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a b s t r a c t

Carbon fiber reinforced polymer (CFRP) composites have become increasingly attractive in

modern industrial fields in view of their unique properties and superior functionalities.

CFRP composites are extremely tough to drill due to their inherent anisotropy and het-

erogeneity. The present paper aims to report the state-of-the-art progress in the me-

chanical drilling of CFRP composites through a rigorous literature survey. It covers the

crucial aspects of drilling CFRP laminates, including drilling mechanisms, thermo-

mechanical responses, drilling-induced damages, and the effects of various process con-

ditions. The fundamental chip removal and damage formation modes of CFRPs are dis-

cussed. Results indicate that high cutting speeds and low feed rates improve the hole

quality of CFRPs. Optimizing process parameters, developing suitable tool geometries/

materials, and applying proper cutting environments will be an effective means to sup-

press the drilling damage of cut CFRP holes. More future research endeavors are expected

to focus on revealing the mapping mechanisms between tool geometries/materials, cutting

environments, process parameters, and CFRP hole-making quality and on proposing a

comprehensively optimized hole-making strategy for high-quality drilling of CFRPs.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
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1. Introduction

Carbon fiber reinforced polymer (CFRP) represents one type of

high-performance composite that has been proved to be a

flexible and adaptable engineering material for various engi-

neering applications. This is attributed to its superior me-

chanical and physical properties, including high specific

strength, high specific stiffness, excellent thermal stability,

and superior corrosion resistance [1e4]. The CFRP materials

are featured by the impregnation of reinforcing carbon fibers

with a polymer matrix, yielding superior performances un-

matched by individual constituents. Owing to their

outstanding advantages, they have been a promising alter-

native to conventional metallic materials in a wide range of

industries, including aerospace, automobile, and defense,

which require structural materials with unique properties

such as high strength-to-weight and stiffness-to-weight ratios

[1,5].

Although CFRPs are often fabricated to near-net shapes by

various molding processes, secondary manufacturing opera-

tions are still essential to ensure their final product shapes

[1e3,6]. In particular, CFRP components are often used in

conjunction with other engineering materials by mechanical

assembly [7]. Bolt joining and rivet connections are two

representative assembly methods depending critically on the

quality of machined composite holes. Mechanical drilling has

become themost importantmachining operation to shape the

fibrous composites into desired quality and target dimensions

for joining purposes [4,8]. Various drilling operations have

been applied to make high-quality holes for assembling CFRP

laminates. However, these composites exhibit rather poor

machinability, which are much tougher to drill than conven-

tional homogeneous materials due to their inherent anisot-

ropy and heterogeneity. The chip removal mechanisms of

CFRPs differ significantly from conventional metallic alloys as

their two constituents show completely different behaviors.

The chip removal of CFRPs depends considerably on the var-

iations of the fiber layup, whichmakes it rather challenging to

control the material separation during the rotary drilling

operation as the tool edges periodically cut fibers and poly-

mers following a spiral motion. Additionally, one of the most

critical issues associated with drilling CFRPs arises from se-

vere damage induced by chip separation. Since the removal

mechanisms of fibers and polymers are totally different and

change continuously with the fiber layup, crucial defects

involving delamination, burrs, tearing, surface cavities, and

glass transition failure are easy to occur, which significantly

deteriorates the quality of machined CFRP parts [4]. The

aforementioned damages not only drastically reduce the

surface finish and assembly tolerance but also degrade the

fatigue strength of cut holes, leading to a large proportion of

part rejections [6,9e11]. Consequently, drilling CFRPs poses

significant challenges to the modern manufacturing com-

munity, and numerous efforts have been made to improve

their machinability.

To increase the drilling efficiency of CFRPs with desired

quality, understanding their drilling mechanisms and be-

haviors is of utmost importance for the manufacturing com-

munity. To date, great endeavors have been made by
worldwide scholars to realize the damage-free drilling of

CFRPs, covering a variety of essential aspects, including dril-

ling mechanisms, cutting forces, machining temperatures,

and hole quality attributes. Moreover, some potential ap-

proaches to achieving high-quality drilling of CFRPs have been

developed and yielded excellent results for composite

machining. Although there are some recent reviews available

in the literature to address the drilling progress of CFRPs

[12e15], the current research field is still keeping moving, and

there is a critical need to summarize the state-of-the-art ad-

vances achieved in the field. Additionally, a comprehensive

review covering the critical drilling mechanisms and quality

issues of CFRPs is still lacking in the open literature. Based on

these incentives, the present review aims to report the up-to-

date progress in the drillingmechanism and quality studies of

CFRP composites through a comprehensive literature survey.

In the review, various crucial aspects in drilling CFRP lami-

nates are discussed, including drilling mechanisms, thermo-

mechanical responses, drilling-induced damages, and the ef-

fects of various process conditions. An emphasis is placed on

the discussions of the fundamental chip removal and damage

formation modes of CFRP composites. The current review is

an extension of the authors' previously published article [4],

and its specific points of innovation lie in reviewing the

fundamental drilling mechanisms, introducing the drilling

force/temperature features, summarizing the process opti-

mization techniques, and overviewing the advanced drilling

techniques for CFRP composites. It is hoped that the current

work can offer researchers an in-depth understanding of the

fundamental drilling characteristics of CFRPs toward high-

quality machining.

The logical structure of the review paper is organized as

follows. Section 1 provides a brief overview of the funda-

mental industrial background and research status in drilling

CFRP composites. Section 2 elaborates the drilling mecha-

nisms and thermo-mechanical responses of CFRPs following a

rigorous literature survey to highlight the key findings ach-

ieved in drilling CFRP composites. Then, Section 3 reviews the

key characteristics and formation mechanisms of drilling-

induced damages in terms of delamination, burrs, tearing

and surface cavities, and highlights the critical quality issues

faced by the composites manufacturing community. After-

ward, Section 4 summarizes the effects of different process

conditions on the quality issues of CFRPs through a critical

literature survey. The impacts of drilling parameters, cutting

tools, and cutting environments on CFRP drilling outputs are

carefully addressed. Additionally, Section 5 provides solutions

and approaches to solve the quality issues associated with

CFRP drilling. Finally, Section 6 draws the key conclusions of

the review article and points out the future research

perspectives.
2. Drilling mechanisms and thermo-
mechanical responses

Althoughmany nontraditional machining operations, such as

laser cutting and water-jet machining, have been invented for

hole-making of composite materials, mechanical drilling is

still considered the most preferred manufacturing technique
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Fig. 1 e Photographs showing various drilling-induced damages of CFRP composites [3,16].

Fig. 2 e Schematic representation of the contact conditions

in machining CFRPs [27].
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for CFRP composites in terms of low costs and high efficiency.

The key characteristics of CFRP composites include anisotropy

and heterogeneity, making the machining process more

challenging compared with other metal cutting processes.

Typical defects, such as delamination, fiber frying, spalling,

chipping and fuzzing, frequently occur during the machining

of CFRPs (Fig. 1 [3,16]) since CFRP is heat insulating and abra-

sive in nature. Especially, defects such as delamination will

influence the accuracy and quality of holes, leading to even-

tual part rejections during the assembly stage. This failurewill

ultimately reduce the strength and fatigue life of components,

and thus developing high-precision drilling processes and

carrying out drilling optimization have been the current

research focus [17]. Variables such as machining temperature

and cutting force are key operating factors that require opti-

mization to produce a high-quality hole [7]. In the following

subsections, the impacts of drilling forces and cutting tem-

peratures in terms of thermo-mechanical aspects are dis-

cussed in detail.

2.1. Drilling mechanisms

CFRP composites are one of the most popular engineering

materials in industrial fields due to their superior properties.

They are often constituted by carbon fibers that are strong

enough to reinforce the stiffness and strength of the material

base and by polymer matrix that distributes the load among

fibers and protects fibers from environmental attack. Com-

posite damage tolerance is mainly affected by the direction of

fibers because the fibers are more robust along their axial di-

rection. Typical unidirectional (UD) CFRPs have themaximum

strength along the direction of the fiber compared with the

direction perpendicular to the fiber. Continuous fiber rein-

forcement is typically utilized in UD or woven configurations

to form a thin plate known as a prepreg ply [1]. Proper ply

orientation selection is critical for CFRPs to achieve optimum

mechanical characteristics for an effective structural design.

Therefore, the UD plies require cross-layer in which fiber

bundles are aligned at different orientations to form quasi-

isotropic laminates [18]. The quasi-isotropic laminates are

often made when the orientations of the plies are balanced so

that the extensional stiffness of the laminate is the same in

each in-plane direction. Typically, quasi-isotropic sheets are

created using fiber weaves with layers oriented at 0º, 90º, þ45º,

and�45º, with at least 12.5% of the layers in each of these four

directions. The layers should require 0� plies to respond to

axial loads, ±45� plies to react to shear loads, and 90� plies to

react to side loads [19]. This sequence simplifies the design of
the most fastened joint. On the other hand, fiber orientation

also influences the surface of the holes. According to Abr~ao

et al. [20], the worst scenario occurs as the fiber orientation

increases from 45� to 135� because of surface irregularities. It

is possible to state that the quality of holes can be improved

within the range of 0�e90� for the fiber orientation.

As discussed above, the machinability of CFRPs is

extremely poor due to the two completely different phases

involved [21]. Also, a reliable cutting tool is required to over-

come the challenging environments caused by thermal

resistance and related wear. Therefore, among all the

machining operations, conventional drilling is the most-used

method for hole making of composite materials [22]. During

the drilling process, the material is removed by a series of

fractures of diverse nature and uneven load sharing between

the fiber and matrix [23]. The tool edge makes contact with

several layers of differently orientated carbon fibers, which

causes a dynamic change in the fiber cutting angle, and hence

the chip removal modes. Four types of cutting mechanisms

are identified: (i) the buckling-dominatedmode for the parallel

fiber cutting relation; (ii) the shear-dominated mode for the

along fiber cutting relation; (iii) the crushing-dominatedmode

for the vertical fiber cutting relation; and (iv) the bending-

dominated mode for the against fiber cutting relation

[24e26]. According to Voss et al. [27], the tool-workpiece

interaction during the UD-CFRP machining process can be

divided into three contact regions, as shown in Fig. 2. In their

analytical force model, micro-region 1 refers to the zone that

makes the initial mechanical contact with the composite

material, and it is in charge of separating composites through

the tool rake face. Micro-region 2 refers to the tool tip zone and

accounts for the size effects in machining. Micro-region 3 re-

fers to the zone on the tool flank surface that makes me-

chanical contact with the cut composite surface. Several

https://doi.org/10.1016/j.jmrt.2023.05.023
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Fig. 3 e The influence of the fiber cutting angle on various drilling force components [34].
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parameters need to be taken extra controls, such as feed rate

and cutting speed, during the operating stage. Most drilling-

induced damages depend strongly on the feed rate [28e30].

Damage-free holes can be achieved in composites by applying

a low feed rate and a high speed with a suitable tool geometry

[31]. In contrast, low cutting speeds and low feed rates help to

minimize tool wear [14]. The influences of key factors are

discussed in detail in Section 4. According to Singh et al. [7],

drilling dynamics can be captured usingmathematicalmodels

such as empirical, neural/fuzzy, and classical models.

2.2. Drilling forces

Drilling force plays a vital role in damage occurrence, surface

deterioration, and wear progression when drilling CFRPs. It is

necessary to analyze its features, which can be decomposed

into thrust force (i.e., the axial component of the cutting force)

and torque. The drilling force will influence the quality of cut

holes, which leads to a further impact on the cutting perfor-

mance of CFRPs. The polymer matrix is soft and ductile,

whereas the fibers are brittle and robust, which will respond

to the machining process oppositely and thus influence the

cutting force [32e34]. Hintze et al. [34] examined the total

cutting force when using an uncoated twist drill to cut UD-

CFRPs. The authors concluded that the fiber cutting angle

substantially impacts the components of radial force, feed

force, and cutting force, as illustrated in Fig. 3. In particular,

analyzing the cutting forces in parallel and perpendicular to

the fiber direction shows that the respective components are

of a similar amount in a cutting angle range between 20� and
90�. In contrast, the force perpendicular to the fiber pre-

dominates in the other cutting angle range. The authors also

indicated how more tool wear results in larger cutting force

components. Furthermore, themost significant statistical and

physical influence on cutting forces is exerted by the feed rate,

as stated by Davim and Reis [35] and other researchers

[36e39]. Specifically, a higher feed rate contributes to the

thrust force by the increased chip thickness, which causes

machining-induced delamination at the hole entrance and

exit sides of CFRP laminates. A high feed rate will lead to a

high thrust force. In contrast, a low feed rate will result in a
high flank surface temperature. Meanwhile, correlations be-

tween factors such as feed rate and delamination extent are

obtained by multiple linear regression. It is indicated that the

feed rate directly influences the push-down delamination and

hole diameter, but unusually it has no apparent effects on the

peel-up delamination.

According to Xu et al. [31], high-speed drilling could reduce

thrust force and geometrical flaws for CFRPs. Based on their

study, the thrust force tends to decrease due to the softening

effect of high cutting temperatures on the composite matrix

when the spindle speed increases. Due to the increased

spindle speed, a large amount of cutting heatwill be generated

during the drilling operation, resulting in highly-localized

temperatures at the cutting zone and the softening of the

corresponding work material. Therefore, the drilling process

will encounter less force resistance, thus lowering the cutting

force, as illustrated in Fig. 4(a). Additionally, the cutting speed

often has an overstated or negligible effect on thrust force [40].

Besides, drill bit geometry also dramatically impacts the

thrust force. It was discovered that the point angle of the twist

drill has an evident impact on the thrust force such that an

increased point angle leads to an elevated thrust force. Abr~ao

et al. [20] and Dur~ao et al. [41] conducted experiments to

obtain lower thrust force and found that lower thrust forces

could be obtained using brad drills and step drills rather than

the standard twist drills. Tsao and Chiu [42] employed core-

special tools for drilling of CFRPs, as shown in Fig. 4(b). They

found that the inner drill type, which has the most negligible

impact on thrust force, is followed by the feed rate and the

cutting velocity ratio. Furthermore, the compound core-

special drills that contain a driven device are more advanta-

geous than the core drills and conventional compound core-

special drills in terms of lower thrust force, less delamina-

tion, less chip clogging, and higher chip removal. According to

An et al. [43], the cutting forces in machining CFRP laminates

tend to decrease with the elevation of the cutting speed, as

shown in Fig. 4(c). In addition, an increased cutting speed

seems to minimize the radial thrust force to a certain extent.

Considering that high cutting speed would make the com-

posite separation more efficiently, the high cutting tempera-

ture induced by the high-speed cutting would also soften the

https://doi.org/10.1016/j.jmrt.2023.05.023
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Fig. 4 e (a) Thrust force as a function of the feed rate for twist drills and dagger drills [31]; (b) photographs of various types of

the compound core-special drills [42]; (c) the effects of the cutting speed on cutting forces in the horizontal direction (Fc) and

the vertical direction (Fp) [43]; (d) the effects of the cutting depth on cutting forces in the horizontal direction (Fc) and the

vertical direction (Fp) [43].
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matrix base, which helps to weaken the anisotropy of CFRPs.

Themain cutting force will elevate with increasing the cutting

depth as it is directly related to the growth in the volume of

cutting material, as illustrated in Fig. 4(d). Therefore, the use

of high cutting speed and low cutting depth may benefit the

machinability improvement of CFRPs. Table 1 also summa-

rizes the influences of various process parameters on the

drilling forces of CFRP laminates.

Additionally, micro holes are commonly used in the latest

industry, such as fuel injection nozzles, filters, and printed

circuit boards [8]. The most common process applied is me-

chanical micro-drilling operation due to its large productivity.

The process is a micro-scale of the conventional drilling

operation to produce micro holes. During mechanical micro-

drilling, the chip thickness relative to the cutting edge radius

is small [45]. Therefore, plowing will dominate the chip

removal process [46]. The downscaling of conventional dril-

ling to micro-drilling presents numerous challenges,

including drill size and inhomogeneity effects of composites.

Moreover, the size effect is defined as the non-linear increase

in specific cutting force with decreasing the chip thickness.

Low feed rates are used because the thin and fragile micro-

drills frequently break due to larger cutting forces induced

by higher feed rates and accelerated tool wear [47,48]. How-

ever, low feed rates result in a small uncut chip thickness

close to the minimum chip thickness, causing plowing and

elastic recovery rather than shearing materials. This phe-

nomenon is known as the minimum chip thickness effect,

causing a rise in cutting forces and surface roughness. More-

over, Anand et al. [44] studied the size effects on cutting forces

in micro-drilling of CFRP composites. It was found that the

size effect was significant when the ratio of undeformed chip

thickness to the cutting edge radius was less than unity and

non-linear increase of specific cutting force was obtained for

the further decrease of the uncut chip thickness. The study

also demonstrated that the specific cutting force was influ-

enced by the layered structure of the composite because the

cutting tool encountered both carbon fibers and the resin

matrix simultaneously.

2.3. Cutting temperatures

Thermal behavior is another essential aspect in composites

cutting process. The basematerial of CFRP composites is often

made of epoxy resin, phenolic resin, or other polymer mate-

rials with low strength but superior durability. The polymer

matrix in CFRPs serves the purposes of holding the fibers

together, distributing the load, and protecting the fibers from

environmental corrosion and wear. However, the polymer

matrix has moderate heat resistance, indicating that when

the working temperature exceeds a certain threshold, the

hard glass state will be transformed into a flexible and highly

elastic state, and the physical properties tend to deteriorate

sharply [49]. The polymer used in the matrix undergoes

chemical degradation with an increased temperature, which

takes place directly before the glass transition temperature

(Tg). The matrix may be softened at excessive temperatures

and thermally decomposed at higher degrees when the CFRP

is exposed to temperatures greater than the Tg, resulting in

composite failures. Accoding to Xu et al. [50], the dominant

https://doi.org/10.1016/j.jmrt.2023.05.023
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Fig. 5 e Classification of delamination modes in drilling

composite laminates [48].
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source of heat generation when drilling CFRP composites is

the friction taking place at the tool-work interaction zone. To

reduce the temperature of the flank tool-work surface, low

cutting speeds and high feed rates should be adopted [50,51].

Givenmore details by Juon et al. [52], the impacts of increasing

the temperature can be described in terms of color texture on

the laminate surface. This is one of the visual tools used to

identify the possible thermal damage, and five color groupings

could be observed, including original, brown, red, dark, and

charred colors. Meanwhile, the increased temperature tends

to degrade the compressive strength of the epoxy, which ex-

poses the composite to thermal loading and thus causes

changes in the form of chemical reactions such as oxidation,

pyrolysis, and outgassing as the polymer matrix could un-

dergo physical effects such as charring, cracking and delam-

ination. Although the carbon fiber has a higher oxidative

resistance, Yang et al. [53] indicated that the weight of CFRP

residue decreases with increasing the temperature and oxy-

gen concentration. Z€ollner et al. [54] also stated that extreme

temperatures or long-term duration of heating could cause

fiber damage or even the reduction of fiber diameter.

Foreman et al. [55] examined the thermal properties of

epoxy resin and found that the elasticmodulus of thematerial

could be predicted at various temperatures. Their results

reveal that increasing the temperature boosts the thermal

energy, which prevents the system from structural integrity,

and hence the modulus is low. The authors also emphasized

that the elastic modulus sharply diminishes when the Tg is

reached. Compression, tensile, and shear experiments were

performed by Plecnik et al. [56] to evaluate the strength of

epoxy resin at high temperatures. The Tg was shown to

generate a considerable reduction in the compressive strength

of epoxy. The temperature during the cutting process indi-

rectly affects the behavior of the cutting force because the

softer resin matrix impacts the bonding strength between

carbon fibers. The force also affects numerous defects that

have already been discussed in the literature [57,58]. When

cutting CFRP laminates, it is challenging to distinguish the

thermal and mechanical damages. Likewise, flaws like burrs

and tearing can be caused by the heat produced on the

machined surface due to the cutting process. When heated or

cured, thermoset polymers can remain rigid and permanently
inflexible, while thermoplastic polymers can be recycled and

reused because of their linear molecular structure. The ther-

moplastic matrix is more prone to severe glass transition

failure due to its high susceptibility to cutting heat. However,

very few studies [59] are reported to compare the machining

properties of the two composite matrices in the scientific

literature.

Recently, Xu et al. [59] conducted comparative drilling tests

on the carbon/epoxy and carbon/polyimide composites to

clarify the different thermal behaviors between the thermoset

and thermoplastic composites. It was found that both the

spindle speed and the feed rate were critical factors influ-

encing the drilling temperatures of the two composite mate-

rials as well as the hole quality attributes. Decreasing the

spindle speed or increasing the feed rate tends to reduce the

specific drilling energy consumption, decrease the machining

temperature and produce more consistent hole diameters.

Considering the increased feed rate, the contact distance be-

tween the drill edges and the composite material decreases.

Thus, the rubbing area and the friction time are reduced,

which leads to decreased cutting temperatures. Additionally,

the carbon/epoxy composites were found to promote much

higher temperatures than the carbon/polyimide ones, espe-

cially under the identical cutting conditions. Such phenomena

are attributed to the disparate thermal behaviors of the ther-

moset and thermoplastic matrices. However, more future

research works are expected to focus on quantifying the ef-

fects of various matrices on the drilling temperature charac-

teristics and the temperature-related cutting damages of

CFRPs.
3. Drilling-induced damages

Considering the heterogenous nature of the fiber/matrix sys-

tem, the anisotropy of the thermo-mechanical contact be-

tween the CFRP workpiece and the cutting edges can be

divided into three different levels, which are: (i) intraforma-

tional anisotropy; (ii) interlayer anisotropy; and (iii) fiber

anisotropy. The thermo-mechanical effects, such as aniso-

tropic cutting forces and heat distribution, will be generated

alongwith the chip removal process, thus affecting the quality

of cut CFRPs. Numerous machining defects, such as delami-

nation [60e63], burrs [64,65], and subsurface damage [66e69],

are expected outcomes of the poor machinability of CFRPs.

Apart from the mechanical effects, thermal damage is also

formed by high cutting temperatures [70], which influences

the quality of thematerial. Recently, worldwide scholars have

paid due attention to the adverse effect of borehole damage as

it has a detrimental influence on the quality ofmachined CFRP

surfaces. For instance, based on the experiments done by

Yazman [71], a ring tensile test was utilized to observe the

damage history of the fiber-reinforced polymers, and it was

found that using a backup material in the composite pipe

drilling contributed to the improvement of the surface quality.

Backupmaterials prevented the spreading of the interlaminar

and intralaminar cracks around the hole at higher feed rates.

However, as stated by Gemi et al. [72], the severity of the hole

wall damages could vary with the tool geometry and feed rate,
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https://doi.org/10.1016/j.jmrt.2023.05.023


j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c hno l o g y 2 0 2 3 ; 2 4 : 9 6 7 7e9 7 0 79684
mainly formed toward the wind direction when drilling pipe-

like composite parts.

3.1. Delamination

Delamination is one of themost serious damages promoted in

the drilling process. It considerably deteriorates the dimen-

sional accuracy, surface quality, structural integrity, and du-

rable applications of finished parts. It occurs when CFRP

laminates are exposed to adverse cutting forces, causing the

fiber plies to split from one another due to their poor trans-

verse strength and low interfacial fracture toughness. As

mentioned by previous studies [73e75], delamination takes

place mainly at the top layer through the peeling of the

laminae and near the exit side of the laminate when the

instantaneous thrust force exceeds the threshold value.

Several non-destructive inspection (NDI) techniques are used

to measure the damage form and extent of CFRPs, such as X-

Ray technique adopted to detect the damage zone by

Velayudham and Krishnamurthy [74], and the optical micro-

scopy method used to inspect the damage morphologies, ul-

trasound and infrared thermography methodologies used for

detection, location, and evaluation of damage in composite

materials as proposed by Lai et al. [76,77]. The delamination

formation is classified into two categories: peel-up at the

entrance and push-down at the exit [76e79]. A schematic di-

agram showing the two delamination modes is given in Fig. 5

[48]. The formationmechanism of the peel-up delamination is

directly related to the geometry of the drill bit and drilling

torque. It is formed by the junction point between the cutting

edge of the twist drill and thematerial in which a peeling force
Fig. 6 e Schematic diagrams showing the evaluation of various d

factor; (b) the delamination size; (c) the 2D delamination factor;

delamination factor; (f) the equivalent delamination factor.
is generated along the drill flute. The peeling force detaches

the upper laminae from the uncut portion in terms of tearing

crack (mode III). Meanwhile, drill vibration may cause the

uncut fibers to appear at the top plies where the fiber fringes

are pulled up, resulting in mode I delamination with an

opening fracture. Therefore, the peel-up delamination can be

described as a combination of fracture modes I and III [80].

On the other hand, the push-down delamination forms

when the laminae beneath the drill are compressed, and

eventually, the thrust force pushes out the laminae from the

hole as the shear stress exceeds the interlaminar bonding

strength [77]. Thus, delamination occurs at the exit side of

the workpiece. Factors such as interface quality, thrust force,

and machining parameters, play a vital role in the push-

down delamination formation [45,80e82]. Moreover, ac-

cording to the literature [83,84], it is possible to conclude that

increased delamination damage is directly proportional to

the elevated drilling temperature. Among all the process

parameters, the tool geometry is shown to have the greatest

impact on the maximum temperature obtained, which in-

dicates a consistent correlation to research on damage

assessment. The push-down delamination is more severe

than the peel-up delamination because there is no necessary

backup force to counteract the thrust force generated during

the drilling operation [85e87].

As derived by Chen [88], to determine the level of delami-

nation damage, the one-dimensional (1D) delamination factor

ðFd) is proposed as a ratio of the maximum diameter of the

delamination zone to the nominal diameter of the drilled hole,

as shown in Fig. 6(a). It is discovered that the delamination

factor increases with increasing the drill flank wear since
elamination factors [78]: (a) the conventional delamination

(d) the adjusted delamination factor; (e) the minimum
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thrust force is elevated with the increased flank wear. Spe-

cifically, the effect of drill wear on the delamination factor

becomes significant at higher spindle speeds. Additionally, El-

Sonbaty et al. [89] proposed the delamination size to quantify

the severity of delamination, which signifies the difference

between the maximum radius of the damaged area and the

radius of the drilled hole, as illustrated in Fig. 6(b). Faraz et al.

[48] introduced a two-dimensional (2D) delamination factor

denoted as Fa for the sake of completeness, as shown in

Fig. 6(c). Nevertheless, the delamination factor is insufficient

when a long crack appears simultaneously, which will inten-

sify the fracture strength of the machined hole. Therefore,

Davim et al. [90] proposed the adjusted delamination factor

(Fda) that considers the crack size contribution and damaged

area contribution, as shown in Fig. 6(d). It is discovered that

both the drilling parameters have an influence on the

delamination factor of CFRPs, as illustrated in Fig. 7 [91]. But

the feed rate is expected to have a more significant impact

than the cutting speed [90].

Moreover, Tsao et al. [92] established an optimized factor,

namely the equivalent delamination factor (FedÞ, as shown in

Fig. 6(f). Although it seems to be a better approximation for

estimatingdelamination but it is still not yet sufficient because

the effect of thedamagedarea is considereddominant over the

effect of the crack contribution. Basedon theprevious research

on the delamination factor, Nagarajan and Rajadurai [93]

established the refined delamination factor ðFDR), which in-

cludes the effect of severity of damage using Buckingham's
theorem. To achieve the accuracy, the total damaged area is

divided into three sub-areas, including the heavy damage re-

gion (AH), medium damage area (AM), and low damage area

(AL). Babu et al. [94] introduced the function of the fine

equivalent diameter (Dre), i.e., the refined equivalent delami-

nation ratio (Fed), as it takes into account the increase of

diameter of the drilled hole at the exit. Especially at a specific

cutting speed and feed rate combination, the equivalent and

the fine equivalent diameter can differ significantly depending

on the relationship between the nominal and the drilled hole

diameter.WhileDur~ao et al. [95] suggested including the shape

of the damaged area by calculating the shape circularity, i.e.,

the shape of the delamination area has been compared with a

circle of an equal perimeter. The comparable evaluation factor

model used today does not account for the maximum and
Fig. 7 e Delamination factor as a function of feed rate using

‘Brad & Spur’ drills at various speeds [91].
minimum delamination area when applied in high-speed

drilling. Due to these limitations, Al-Wandi et al. [11] devel-

oped an equivalent adjusted delamination factor (FedaÞ for

drilling UD-CFRPs. This factor could discriminate the damage

values and the null minimal and maximal delamination

values. Silva [96] recently proposed an optimized factor,

namely the minimum delamination factor (Fdmin), to evaluate

the damage extent, as shown in Fig. 6(e). This is done by

developing the smallest circle that encloses the delamination

damage. Overall, many authors [11,48,88e90,92e97] used

different approaches to measure the drilling-induced delami-

nation factor. Most of them used linear regression analysis to

obtain an empirical model to derive the delamination factor.

The evaluation of drilling-induced delamination in terms of

various dimensions is listed in Table 2 [4].

3.2. Burrs

Generally, burrs are described as an undesirable projection of

material formed by the cutting and shearing processes. The

burr formation mechanisms for fibrous composites certainly

differ from the quasi-homogeneousmaterials. For example, the

burr types inCFRPdrillingmay consist of onlyuncut reinforcing

fibers or uncut non-reinforcing fibers or uncut matrix material,

or even a combination of the above [15]. The most frequently

occurring phenomenon is that the cutting tool peels off the

matrix material from the side of fibers due to the high cutting

temperature or unfavorable fiber-matrix adhesion. Thus, the

burr consists of only uncut reinforcing fibers. Moreover, the

interlayer gap may also form burr defects due to several cir-

cumstances, such as cavity formation caused by an inappro-

priate manufacturing process or void formation by chopped

rovings due to the reinforcement geometry. CFRP typically

forms burrs when the cutting tool is unable to remove all

chipping materials up to the nominal depth of cut [15], as

depicted in Fig. 8(a) [98]. This will result in the development of

delamination [99e101], causing the last layer to peel up, which

leads to bypassing the cutting tool and the burr formation at the

exit edge of the composite.Moreover, the burr is fundamentally

impacted by the cutting edge radius. When the radius is too

large, the cutting edge bends the fibers and causes the fibers to

get compressedandbuckled, resulting inexcessive formationof

burrs and inappropriate chip removal. Additionally, if the fiber

cuttingangle is set as illustrated inFig. 8(b) [102], the cutting tool

does not remove the compositematerial despite deforming the

fibers [103,104]. When the fiber cutting angle is 135� ± d, macro

fracture is the primary mode for chip separation. The cutting

tool squeezes the fibers and causes substantial cracking prop-

agation, out-of-plane displacement, uncut fibers, and poor

surface roughness [105]. Burr formation in fibrous composites

can be affected by various factors, including challenging

machining kinematics [106], time-varying cutting angles of fi-

bers [102], and complex tool conditions [107]. According to the

work done by Xu et al. [36], the severity of burrs significantly

depends on the feed rate. The larger the feed rate, the larger the

thrust force, and thus the higher possibility of separating the

composite layers. Therefore, to yield a low risk of delamination

and burr formation, it is always recommended to control

the feed rate at a low level to guarantee the quality of drilled

holes.
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Table 2 e The scientific literature on the most-used hierarchical quantitative criterion of delamination [4].

Ref. Delamination factor Associated Formula Disadvantages

Chen [88] Conventional 1D delamination

factor
Fd ¼ Dmax

D0

Fd: conventional 1D delamination factor;

Dmax: maximum diameter of the

delamination zone; D0: nominal diameter

of the drilled hole.

The material's internal delamination flaw is

disregarded.

El-Sonbaty et al. [89] Delamination size Rmax � R

Rmax: maximum radius of the damaged

area; R: radius of the drilled hole.

It only considers the size of the delamination.

Faraz et al. [48] 2D delamination factor
Fa ¼

� Ad

Anom

�
%

Fa: 2D delamination factor;Ad: total area of

the drilled hole; Anom: nominal drilled

area.

The possibility of lengthy fractures is not taken into

account by the parameter.

Davim et al. [90] Adjusted delamination factor
Fda ¼ Fd þ

AdðF2d � FdÞ
Amax � Ao

Fda: adjusted delamination factor; Fd:

conventional delamination factor; Ad:

total area of the drilled hole;

Amax: area corresponding to Dmax; Ao: area

corresponding to Do

Fda shows null at the hole exit with the maximum

and minimal delamination area, and Fda and Fd will

not be the same.

Tsao et al. [92] Equivalent delamination factor
Fed ¼ De

Do

De ¼ �4ðAd þ AoÞ
p

�0:5

Fed: equivalent delamination factor; De:

equivalent diameter; Do: nominal

diameter of the drilled hole. Ad: total area

of the drilled hole; Ao: area corresponding

to Do.

It does not reflect the severity of damage.

Nagarajan and Rajadurai [93] Refined delamination factor
FDR ¼ DMAX

Do
þ 1:783

�
AH

Ao

�
þ 0:7156

�
AM

Ao

�2

þ

0:03692

�
AL

Ao

�3

FDR: refined delamination factor; DMAX:

maximum diameter of the delamination

zone; Do: nominal diameter of the drilled

hole; AH: heavy damage area; AL: low

damage area; AM: medium damage area;

Ao: area corresponding to Do.

The degree of damage must be determined using a

specific theorem.
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Babu et al. [94] Refined equivalent diameter
Dre ¼

ffiffiffiffiffiffiffiffiffi
4Ae

p

r

Dre: refined equivalent diameter; Ae:

damaged area.

The high-speed drilling process has various

restrictions.

Dur~ao et al. [95] Shape circularity
f ¼ 4p

A
p2

f: Shape's circularity; A:

the damaged area around the machined

hole; p: the perimeter of the damaged area

around the machined hole.

The high-speed drilling is subjected to several

restrictions.

Al-Wandi et al. [11] Equivalent adjusted delamination

factor
Feda ¼ Fed þ

Amax � Anom � Ad

Amax

Feda: equivalent adjusted delamination

factor; Amax: maximum delamination

area; Anom: nominal delamination area; Ad:

delaminated area.

Delamination near the hole's outflow cannot be

assessed.

Silva [96] Minimum delamination factor
Fdmin ¼ Dmin

D
Fdmin: minimum delamination factor; Dmin:

minimum enclosing area; D: pretended

drill area.

This factor is restricted to two dimensions.

Xu et al. [97] 3D delamination factor
Fv ¼ Vd

Vnom

Fv: 3D delamination factor; Vd: cumulative

volume of the delaminated CFRP layers;

Vnom: nominal hole volume of the

delaminated CFRP layers.

This factor omits the contribution from the

maximum crack length.
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Fig. 8 e (a) Burr formation in CFRP cutting: (i) top view; (ii) side view; (iii) hole exit burr formation in drilling [98]; (b) the

images of surface damage of CFRPs at four typical orientations [102].
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Following the feed rate, the fiber cutting angle and the

depth of cut also have significant impacts on burr size and

orientation of UD-CFRPs [102]. Aurich et al. [108] developed a

set of theoretical criteria to verify the occurrence of fiber

fractures at the hole exit side. It was concluded that drilling-

induced burrs mostly depend on the out-of-plane bending

deformation of fibers at the hole exit. Other secondary pa-

rameters, such as cooling and lubrication conditions aswell as

the clearance angle of the cutting edge, and the contact area

between the tool and the composite, would not have a sig-

nificant impact on the burr formation, but their interaction

with the primary parameters was significant. Xu et al. [109]

and Geier et al. [13] concluded that (i) the smaller helix angle

decreases the axial cutting force that produces themajority of

the delamination and burr formation, (ii) a right-handed helix

peels up the composite layer and thus increases burr

formation at the entry, and (iii) a left-hand helix pushes the

layer outward and increases burr formation at the exit. Based

on the burr formationmechanism, a novel step drill [110] with

variation step ratios has been designed and the new drill is

able to prevent the burr formation at the hole exit side.

Evaluating CFRP burrs is challenging as the burrs appear

extremely thin or evenminor in length, and thus they can only

be measured by non-destructive methods. Therefore, to
evaluate the peculiar features of CFRP burrs, the most

straightforward measurement is based on quantitative statis-

tics and visual inspection. On the other hand, it is easy to find

out the geometric features directly, the amount of burr forma-

tion, and the characteristics and orientation of burrs by

inspecting the composite. He et al. [111] studied the

helical milling process of CFRP/titanium stacks using

visual inspection. The findings demonstrated that due to the

measuring personnel's subjectivity, accuratemeasurement and

proper identification ofmachining characteristics could only be

achieved by visual evaluation with extensive expertise. By

counting burrs, it is possible to quantitatively characterize

drilling-induced burrs for CFRPs without requiring additional

assessment software. When defining the difference between

high-quality and low-quality machined holes, Voß et al. [60]

created a unique criterion, namely the damage value, to quan-

tify the number of uncut fibers. The drawback of thismethod is

that it cannot describe the characteristics of burr formation and

is fully diameter-dependent. Therefore, another commonly

used method, namely the length-based measure, is developed.

However, this measure often requires accurate computational

algorithms for calculation. On top of that, an area-based burr

measure has been developed, which describes the geometries

of machined features regarding the quantity of burr formation.

https://doi.org/10.1016/j.jmrt.2023.05.023
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Fig. 9 e Schematic representation of the surface cavities

[98].
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The disadvantage of thismeasure is that the information about

burr characteristics is usually unclear. Lastly, researchers have

created more complex evaluation formulas to have an overall

characterization of the geometrical feature of burrs. This mea-

surement yields more information not only on the severity of

burrs but also on the burr orientation and delamination

extension.

3.3. Tearing

Tearing is one of the crucial defects affecting the quality of

CFRP holes. Unsupported single-layer CFRP materials are

easily torn along the fiber direction when the arrangement is

hostile to fiber cutting. The interlayer anisotropy of CFRPs,

which typically takes place at the outermost surface layer of

the drilled hole, is themain contributor to the tearing problem

[4]. The fiber-matrix debonding procedure will be initiated

when the cutting stress reaches the maximum interfacial

strength, which denotes the start of microcracks. As cutting

forces are applied, these microcracks will continue to propa-

gate along the fiber direction due to the inadequate support

supplied by the polymer matrix in the topmost layer, leading

to severe tearing faults. In addition, the fiber cutting angle

employed during the material removal process substantially

impacts how tearing faults manifest themselves, regardless of

the orientation of the fiber ply. Therefore, the most severe

tearing defects will form when the main circumferential cut-

ting force acts 90� in the tensile direction. The most-used

measures to evaluate the tearing are length-based and area-

based methods [15]. The length-based process uses the ratio

of the maximum length of the tearing over the nominal

diameter, whereas the area-based method uses the total area

of the tearing to the theoretical maximum tearing area. The

drawback of the length-based method is that it only considers

the tearing in 1D and thus cannot describe the defects

completely [15]. On the other hand, even though the area-

based method represents the tearing in 2D, it still cannot

reflect the impact of tearing on the actual holes. A newly

proposed method is suggested by Xu et al. [4] to evaluate the

tearing by using a ratio of the total tearing area to the nominal

area of the hole to achieve better accuracy of assessment.

3.4. Surface cavities

Another surface defect that often results in an irregular

pattern on the machined surface of CFRPs is surface cavities

[66]. The basic morphologies of surface cavities are shown in

Fig. 9 [98]. According to Wang et al. [112], surface cavities

emerge significantly depending on the angle at which the fi-

bers are shredded. Wang et al. [113] claimed that despite the

absence of visible surface damage in the area adjacent to the

fiber cutting zone, substantial surface cavities were found in

the area in opposition to the fiber cutting zone. Additionally,

due to the uneven distribution of cavities in that region, sur-

face cavities only cover a portion of the against fiber cutting

zone. The methods for removing composite materials vary

depending on the fiber cutting angle [43,66,114,115]. CFRPs use

two methods to remove materials: fiber-matrix debonding

and fiber fracture. Carbon fibers break with essentially slight

plastic deformation, as compared with ductile metallic
materials. The differentmaterial fracture types showup in the

following sequence, depending on the cutting direction:

debonding of the fiber/matrix interface, shear fracture, and

bending fracture of the fiber. There are five stages involved in

the formation of surface cavities. The fiber-matrix debonding

takes place firstly in stage 1, and as it develops, the cutting

edge extends along the fiber direction. In stage 2, the fiber-

matrix debonding stops propagating and the bending-

induced fiber fracture initiates. Stage 3 marks the appear-

ance of the secondary fiber-matrix debonding, which spreads

until bending-induced fiber fractures take place. The

shearing-induced fiber breakdown occurs in stage 4. In stage

5, the fiber-matrix debonding occurs and expands with the

movement of the cutting edge once again. The primary causes

of surface cavities are fiber-matrix debonding followed by

bending-induced and shear-induced fiber fractures. Finally,

the depth and width of surface cavities are determined by the

occurrence frequency of the shear-induced fiber fracture and

the propagation of the fiber-matrix debonding.
4. Effects of process conditions

In drilling fibrous composites, process conditions, e.g. cutting

speed, feed rate, applied tool geometries/coatings, and cutting

environments, often pose a significant effect on the drilling

mechanisms and responses of CFRP workpieces. This section

focuses on discussing the impacts of various process condi-

tions, including drilling parameters, cutting tools, and cutting

environments, on the drilling forces, temperatures, hole

quality, and tool wear of CFRP composites.

4.1. Drilling parameters

The feed rate (f e mm/rev) and cutting speed (vc e m/min) are

critical drilling parameters having the most significant influ-

ence on the chip removal of CFRPs [36]. As such, their effects on

the drilling forces, machining temperatures and hole quality

are considerable. Many scholars worked on determining the
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influences of drilling parameters through the use of mecha-

nistic [45,80,116e119], experimental [28,35,40,63,90,120] or

numerical techniques [114,121e128]. Mechanistic modeling

studies attempt to describe the effects of the drilling parame-

ters on the energetics of cutting, using basic mechanical prin-

ciples and laws, and often require conducting experiments to

determine coefficients. The influences of drilling parameters

can be analyzed through purely experimental work. In this

case, the influences are often modeled through statistical

methods, e.g. response surface methodology, regression anal-

ysis, and analysis of variance, without trying to understand

and describe the governing laws and mechanics of cutting.

Numerical techniques are discretizing the mathematical

equations representing mechanistic laws and behaviors of

CFRP composites to solve advanced cutting situations

(i.e., drilling and milling).

Although the fiber cutting angle (q) governs the cutting

mechanisms themost [61,129], it is constantly changing during

drilling; thus, q cannot be set. Additonally, the feed has the

most significant settable influence on the hole quality and

cutting energetics, as it directly affects the size of the chip

cross-section [61]. The larger the feed, the larger the chip cross-

section, and thus the larger the cutting force [130]. The larger

cutting force results in higher friction between the cutting tool

and the composite, thus leading to higher cutting tempera-

tures [131]. Considering that the thermal conductivity of

polymers is low, the significance of the effect of feed on the

cutting temperature is not as dominant as it is observed in

metals. As the feed has a direct and significant influence on the

cutting force, the probability of drilling-induced delamination

formation is also significantly influenced by the feed [132].

Zhang et al. [131] conducted drilling experiments of CFRPs

and concluded that the cutting force and hole-exit temper-

ature could be controlled effectively, and the hole-exit

damages could be suppressed by the proper set of feed.

They proved that the larger the feed, the larger the axial

cutting force and the lower the hole-exit temperature, as

shown in Fig. 10 [131]. Wang and Jia [133] developed a strong

correlation between the feed, thrust force, and drilling-
Fig. 10 e The influence of (a) the feed on the axial cutting forces

speed on the hole-exit temperature [131].
induced delamination in CFRPs. The larger the feed, the

larger the thrust force; thus, the delamination formation

probability increases significantly. Therefore, a critical thrust

force is often defined and calculated to control the delami-

nation formation ability of drilling. Qiu et al. [134] analyzed

the influences of drilling parameters on the cutting force and

hole wall damages of CFRPs with stepped drills. They found

that the larger the feed, the smaller the damaged area is. The

possible reason would be that the special cutting force also

decreases with the increase of the feed. Therefore, the ratio

of the thrust force to the number of fibers is reduced. Wang

and Jia [135] reduced the exit delamination and improved the

production rate in the drilling of CFRP composites by opti-

mizing the drilling parameters. They found that the larger

the feed, the larger the average surface roughness and the

conventional delamination factor. The increased feed results

in rougher surface structures, as the increased material

removal rate leads to larger forces and more significant sur-

face damage.

Researchers agree that the push-down delamination at

the hole exit is significantly affected by the feed [136e142].

However, the feed seems to have no significant influence on

the entry delamination, according to Krishnaraj et al. [137],

as the peel-up effect is primarily affected by the tool geom-

etry. Othman et al. [143] recognized the feed as the factor

having the most significant influence on the thrust force,

which directly reflects the hole quality and tool wear. In

agreement with other researchers, the feed is recommended

to be optimized firstly among the other process or environ-

mental parameters. On the other hand, feed control may be a

perfect tool for hole damage minimization [139,144]. Yas‚ar

and Günay [145] compared a conventional drilling operation

with a feed-controlled one and found that the average sur-

face roughness, conventional delamination factor, and

thrust forces were significantly lower than those of a con-

stant feed operation.

The influence of the cutting speed on the drilling responses

of CFRPs is not as evident as it is found in the case of the feed.

The influence of the cutting speed is often negligible or
at different spindle speeds and (b) the effect of the spindle
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hyperbolical [40,97,146]; thus, much information seems con-

tradictory in the literature, as the analyzed ranges of cutting

speed often differ significantly. The cutting speed greatly in-

fluences the cutting temperature; thus, the geometrical de-

fects and tool wear rate are also affected [147]. Zhang et al.

[131] analyzed the influence of process parameters on the

thrust force and hole-exit temperature during the drilling of

CFRPs. They found that the larger the cutting speed, the higher

the hole-exit temperature is (Fig. 10(b)). This is explained by

the fact that the larger the spindle speed, the higher the

contact frequency between the cutting edge and abrasive fi-

bers; thus, the heat generation is larger. Qiu et al. [134] con-

ducted step drilling experiments in CFRPs and analyzed the

effect of drilling parameters on cutting forces and hole wall

damage. They found that the higher the cutting speed, the

larger the damaged area is, as the higher cutting speed results

in a higher cutting temperature, which is responsible for the

accelerated softening of the matrix leading to an increase in

the damaged area. The influence of the cutting speed on the

thrust force was found to be insignificant. Geier and Szalay

[40] showed that the influence of the cutting speed on the

thrust force and delamination factor is not monotone if the

cutting speed range is large enough, mainly due to the

changing of the dominancy of matrix softening effects at

higher cutting temperatures and the relatively low signifi-

cance of themain effect. Merino-P�erez et al. [147] analyzed the

cutting temperature in the drilling of CFRPs using uncoated

tungsten carbide cutting tools. They observed that the heat

dissipation and overall temperatures are significantly influ-

enced by the degree of crystallinity, structure of the carbon

fibers and cross-linking density of the polymer matrix. They

pointed out that the higher the cutting speed, the larger the

concentration of cutting heat in CFRPs. Chen et al. [148]

studied the effects of the drilling parameters on the cutting

temperatures of CFRP composites. They concluded that with

the increase in the spindle speed (n1 ¼ 1500 rpm to

n2 ¼ 4500 rpm), the thrust force decreased by 13.9%, and the

peak cutting temperature decreased by 63.2%. Moreover, Me-

rino-P�erez et al. [149] analyzed the influence of the cutting

speed on the drilling forces of CFRPs. They explained the

increased effect of the cutting speed on the drilling torque by

the negative impact of strain rate on the ability of the matrix

to transfer the load to the reinforcement.

4.2. Cutting tools

The geometrical properties of cutting tools significantly in-

fluence the drilling behaviors of CFRP composites; thus, due

attention is paid to their investigation and development [13].

Researchers found that the point angle, helix angle, and

length of the chisel edge are the most significant macro-

geometrical parameters affecting the composite drilling and

resulting hole quality [65,150,151]. The smaller the point angle,

the smaller the thrust force, which is advantageous from the

viewpoint of delamination suppression. However, a too small

point angle results in a huge cutting tool and longer tool path,

longer operation time, and cutting instability [13]. The helix of

the drilling tool governs whether the radial or axial forces

dominate the cutting of the hole surface [107]. The larger the

helix angle, the larger the probability of delamination and burr
formation because the dominance of the axial cutting force is

larger, which is responsible for layer separation and fiber

buckling without mechanical support [13,107]. Although the

chisel edge length of most of the recent modern twist drills is

definitely smaller than a couple of years ago, the chisel edge

has a dominant role in the resulting hole quality and tool life,

as the chip removal mechanisms at the chisel edge are gov-

erned by extrusion rather than shearing [152]. Pardo et al. [152]

analyzed the influence of point angle on the machinability of

CFRP/titanium stacks and concluded that the point angle

strongly correlates to the thrust force. Therefore, smaller

point angles are recommended to be applied to reduce the

probability of burr formation. Xu and El Mansori [153] studied

the drilling mechanisms of CFRP/Ti stacks and highlighted

that the point angle directly affects the chip thickness, which

significantly influences the chip separation process. Thus,

they recommended small point angle drills to promote lower

thrust force and delamination factor. Gaitonde et al. [28]

observed that a larger point angle results in more extensive

delamination at the hole exit. Heisel and Pfeifroth [150] agreed

that larger point angles are less preferable from the viewpoint

of reducing exit delamination. Additionally, they also

concluded that the larger the point angle, the larger the thrust

force, and the smaller the delamination at the hole entry.

Considering these findings, the point angle is recommended

to be large at the hole entry and small at the hole exit. This

partly justifies the relevancy of advanced-shaped tool geom-

etries like the double point angle twist drill or dagger drill.

Shyha et al. [154] analyzed the effect of drill geometry in

drilling small diameter holes for CFRPs and observed that the

helix angle in the range of 24e30� has no significant influence

on the thrust force nor on the tool life. Xu and El Mansori [153]

highlighted that better chip ejection is in the case of a higher

helix angle. They also concluded that the drilling torque is

significantly influenced by the helix angle. Considering that

the helix angle primarily affects the chip ejection ability of

drilling tools, it may directly affect the cutting temperature.

However, studies have not proved it yet. Faraz et al. [48] con-

ducted drilling experiments of CFRPs using different cutting

tools and found that larger cutting torque is promoted due to a

null helix angle. This suggests that the helix angle directly

affects the radial cutting force components, thus, affecting the

drilling torque and tool performance. Po�or et al. [15] reviewed

the recent expertise on drilling-induced burr formation and

measurement for CFRPs and highlighted that the helix angle

and helix direction (whether a right-handed or a left-handed

strategy is considered) of the cutting tools directly affect the

burr formation ability of CFRPs. Based on their understanding,

the larger the helix angle, the lower the probability of burr

formation at the hole exit and the larger at the hole entry.

Wang and Jia [133] analyzed the effect of the chisel edge of

drills and found that the chisel edge has a significant effect on

the thrust force and cutting performance. Qiu et al. [155] and

Karpat et al. [156] concluded that the chisel edge has a domi-

nant contribution to the thrust force; thus, it has a significant

influence on the drilling-induced delamination. However,

Karpat et al. [156] showed that a smaller chisel edge results in

a larger cutting force and more accelerated tool wear on the

secondary cutting edge. Li et al. [157] developed a thrust force

model taking into account the chisel edge and analyzed the
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of the cutting edge [158].
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influences of drilling parameters on the thrust force of the

chisel edge during the drilling of CFRPs. Their results show

that the feed has a more significant effect on the thrust force

than the cutting speed. Wang et al. [158] analyzed the cutting

mechanisms of the chisel edge in the drilling of CFRPs. They

introduced the azimuth angle as illustrated in Fig. 11 for a

better description of the chip removal mechanisms of the

chisel edge. Nevertheless, the avoidance of the cutting of the

chisel edge is popular, for example, by using advanced-shaped

cutting tools or pilot holes [159e161].

Mechanical drilling of CFRPs can be conducted either using

conventional twist drills as illustrated in Fig. 12(a) [14] or

advanced drilling tools like step drills, brad and spur drills

(often called candlestick drills), dagger drills (often called one-
Fig. 12 e Advanced drilling tools for CFRPs [14]: (a) twist drill w

twist drill; (d) dagger drill; (e) fishtail drill; (f) brad and spur drill

inner drill.

Fig. 13 e The cutting edge profiles of (a) the uncoated carbide d

[171].
shot drills), core drills, etc. The most applied drilling tools are

schematically illustrated in Fig. 12 [14]. Although the con-

ventional twist drill is the most applied drilling tool among

researchers because its relatively simple geometry can be

easily adapted and used for mechanical modeling and calcu-

lations, many research works also focus on the analysis of

cutting performance and ability of advanced-shaped cutting

tools [13].

Advanced-shaped cutting tools illustrated in Fig. 12

attempt to eliminate or reduce the drawbacks of conven-

tional twist drills. Othman et al. [143] conducted drilling ex-

periments of CFRP composites using a twist drill, a brad and

spur drill, and a dagger drill. They observed that the brad and

spur drill promoted the best hole quality at the exit side, fol-

lowed by the dagger drill and twist drill. The results of Xu et al.

[162] highlight the importance of using functionally-designed

tools and optimum cutting conditions for damage-free drilling

of CFRPs. They analyzed the cutting performance of twist

drills, brad and spur drills, and dagger drills, and it was

concluded that the brad and spur drill performed the best in

terms of drilling forces, hole quality, and tool wear behavior,

followed by the twist drill and the dagger drill. Su et al. [163]

studied the cutting performance of brad and spur drills and

described their beneficial cutting ability by the cut-push effect

(the drill first cuts the last layer of the composite, and then

pushes the layer off). By the advantageous phenomena, both

the drilling-induced delamination and burrs can be mini-

mized. According to Tsao and Hocheng [160], the main

advantage of step drills lies in the fact that the critical thrust

force at the second drilling step is significantly reduced

compared with the conventional twist drilling. Although the

core drills do not have a chisel edge, the cutting forces and

probability of drilling-induced delamination formation are
ith a small point angle; (b) step drill; (c) double point angle

with a dagger type center; (g) core drill; (h) core drill with an

rill; (b) the diamond-coated drill; (c) the AlTiN-coated drill
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low, but the chip removal is difficult. Therefore, Tsao and Chiu

[42] developed novel special drills incorporating the features

of core drills and twist drills to combine their advantages.

Considering that carbon fibers exhibit a strong abrasive

wear effect on the cutting tools, the discussion of the material

issues is essential to select the right one for CFRP drilling in

order to yield appropriate tool life and hole quality [164].

Considering that the most common wear mechanism in CFRP

machining is abrasionwear in the form of edge rounding [165],

high-speed steel (HSS) is not appropriate for CFRP machining,

as its wear rate is extremely rapid [166,167]. In contrast, the

wear rate of solid carbide tools is often relatively slower, and

the sharpness of these tools (i.e., cutting edge radius) can be

kept for a quasi-long time [168]. The diamond or diamond-like

coated solid carbide tools exhibit the longest tool life [169].

However, the thickness of the coating has a significant effect

on machined surface generation, as it directly affects the

cutting edge radius, thus the dominance of the crushing

versus plowing/bending mechanisms [170].

Although an appropriate selection of cutting tool materials

is essential, the experimental results of Xu andElMansori [153]

indicated that the geometrical features of tools exhibit a more

significant effect on the drilling behavior of CFRPs than the

material composition.Wanget al. [171] studied thewear issues

of uncoated, diamond-coated, and AlTiN-coated tools in the

drilling of CFRPs, as shown in Fig. 13. They observed similar

thrust forces for the uncoated and AlTiN-coated tools, and

these thrust forceswere significantly higher than those for the

diamond-coated ones. Kuo et al. [172] analyzed the wear

behavior of chemical vapor deposition (CVD) diamond-coated

tools in drilling CFRPs. They found no proportional correlation

between the cutting force and the tool wear. Montoya et al.

[168] evaluated the cutting performance of coated and un-

coated carbide tools in the drilling of CFRP/Al stacks. They

observeda smaller thrust force for theuncoateddrill; however,

the coated drill could produce higher quality holes than the

uncoated one, mainly due to the lower flank wear and thrust

force. Ameur et al. [173] analyzed the machinability of CFRP

composites usingWC,HSS, andTiN-coated carbidedrills. They

found that the thrust force is mainly influenced by the tool

materials and the feed rate, which has a strong influence on

the exit delamination factor. Furthermore, the thrust force of

the coated drill was significantly lower than that of the HSS

drill. Wang et al. [169] investigated the cutting performance of

diamond-coated drills in drilling CFRPs. Both the thrust force

and delamination are reduced by using the diamond-coated

tool as the tool has higher wear resistance and longer tool

life. The advantage of applying diamond coatings was also

confirmed by Iliescu et al. [174]. They could machine 10e12

times longer by the diamond-coated tool than by the uncoated

carbide tool. The experimental results of Hrechuk et al. [175]

also showed that the CVD diamond-coated drills and poly-

crystalline diamond (PCD) drills performed better in wear

resistance than the uncoated cemented carbide drills.

4.3. Cutting environments

Although the drilling of CFRPs can be optimized by the proper

set of drilling parameters and careful selection of cutting

tools, the appropriate cutting environment also helps to
increase productivity and efficiency, decrease tool wear rate,

and increase hole quality. Taking the absorbent capacity of

polymers into account, conventional cooling methods (i.e.,

flood cooling, high-pressure flood cooling) cannot be used in

CFRPmachining. Furthermore, the carbon chips have a severe

adverse effect on the machine tool elements; therefore, these

chips are recommended to be removed from the cutting space

by a vacuum cleaner, or the cutting fluid has to be cleaning-

filtrated. These challenges make the application of tool cool-

ing difficult to implement in the drilling of CFRPs. Thus,

cooling is often not used in industrial environments (i.e.,

drilling is performed under a dry condition). However, re-

searchers investigate tirelessly alternative cooling methods,

as the coolant not only decreases the cutting temperature but

also lubricates surfaces and removes chips. For example,

cryogenic cooling is a promising method to decrease drasti-

cally the temperature, which has a positive effect on delami-

nation and burr avoidance; nevertheless, its implementation

is difficult and expensive [176]. For example, Morkavuk et al.

[176] machined CFRPs using cryogenic cooling and found that

the cryogenic cooling could produce fewer machining-

induced geometrical defects and better surface quality than

the drymachining. Khanna et al. [177] applied an indigenously

developed cryogenic machining facility for drilling CFRP

composites and found that cryogenic machining could

improve the surface finish of CFRP holes by 14e38% compared

with dry drilling. Xia et al. [178] also recommend applying

cryogenic cooling since their results prove that the cryogenic

cooling significantly reduces tool wear and increases the

quality of machined hole surfaces. However, the cryogenic

cooling has a negative impact on the thrust force, drilling

torque, and delamination formation. Kerrigan and Scaife [179]

conducted the machining tests of CFRPs to assess the perfor-

mance of isolated cutting fluid chemicals. They found that the

dry conditions could yield lower thrust force and torque as

well as longer tool life against the best cutting fluid with

identical parameters. Khairusshima and Sharifah [180]

analyzed the effects of cooling conditions (dry and chilled air)

on the tool life during the CFRP drilling and observed a 30%

higher tool life under the chilled air condition.

Besides the cooling issues of fibrous composites, the me-

chanical supporting circumstances also play an essential

role in delamination and burr formation abilities of CFRPs

[65,86,87]. Researchers often apply back-up support plates to

decrease potential material deformation/buckling at the hole

exit that could result in accelerated layer separation or burr

formation. Tsao andHocheng [181] modeled the influences of

back-up support plates and concluded that drilling with

back-up support plates offers a larger critical thrust force

than that without back-up. The favorable supporting prop-

erties of the metallic part of the FRP/metal are highlighted by

Qi et al. [182]. They pointed out that one of the main differ-

ences in whether the sandwich structure is drilled from the

CFRP or the metal's direction is realized in the change of the

supporting properties. Dogrusadik and Kentli analyzed the

influences of support plates on the delamination and tool

wear in their [101,183] studies, respectively. They concluded

firstly that applying an entry support plate was beneficial

from the viewpoint of delamination suppression; however,

its applicationmay damage the composite surface. Secondly,
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the material of the support plate may significantly influence

the speed of the tool wear.
5. Approaches to achieving high-quality
drilling

The problems related to the drilling-induced minor and

major cracks lead to inaccuracies in hole diameter and

circularity. Further, the increase in temperature during the

drilling of CFRP materials creates a deviation in the surface

roughness of the hole wall. Also, the abrasive nature of these

materials results in rapid tool wear, leading to increased

entry and exit delamination damages; therefore, clean and

green production methods are preferred by recent re-

searchers to reduce such mechanical and thermal effects

during drilling. The primary factor, which affects the surface

quality of drilled CFRP hole walls, is the indentation of the

quasi-stationary chisel edge of the drill. This indentation

effect can be minimized by selecting modified drill geome-

tries. This problem can also be further reduced by selecting

optimal surface coatings to minimize the amount of wear.

Since a more significant number of input factors are associ-

ated with drilling, finding the optimum drilling input pa-

rameters that produce the lowest thrust force, torque, and

surface roughness is essential at present. Therefore, to

address all the above-mentioned challenges, this section

aims to discuss four different topics, namely optimization of

drilling parameters, appropriate selection of tool geometries,

appropriate selection of coatings, and advanced drilling

techniques.

5.1. Optimization of drilling parameters

Achieving the dual demands of yielding the minimal surface

damage and the longest tool life during the drilling of CFRP

composites is a challenging task for manufacturers due to the

heterogeneous and anisotropic characteristics of CFRPs.

Bhushi et al. [184] optimized the drilling parameters for CFRPs

using response surface methodology with a genetic algorithm

and reported that the feed rate and helix angle are the two

most influential factors affecting the surface integrity of

CFRPs. According to their work [184], a spindle speed of

800 rpm and a feed rate of 0.12 mm/rev are two optimal pa-

rameters that yield better results. However, these speed and

feed ranges are considered to be really low in the actual pro-

duction industry. Abhishek et al. [185] performed a multi-

response optimization for the drilling of CFRPs by focusing

on the issues of thrust force, torque, and delamination dam-

age. The authors used the principal component analysis with

the Fuzzy and Taguchi technique and found that a spindle

speed of 2800 rpm and a feed speed of 50 mm/min for a 6 mm

diameter drill provide better performances in terms of hole

quality.

Barik et al. [186] studied the optimization of drilling pa-

rameters for CFRPs using Grey Relational Analysis (GRA)

method. The spindle speed of 3000 rpm, the feed of 0.025mm/

rev, and the point angle of 108� were found to be the optimal

machining parameters for drilling CFRPs with minimal sur-

face damage. Feito et al. [187] performed multi-objective
optimization in drilling woven CFRP laminates by consid-

ering three different point angles, speeds, and feeds. The

lower point angle within the range of 90e108� and the lower

range of feed rateswere found to provide better performances.

Enemuoh and Okafor [188] conducted experiments to select

cutting parameters for damage-free drilling of CFRPmaterials.

They used Taguchi's experimental analysis technique and a

multi-objective optimization criterion. A process map based

on the results is presented as a tool for drilling process design

and optimization for the investigated tool/material combina-

tion. Kim and Ramulu [189] optimized in terms of machined

hole quality and machining cost for drilling of graphite/

bismaleimide-titanium alloy (Gr/BieTi) and reported that the

optimum process conditions to achieve desired hole quality

and process costs are a combination of low feed and low speed

while using carbide drills and are high feed and low speed

while drilling with HSS-Co tools.

The drilling optimization of CFRPs performed by Devitte

et al. [190] using the Box-Behnken method revealed that the

combined effects of the cutting speed and feed rate influence

the delamination factor to a greater extent than their indi-

vidual effect. The optimal values found from the study are the

cutting speed of 20 m/min and the feed rate of 0.05 mm/rev

with pre-corp drill types.Wang and Jia [135,191] used the Non-

dominated Sorting Genetic Algorithm (NSGA-II) with the ANN

technique to optimize CFRP drilling parameters and reported a

point angle of 118⁰ and a speed of 2400 rpm to be the optimal

parameters. Various researchers [192e194] have conducted

parametric optimizations for the drilling of CFRPs usingmulti-

objective optimization and analysis of variance approach to

improve the surface integrity of drilled CFRP holes.

The previous study conducted by Raj Kumar et al. [192]

revealed that the performance ofmicro drills was better at the

lower level of drilling parameters, whereas the performance of

macro drills was better at the medium level of cutting speed

and lower level of feed rate. Based on the desirability

approach-based optimization in CFRP drilling, the optimal

parameters were found to be a maximum cutting speed of

30 m/min and a minimum feed speed of 30 mm/min. Soe-

pangkat et al. [195] studied the multi-objective optimization

using BPNN-PSO approach on multi-stacked CFRP laminates.

The optimum spindle speed was found at a maximum level of

2993 rpm, and the optimal feed speed was found at its lower

range of 79 mm/min. The prediction was found to be very

accurate with a minimum error percentage. Xu et al. [4] per-

formed a detailed review of drilling-related issues for CFRP

laminates. Based on their literature survey, optimization of

machining parameters with respect to minimizing delami-

nation damage continues to be a difficult task to evaluate the

region of failure in cut CFRP holes. Also, the review shows that

the influence of the feed rate on the drilling responses of

CFRPs was more significant than the cutting speed.

The multi-objective optimization using response surface

methodology with different drill geometries was studied by

Feito et al. [196]. The medium levels of cutting speed within

the range of 55e60 m/min and lower feed rates were chosen

while using the brad and spur drill types. Abhishek et al. [197]

performed the multi-objective optimization using the har-

mony search evolutionary technique in drilling CFRP com-

posites. This technique was compared with the Genetic

https://doi.org/10.1016/j.jmrt.2023.05.023
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algorithm and Taguchi design approach. The optimal

machining parameters found from their work were a spindle

speed of 1000 rpm and a feed speed of 350 mm/min for a tool

diameter of 5 mm. Themulti-objective optimization using the

desirability approach technique was performed by Samsu-

deensadham and Krishnaraj [198]. The input parameters were

the cutting speed of 15e30 m/min and the feed rate of

0.025e0.1 mm/rev for the drilling operation. Based on their

study, a cutting speed of 30m/min and a feed of 0.025mm/rev

are determined to be the optimal machining parameters for

achieving desired surface quality of CFRP holes. Table 3

summarizes the various optimization techniques used for

optimizing the drilling processes of CFRPs.

Based on the literature survey, it can be inferred that

higher speeds with lower feed rates result in finer chips,

better surface finish, and longer tool life. However, at lower

speeds and higher feeds, there seems to be more of a plowing

action, which results in poor surface finish and more

delamination. An increase in the feed rate increases the chip

thickness, which results in increased thrust force and torque.

Further, the elevated force increases the damage on CFRP

hole surfaces while stacked against some other metallic

phases. Based on the optimization of machining parameters,

the cutting speeds of 30e40m/min, along with fine feed rates,

are recommended. There is an increasing need to increase

the cutting speed range to the next level since the holes

drilled for aircraft applications are large in number. High-

speed drilling is the requirement of the day. Hence research

on improving tool geometries and advanced drilling tech-

niques to enhance the band of cutting speed has been

intensified. Moreover, in recent years, the variable parameter

drilling (VPD) technique has emerged and has attracted due

attention among the composites manufacturing sectors due

to its benefits in avoiding the formation of drilling-induced

delamination damage. The idea of this novel method lies in

the dynamic change of the drilling parameters during the

chip removal to minimize the damage formation for CFRP

composites. It entails the use of low feed rates for drills at the

hole exit side to reduce the thrust force as an attempt to avoid

the delamination formation, while it increases the speed and

feed when the tool cuts the center of the hole walls to in-

crease the machining efficiency. For example, Li et al. [199]

proposed a new method of multi-element varying-parameter

vibration drilling for the micro-hole machining of composite

materials. The authors analyzed the cutting characteristics of

thickness division, natural chip separation, and multi-

separation chip-breaking characteristics in the interactive

zone. The comparative results between the proposedmethod

and the conventional drilling indicated that the proposed

varying-parameter vibration drilling could significantly

improve the micro-hole machining accuracies. Neugebauer

et al. [200] studied a material identification method based on

acoustic emission signals for drilling CFRP/Al stacks. It was

found that this method can monitor different stages of the

drilling process. Themethod can also implement controllable

parameters in different drilling stages of CFRPs during hole

processing. Zhang et al. [201] investigated the VPD process of

Ti-CFRP-Ti laminated stacks based on the real-time sensing

of axial drilling force. The authors successfully developed an

intelligent tool holder system with the function of real-time

https://doi.org/10.1016/j.jmrt.2023.05.023
https://doi.org/10.1016/j.jmrt.2023.05.023
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cutting force measurements, and the cutting force signal

processing method based on the compressive sensing theory

was proposed. The results showed that the VPD could effec-

tively reduce the hole wall surface roughness and improve

the drilling efficiency while ensuring a small axial force.

However, since the VPD entails the strict requirement of a

high intelligence degree for the tool holder system, more

endeavors need to bemade to address this issue in the future.

5.2. Appropriate selection of tool geometries

Drill geometry has a significant influence on the tool wear and

surface integrity of CFRP hole walls. Further, it can minimize

the formation of exit burrs and provide an easy way for the

evacuation of chips. The cuttingmechanismand generation of

cutting forces aremainly influenced by the indentation effects

of the drill chisel edge on CFRP materials. Several modifica-

tions were implemented on the conventional drills in the form

ofmultifaceted drills, modified point angles, and the inclusion

of different groove geometries and stepped structures to

minimize undesirable defects and simultaneously increase

the drill life.

Several authors (Babu et al. [202] and Gaitonde et al. [203])

have evaluated themodified drill geometries during the drilling

of CFRP materials. Persson et al. [204] compared the perfor-

mance of three different hole machining methods for carbon/

epoxy laminates, including the Kungl Tekniska H€ogskolan

(KTH) method, a traditional drilling method using PCD drills,

and a traditional drilling method using dagger drills. It was

found that the holes drilled by the KTH method yielded the

highest strength and the longest fatigue life with the best hole

quality compared with those machined by the traditional dril-

lingmethodsusing thePCDanddagger tools. TsaoandHocheng

[205] studied the delamination factors by using twist drills,

candlestick drills, and saw drills under various cutting condi-

tions. They established a relationship between the feed rate,

spindle speed, and drill diameter with delamination. The effect

of various drill geometries on the thrust force was predicted

analytically and comparedwith that of the twist drill.Moreover,

theauthors reported theneed to control eccentricity in the twist

drill and candlestick drill, which could negatively impact the

quality of the composite material. Mathematical models were

developed by them for both drills by considering eccentricity.

These authors also compared computerized tomography (CT)

and ultrasonic C-scan methods to inspect the delamination in

CFRPs for various drills and demonstrated that the CT could be

usedasa feasibleandeffective tool for theevaluationofdrilling-

induced delamination.

Tsao and Hocheng [181] further concluded that by distrib-

uting the drilling thrust toward the hole periphery, the saw

drills and core drills produced less delamination than the

twist drills. Brinksmeier and Janssen [206] drilled holes on

multilayer materials and concluded that the adapted step

drills improve diameter tolerances and surface quality. Dur~ao

et al. [41] performed a comparative evaluation of delamination

damage onmodified drill point geometries while drilling CFRP

composites. The results revealed that the influence of brad

drills and dagger drills on the delamination of CFRPs is

comparatively more significant than that of the twist and
stepped drills, especially at higher feed rates. To achieve the

minimal delamination factor, 120� twist drills can be chosen

as a better alternative. Feito et al. [196] made a comparative

analysis of different tool geometries while drilling CFRP lam-

inates. Four uncoated carbide drills, including helicoidal tools,

brad center tools, step tools, and reamer tools, were exam-

ined. The helicoidal drill was found much better in mini-

mizing delamination damage at a higher range of cutting

speeds than the step drill. The study concluded that the per-

formance of the reamer tool was much better compared with

the other tools. Samsudeensadham and Krishnaraj [198] per-

formed a comparative analysis on drilling CFRP/Ti stacks with

a standard drill and a modified (rake face grooved) drill (Ref.

Table 4). The standard drill was modified by incorporating the

chip-breaker groove along the rake face to minimize the

damage induced by increased thrust force to the CFRP surface.

The performance of the modified tool was found much better

with respect to the surface quality of CFRPs at the higher range

of cutting speeds.

Hao et al. [212] attempted to minimize CFRP damages

induced by higher thrust forces through a clip-edge type of

drill geometry (Ref. Table 4), which includes a reverse cutting

edge. Reduced delamination and tearing damages of CFRP

laminates were observed in the case of the clip edge-based

drill. Yu et al. [213] implemented a novel helical groove

edge on a standard drill to cut CFRP composites. A reduction

in burr formation, delamination damage, and composite

layer tearing was achieved with this modified novel helical

groove. Su et al. [207] studied the mechanism of CFRP surface

damage formation when using novel tool geometries. The

authors studied the variation of thrust forces at 360� cir-

cumferences for four different types of modified drills (Ref.

Table 4). The candlestick-type cutting tools with linear edges

were found to produce minimal surface damage on CFRP

laminates than the modified tools with arc-type cutting

edges. Jia et al. [208] introduced a novel drill structure to one-

shot drill bit (Ref. Table 4) for clean drilling of CFRP lami-

nates. The intermittent saw-tooth design was implemented

and its performance was compared with normal one-shot

drills. The saw-tooth design-based tool was observed to

perform better in terms of the number of burr-free holes,

approximately six times more than the holes produced by a

standard twist drill.

A review of the studies investigated shows how different

kinds of drill geometries such as one-shot drills, multifaceted

drills, dagger drills, modified dagger drills, modified saw-

toothed structure drills, double point angle drills, core drills,

special core drills, and hybrid designs such as core-twist, core-

saw, core candle-stick drills, and brad and spur drills are used

for enhanced drilling quality of CFRP materials. The current

requirement of the industry is to make neat holes with better

surface quality and non-delamination, along with higher tool

life. Although numerous drill geometries are studied by re-

searchers, the standard twist drill seems to be the preferred

choice for the industries. This is because sophisticated ge-

ometries are expensive and difficult to regrind. Modifications

in point angle, helix angle, and improved coating techniques

are the desired objectives of the industry. Further, the drills

should be reused without much effort.

https://doi.org/10.1016/j.jmrt.2023.05.023
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Table 4 e Modified tool geometries and their morphologies for CFRP drilling.

Ref. Tool morphologies

Hao et al. [212]

Implementation of clip-edge on the one-shot drill bit

Yu et al. [213]

Implementation of helical groove on the double point end drill bit

Su et al. [207]

Modified dagger drills

Jia et al. [208]

Modified one-shot drill with the intermittent-saw-tooth structure

(continued on next page)
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Table 4 e (continued )

Ref. Tool morphologies

Samsudeensadham and Krishnaraj [198]

Implementation of macro groove on the rake face standard twist drill

Gao et al. [209]

(a) Saw drill; (b) double point angle drill; (c) 8 facet drill; (d) core drill; (e) special

core drill

Tsao and Chiu [42]

Soepangkat et al. [195]
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5.3. Appropriate selection of tool coatings

The abrasive nature of CFRP materials often leads to rapid

tool wear in drilling operations. Tool materials affect the

wear development of drills as they influence the mechanical

properties of the tool-composite interaction governing the

CFRP drilling [210]. Tool coating is one method which min-

imizes chemical reactivity and the dispersion that arises in

the contact regions of the tool; further, it increases the tool

life. Wang et al. [171] and Yas‚ar and Günay [145] analyzed

the life of the uncoated, diamond, AlTiN, and TiAlN-coated

drills during the drilling of CFRP composites. The edge

rounding-based wear induced by material stagnation was

analyzed for uncoated and coated drills. Based on the study,
the performance of the diamond-coated tool was better in

minimizing the edge rounding wear compared with the

AlTiN-coated drill. Increased cutting force was noted for the

coated drills compared with the uncoated ones, whereas,

considering the temperature, the uncoated drill produced

higher temperatures than the coated drills, which led to

poor hole quality. D'Orazio et al. [211] investigated the hole

quality and tool life using diamond-like carbon (DLC) and

nanocomposite TiAlN-coated tools during the drilling of

CFRP/Al stacks. The major wear patterns, namely, chipping,

abrasion, and edge rounding, were observed with DLC-

coated drills, whereas abrasion is the only wear mecha-

nism observed for the nanocomposite-based TiAlN-coated

drills. The overall performance of the DLC-coated drill was

https://doi.org/10.1016/j.jmrt.2023.05.023
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much better compared with the nanocomposite TiAlN-

coated tool.

Ashrafi et al. [214] evaluated the effects of uncoated and

AlTiN-coated drills on the surface quality of CFRP materials.

The uncoated drills were found to perform better in mini-

mizing thrust forces and surface damage compared with the

coated ones. Gao et al. [209] and Rampal et al. [215] reviewed

various failure mechanisms and suppression strategies dur-

ing the drilling of CFRPs. The authors studied the performance

of coated drills through a comprehensive literature survey and

concluded that the PCD drills yielded better performances

than the WC drills. Also, the dual-layer coated micro-

crystalline diamond drill performed better in yielding longer

tool life and lower cutting forces. The authors stated that the

occurrence of wear of uncoated carbide drills could be attrib-

uted to the edge rounding failure, whereas oxidation (titanium

oxide and aluminum tri-oxide) was the reason for the failure

of the AlTiN-coated drills.

One of the requirements of CFRP machining is to have a

sharper cutting edge along with a higher abrasion-resistant

coating. Tool material also plays a vital role. Although the

PCD tools are the preferred choice in drilling CFRPs, the car-

bide tools are more widely used in industries due to their

lower cost. To improve the tool life, numerous researchers

have conducted the performance evaluation of various tools

with different coatingmaterials. Based on the above literature

survey, the performance of the diamond-coated drill is much

better in reducing CFRP surface damages and increasing tool

life compared with the uncoated drill. There is a critical need

for highly abrasive coating with lower coating thickness,

which keeps the cutting edge sharper. The development in

coating techniques, especially nanocomposite coatings, can

provide a solution to the demand of the composite drilling

industry.

5.4. Advanced drilling techniques

Advanced drilling processes are introduced to minimize the

thrust force and suppress drilling-induced damage for CFRPs.

Dhakal et al. [216] and Montesano et al. [217] investigated the

hole making of fibrous composites following an abrasive

water jet drilling (AWJD) process to explore the surface dam-

age variations. The authors conducted a comparative analysis

on three different composite samples produced by the vac-

uum bagging process. The traverse speed of the water jet was

noted as amajor factor affecting the delamination and surface

finish of cut composite laminates. The authors observedmore

crater damage on CFRP compared with the remaining mate-

rials, which could be attributed to the increase in the traverse

speed of the water jet. Also, the authors reported that the use

of AWJD could lead to zero tool wear compared with the

conventional drilling processes.

Irina Wong et al. [218] studied the minimization of the kerf-

taperand surface failuresduring theAWJDof FRPs. The traverse

rate is found to be themost significant factor, which affects the

entry and exit delamination of FRPs. The minimum kerf and

surface damages were achieved by the minimal cutting speed

with increased kinetic energy. Hole quality analysis of CFRPs

using ultrasonic vibration assisted drilling (UVAD) process was

performed by Ma et al. [219] to find the significance of the feed
rate.Novel longitudinal and torsional coupledUVADproduces a

minimal thrust force of around 40% compared with the tradi-

tional drilling process and this phenomenon leads to improved

surface integrity in drilling CFRPs. Cao et al. [220] developed a

mathematical model to suppress the delamination damage of

CFRPs during theUVADprocess. The axial forcewas considered

a function of a mathematical model. The experimental results

agreed well with the delamination predictionmodel.

Sadek et al. [221] performed the vibration-assisted drilling

(VAD) process on CFRPs to minimize temperature-related

defects. The VAD method improves the process by producing

more than 40% damage-free holes compared with the tradi-

tional drilling operations. Further, it reduces the drilling

temperature by up to 50%. Also, a few researchers (Huang

et al. [222] and Makhdum et al. [223]) studied the UVAD pro-

cess to achieve extended tool life and better surface quality of

CFRPs through numerical and experimental methods. Ahmad

Sobri et al. [224] performed the drilling of CFRPs using a laser-

assisted drilling (LAD) process. The authors compared the LAD

with the mechanical drilling process in terms of surface

damages. The study reveals that the LAD is only suitable for

lower thickness CFRPs, whereas, at higher thickness, it pro-

duces a larger heat-affected zone (HAZ) induced by the stag-

nated vaporized materials. Li et al. [225] drilled the CFRPs

using the ultraviolet (UV) laser technology to improve the

surface integrity via the reduction of HAZ induced by the laser.

Also, the authors suggested that the accumulation of heat can

be avoided only through the proper heat distribution provided

in the hole region.

Sadek et al. [226] and Kong et al. [227,228] drilled the CFRP

materials using the orbital drilling (OD) process to minimize

the damages related to temperature and delamination is-

sues. The holes are produced with lower temperatures and

negligible delamination induced by reduced thrust forces

during the OD. Also, the OD process maintains better

repeatability on quality parameters even at higher speed

ranges. Sheikh-Ahmad and Shinde [229] and Islam et al.

[230] performed a feasibility study on the drilling and

deburring of CFRPs through electric discharge machining

(EDM). The gap-current, pulse-on-time, and two different

electrodes were chosen as the primary input parameters to

control the process. The performance of graphite electrodes

was found to be better in terms of complete hole making on

CFRPs, whereas the performance of copper electrodes was

found to be better in terms of the deburring process of

existing holes. A summary of the effects of different

advanced drilling techniques on CFRP drilling is shown in

Table 5 for easy understanding.

Finally, with respect to the abrasive water jet machining

(AWJM), it is justified for the repair of CFRP laminates, whereas

for making precise holes, it cannot be used. Kerf width and

surface damage will be significant issues when the AWJM is

employed. The ultrasonic-assisted drilling technique performs

much better by enhancing hole quality. If an ultrasonic head is

used, it can perform the drilling process equivalent to a con-

ventional drilling technique. Although the LAD and EDM

techniques are demonstrated for the drilling of CFRPs, they

cannot be employed for themass production of precise holes in

composites because of the thermal degradation of polymers.

From the advanced drilling techniques reported, both the VAD

https://doi.org/10.1016/j.jmrt.2023.05.023
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Table 5 e A summary of the effects of advanced drilling techniques on CFRP drilling.

Ref. Advanced drilling techniques Effects on CFRP drilling

Dhakal et al. [216] and Montesano et al. [217] The AWJD technique Reduce the kerf-taper and surface failures

Sadek et al. [221] The VAD technique Minimize the temperature defects

Huang et al. [222] and Makhdum et al. [223] The UVAD technique Extend tool life and yield good surface quality

Ahmad Sobri et al. [224] The LAD technique Be suitable for lower thickness CFRPs

Li et al. [225] The UV laser technology Improve the surface integrity via the reduction of

HAZ induced by the laser

Sadek et al. [226] and Kong et al. [227,228] The OD technique Minimize the geometrical defects such as

delamination and uncut fibers

Sheikh-Ahmad and Shinde [229]

and Islam et al. [230]

The EDM technique Act as the deburring process of existing holes
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and OD are promising approaches for making holes in CFRPs

with improved surface quality and production rate.
6. Concluding remarks and future
perspectives

This paper addresses the drilling mechanisms and machin-

ability issues of CFRP composites through a comprehensive

literature survey. A critical review reporting the state-of-the-

art advances in the mechanical drilling of CFRP composites

is presented to point out the existing challenges and potential

approaches toward damage-free machining of CFRPs. The

novelty of the review article lies in reviewing the fundamental

drilling mechanisms, introducing the force/temperature fea-

tures, summarizing the process optimization techniques, and

overviewing the advanced machining techniques for high-

quality drilling of CFRPs. Based on the current review work,

the following key conclusions and future perspectives can be

drawn.

� The inherent heterogeneity and anisotropy are the key

cause of the complicated cutting mechanisms and poor

surface finish of CFRP composites. The fiber orientation

plays a vital role in chip separation and damage forma-

tion of CFRPs apart from the conventional drilling pa-

rameters. To date, most of the existing studies

addressing the drilling damage formation of CFRPs rely

on traditional experiments and simulation methods, and

no systematic explanation for the damage formation

mechanisms has been formed. Developing accurate and

reliable thermo-mechanical coupling constitutive models

for fibrous composites could be an alternative way to

reveal the complicated drilling mechanisms of CFRPs at

the micro-scale level, which will be a leading research

direction for cutting mechanism investigations of CFRPs

in the future.

� Drilling-induced damages are critical factors influencing

the surface quality of cut CFRPs. Among them, delamina-

tion, burrs, tearing, and surface cavities are crucial issues

that must be carefully suppressed to achieve damage-free

cutting of CFRPs. Drilling parameters, tool geometries/

materials, and cutting environments are confirmed to be

important factors influencing the drilling quality of CFRPs.
The use of high cutting speeds and low feed rates is found

to favor the machinability and quality improvements of

CFRPs. In the future, more research efforts need to bemade

on optimizing process parameters, developing suitable tool

geometries/coatings, and applying proper cutting envi-

ronments such as cryogenic cooling to significantly sup-

press the drilling damages and improve the quality of cut

CFRP holes.

� Additionally, optimization of machining parameters with

improved tool geometries/coatingscanalsoplayamajor role

in improving the production rate of CFRPdrillingwith longer

tool life. Literature at present provides key issues associated

with cuttingmechanisms, optimizedmachining parameters

and hole quality for selected conditions. However, notmuch

work is reported on the high-speed drilling of CFRPs. To

prolong tool life, future work can be focused on developing

innovative coatings, especially oxide and diamond coatings,

to overcome the abrasive nature of CFRP materials.

Moreover, revealing themappingmechanisms between tool

geometries/materials, cutting environments, process pa-

rameters and CFRP hole-making quality and proposing a

comprehensively optimized hole-making strategy are the

key to improving the drilling quality and efficiency of CFRPs,

which will be the future development direction of compos-

ites manufacturing community.

� Finally, more research work must be done on the optimi-

zation and improvement of hole dimensional accuracy for

CFRPs, except for the suppression of drilling-induced de-

fects. Additionally, the suppressing mechanisms of drilling-

induced defects for hybrid composite materials such as

CFRP/alloy need to be further addressed. In the future, the

theoretical analyses and experimental optimization of

advanced drilling methods such as VAD, OD, and VPD of

CFRPs are anticipated to get more attention. These tech-

niques are expected to greatly suppress the drilling-induced

damage and improve the quality of cut composite holes.
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