these layers
are fed into another BiLSTM layer each. The resulting outputs
of the two latter BiLSTM layers are concatenated to produce
the final output of the encoder, which serves the hidden
representation of the code chunk. Additionally, the BiLSTM
layers are followed by 20% of dropout. This architecture
is designed with the aims of (1) obtaining two independent

representations of the same code chunk by using parallel
BiLSTM layers, and (2) acquiring a higher-level representation
by using such a stacked architecture.

The decoder uses a single LSTM layer with 256 units to
generate an output sequence element-by-element. The LSTM
layer takes as input the fixed-length vector representation
produced by the encoder, along with the previously generated
output token (which is of the idiomatic code). For the first
element of the output sequence, a special START token is
used in place of the previous output. An attention layer is used
to compute the attention weights between the encoder output
and the decoder outputs. The attention weights are used to
compute the context vector, which then gets concatenated with
the decoder outputs. The concatenated vector is passed through
a fully connected layer with softmax activation to obtain the
final decoder outputs, which determines the next token of the
idiomatic code. We use the Adam optimizer with the learning
rate of 0.001 and categorical crossentropy as the loss function.

VI. EVALUATION AND EXPERIMENTS

In this section, we first present the measured accuracy of
the two main components of our approach: the localizer and
refactoring models. Then we showcase experiments on our
method’s capability to perform refactoring steps on Erlang
code. Finally, we make notes about the usability of our method
on real-world codes.

Both the localizer and refactoring models were evaluated
on a test set that was separated from the training data before
the training process: 10% for the localizer and 4% for the
refactoring model. The accuracy of the localizer model is the
ratio of the correctly classified code chunks divided by the
total number of chunks in the test set: this ratio turned out
to be 99.09%. For the refactoring component, we measured
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TABLE I: Example of refactored code snippet

Original (nonidiomatic) code Refactored code
f(L) when length(L) == 0 -> error;
f(L) -> lists:max(L).

→ f([]) -> error;
f(L) -> lists:max(L).

f(L) when length(L) == 0 ->
case X of 0 -> true; 1 ->

→ f([]) ->
case X of 0 -> true; 1 ->

TABLE II: Example of refactored source code

Original source code Refactored source code
-module(mod).
-compile(export_all).
fact(0) -> 1;
fact(N) -> N * fact(N - 1).
f(L) when length(L) == 0 -> error;
f(L) -> double(lists:max(L)).
double(N) -> N * 2.

-module(mod).
-compile(export_all).
fact(0) -> 1;
fact(N) -> N * fact(N - 1).
f([]) -> error;
f(L) -> double(lists:max(L)).
double(N) -> N * 2.

the ratio of error-free transformations against the total number
of attempted transformations. The resulting accuracy of this
evaluation was 99.46%. These results indicate that our models
have been trained succesfully and are capable to perform
refactorings that are similar to the ones in the training datasets.

We now present some of our experiments with refactoring
various kinds of nonidiomatic programs, including complete
and incomplete programs. First, we focus only on the refac-
toring component by experimenting with refactoring nonid-
iomatic snippets without their surrounding context. After run-
ning our model on some nonidiomatic snippets, we compared
the output of the model with the original code and checked
whether the output is more idiomatic after the changes have
been applied. An example of such a refactoring is shown
in the first row of Table I: here the original version used a
guard to handle empty lists, which was replaced by pattern
matching syntax. The refactored code is an equivalent and
more idiomatic compared to the original code chunk.

As mentioned earlier, we also experimented with refactoring
incomplete code. Of course this only makes sense if the parts
that make the code nonidiomatic are present. In such a sce-
nario, our model attempts to refactor the nonidiomatic part(s)
only and leave the rest unchanged to allow for completion.
The second row of Table I shows such a refactoring. The
transformation was successful - that is, the incomplete part
was left unaltered - in spite of the fact that the model was not
trained on incomplete code.

Next, we performed further experiments on the entire
method, including the localizer component. That is, we applied
our method on a full Erlang code that contained a nonid-
iomatic function implementation. The expected result of the
method is of course the modified code that only varies in the
originally nonidiomatic section. A transformation is correct if
the generated alternative is the properly refactored version of
the original nonidiomatic snippet, while the behavior of the
entire program is preserved. An example of such a refactoring
performed by our method is shown in Table II.

While our proposed approach shows promising results in
refactoring nonidiomatic Erlang code, it represents an initial
proof of concept. At the current stage of research and develop-
ment, our method cannot be used on real-world codes, because
it too often classifies code chunks as refactoring candidates

even when they are not. Since incorrectly localized snippets
cannot be refactored, our idiomatizer network obviously fails
to refactor correctly, which leads to broken code.

We are planning to address this issue by considering mul-
tiple approaches. Firstly, we will investigate ways to generate
training data that is more representative and closer to real-
world code. Secondly, we will explore other approaches for
finding the best way to split the original source code: it
could be the case that too much unnecessary information is
given to the network at once, caused by splitting code by
‘.’ characters. This might make it harder to decide whether
or not to refactor. Thirdly, we will experiment with some
architectural modifications for the localizer component. Possi-
ble modifications include introducing different types of layers
(such as GRU or Convolutional LSTM) and optimizing the
hyperparameters. Lastly, it is possible to perform an extra
pass on the output of our method to filter out some incorrect
refactorings, for example if the code before the refactoring
was compilable, it should be compilable after it too. We
note that although it is also theoretically possible to filter out
incorrect outputs by post-verifying each refactoring instance
and proving equivalence, it would be very costly as the formal
verification is manual.

VII. CONCLUSION

In this paper, we have presented a novel approach to refactor
source code using deep learning techniques. We prototyped
this approach for Erlang. Our method includes a localizer and
a refactoring component, which enable the localization and
refactoring of nonidiomatic code patterns into their idiomatic
counterparts. Our method processes the source code as a
sequence of tokens, making it capable of transforming even
incomplete or non-compilable code.

To ensure that the neural networks learn how to correctly
refactor, we used formally verified data, which we obtained by
instantiating conditional term rewrite rules whose behaviour
preservation is formally proven. We do not aim to change
already existing AST-based approaches, but rather propose our
deep learning-based approach as an extension to these.

Finally, we highlight some areas for possible future work:
• Proving the correctness of a larger number of local

refactorings, and including them into our approach.
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in the first row of Table I: here the original version used a
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The second row of Table I shows such a refactoring. The
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trained on incomplete code.
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method, including the localizer component. That is, we applied
our method on a full Erlang code that contained a nonid-
iomatic function implementation. The expected result of the
method is of course the modified code that only varies in the
originally nonidiomatic section. A transformation is correct if
the generated alternative is the properly refactored version of
the original nonidiomatic snippet, while the behavior of the
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performed by our method is shown in Table II.

While our proposed approach shows promising results in
refactoring nonidiomatic Erlang code, it represents an initial
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ment, our method cannot be used on real-world codes, because
it too often classifies code chunks as refactoring candidates
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cannot be refactored, our idiomatizer network obviously fails
to refactor correctly, which leads to broken code.

We are planning to address this issue by considering mul-
tiple approaches. Firstly, we will investigate ways to generate
training data that is more representative and closer to real-
world code. Secondly, we will explore other approaches for
finding the best way to split the original source code: it
could be the case that too much unnecessary information is
given to the network at once, caused by splitting code by
‘.’ characters. This might make it harder to decide whether
or not to refactor. Thirdly, we will experiment with some
architectural modifications for the localizer component. Possi-
ble modifications include introducing different types of layers
(such as GRU or Convolutional LSTM) and optimizing the
hyperparameters. Lastly, it is possible to perform an extra
pass on the output of our method to filter out some incorrect
refactorings, for example if the code before the refactoring
was compilable, it should be compilable after it too. We
note that although it is also theoretically possible to filter out
incorrect outputs by post-verifying each refactoring instance
and proving equivalence, it would be very costly as the formal
verification is manual.

VII. CONCLUSION

In this paper, we have presented a novel approach to refactor
source code using deep learning techniques. We prototyped
this approach for Erlang. Our method includes a localizer and
a refactoring component, which enable the localization and
refactoring of nonidiomatic code patterns into their idiomatic
counterparts. Our method processes the source code as a
sequence of tokens, making it capable of transforming even
incomplete or non-compilable code.

To ensure that the neural networks learn how to correctly
refactor, we used formally verified data, which we obtained by
instantiating conditional term rewrite rules whose behaviour
preservation is formally proven. We do not aim to change
already existing AST-based approaches, but rather propose our
deep learning-based approach as an extension to these.

Finally, we highlight some areas for possible future work:
• Proving the correctness of a larger number of local
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refactorings that are similar to the ones in the training datasets.
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various kinds of nonidiomatic programs, including complete
and incomplete programs. First, we focus only on the refac-
toring component by experimenting with refactoring nonid-
iomatic snippets without their surrounding context. After run-
ning our model on some nonidiomatic snippets, we compared
the output of the model with the original code and checked
whether the output is more idiomatic after the changes have
been applied. An example of such a refactoring is shown
in the first row of Table I: here the original version used a
guard to handle empty lists, which was replaced by pattern
matching syntax. The refactored code is an equivalent and
more idiomatic compared to the original code chunk.

As mentioned earlier, we also experimented with refactoring
incomplete code. Of course this only makes sense if the parts
that make the code nonidiomatic are present. In such a sce-
nario, our model attempts to refactor the nonidiomatic part(s)
only and leave the rest unchanged to allow for completion.
The second row of Table I shows such a refactoring. The
transformation was successful - that is, the incomplete part
was left unaltered - in spite of the fact that the model was not
trained on incomplete code.

Next, we performed further experiments on the entire
method, including the localizer component. That is, we applied
our method on a full Erlang code that contained a nonid-
iomatic function implementation. The expected result of the
method is of course the modified code that only varies in the
originally nonidiomatic section. A transformation is correct if
the generated alternative is the properly refactored version of
the original nonidiomatic snippet, while the behavior of the
entire program is preserved. An example of such a refactoring
performed by our method is shown in Table II.

While our proposed approach shows promising results in
refactoring nonidiomatic Erlang code, it represents an initial
proof of concept. At the current stage of research and develop-
ment, our method cannot be used on real-world codes, because
it too often classifies code chunks as refactoring candidates

even when they are not. Since incorrectly localized snippets
cannot be refactored, our idiomatizer network obviously fails
to refactor correctly, which leads to broken code.

We are planning to address this issue by considering mul-
tiple approaches. Firstly, we will investigate ways to generate
training data that is more representative and closer to real-
world code. Secondly, we will explore other approaches for
finding the best way to split the original source code: it
could be the case that too much unnecessary information is
given to the network at once, caused by splitting code by
‘.’ characters. This might make it harder to decide whether
or not to refactor. Thirdly, we will experiment with some
architectural modifications for the localizer component. Possi-
ble modifications include introducing different types of layers
(such as GRU or Convolutional LSTM) and optimizing the
hyperparameters. Lastly, it is possible to perform an extra
pass on the output of our method to filter out some incorrect
refactorings, for example if the code before the refactoring
was compilable, it should be compilable after it too. We
note that although it is also theoretically possible to filter out
incorrect outputs by post-verifying each refactoring instance
and proving equivalence, it would be very costly as the formal
verification is manual.

VII. CONCLUSION

In this paper, we have presented a novel approach to refactor
source code using deep learning techniques. We prototyped
this approach for Erlang. Our method includes a localizer and
a refactoring component, which enable the localization and
refactoring of nonidiomatic code patterns into their idiomatic
counterparts. Our method processes the source code as a
sequence of tokens, making it capable of transforming even
incomplete or non-compilable code.

To ensure that the neural networks learn how to correctly
refactor, we used formally verified data, which we obtained by
instantiating conditional term rewrite rules whose behaviour
preservation is formally proven. We do not aim to change
already existing AST-based approaches, but rather propose our
deep learning-based approach as an extension to these.

Finally, we highlight some areas for possible future work:
• Proving the correctness of a larger number of local
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• Extending the generator component to emit code in-
cluding more language constructs (e.g., strings), standard
library functions (e.g., calls to higher-order functions).

• Applying different tagging approaches for the localizer
component in order to be able to identify refactoring
candidates more precisely and limiting number of false
positive localizations.

• Investigating other Sequence-to-Sequence architectures
for refactoring, such as CNN-based [20] or Trans-
former [21].

• Performing a comprehensive analysis to evaluate the
performance of the presented method on real-world code.
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