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Abstract—A well developed and industrialized agriculture
system is one of the bases of our modern society, but it introduces
a problem, as it also is a large contributor to climate change. Even
only the use of unoptimized tools in itself has a multidimensional
impact. Pulling such a tool through the soil requires more energy
(and thus more fuel) than necessary. Because of its imperfect
shape it will inevitably move more soil than needed. Furthermore
during soil-tillage the amount of CO2 emissions and the water
retention of the soil also depend on the movement of the soil.
This last phenomenon also causes a decline in yield and that can
increase the level of deforestation.

By studying the aforementioned soil-tool interactions it is
possible to help optimize the tools being used. But testing each
revision of a developed tool is not only pricey but also time
consuming. In situations like this modeling can come to the
rescue. By utilizing the discrete element method (DEM) we can
create an adequate numeric model of a given soil type. But
calibrating such a model is non-trivial. By measuring the inner
movement of the soil during test soil-tool interactions it is possible
to adjust to the model until the modeled soil movement closely
resembles the measured values, for this the creation of a tracker
device was needed, which can be placed into the soil during the
interactions and measure how much it moved during it.

In our paper we show how we developed such a device and
how we used increasingly more techniques from basic data
processing to AI to recreate the device’s path. We also describe
the development of the soil model and how we plan to utilize our
findings to aid the design of better soil tilling tools in the future.

Index Terms—IoT, Discrete element method, Soil models, AI

I. INTRODUCTION

As seen in the abstract, our grand goal is to create a
measurement and modelling system which would offer a cost-
effective way of determining the effectiveness of soil tools.
The global aim is to create a numerical model which is
accurate enough so that it can be used to test the efficiency
in planning of soil tools. We determine the correctness of
the model by its capability to recreate movements in the soil
which we estimate from data collected during laboratory mea-
surements. This project can be divided into multiple subtasks,
detailed below.

• Creating an environment for measurements
• Creating a device which can be put into the soil dur-

ing measurements and is capable of tracking its own
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of Human Resources

movement during measurements (DCD – data collection
device)

• Processing the data collected by the DCD to recreate the
movement

• Creating a model of the soil
• Developing a method which can automatically calibrate

the soil model based on the calculated movement data
In this paper we show the “evolution” of these tasks.

During our literature research we did not find a paper in
which a sensor-based device (“active” tracker) would have
been used to recreate the movements within the soil during
soil-tool interactions, but we did find research papers where
certain elements of such a system were studied. For example
Dost et al. (2020) [1] used a sensor-based solution to ap-
proximate paths of “smart stones” during laboratory landslide
experiments, a similar solution was also developed by Akeila
et al. (2010) [2], who studied sediment transport in riverbeds.
The usage of “passive” trackers is present in some trackers
is present in some soil-tool interaction, such as Massah et
al. (2020) [3] who put trackers into the top level of the soil
and recorded the tillage process with a camera to determine
the movement of the trackers during the interaction, while
for example Rahman et al. (2005) [9] used multiple passive
trackers in multiple layers within the soil and determined their
displacement at the end of the tillage process. Milkevych
et al. (2018) [4] did not only measure the displacement of
passive trackers, but also modelled the soil-sweep interactions
using discrete element method (DEM) simulations. There were
several other researchers who also used DEM for modelling
soil-tool interactions, such as [10], [11], [13], [14], [15] and
[12].

II. DATA COLLECTION DEVICE

We set out to create a system where besides the usual
metrics (like penetration test, force acting on soil-tool) it is
also possible to measure the movement of the soil (or at least
that of a known object in the soil). For this a device was
needed that is able to collect data about its own movement in
an environment where it is not possible to physically connect
to the device or even to see it.
Based on these requirements the plan was to use accelerom-
eters to gather information during the measurements. Sensors
like this exist, but mainly as a part of so called Inertial
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Measurement Units (IMU) where they are paired with a
gyroscope and optionally a magnetometer (in this later case
they can also be called MARG (Magnetic, Angular Rate,
and Gravity) sensors). Sensors like this can be also used
to calculate orientation by utilizing sensor fusion techniques.
One of these techniques is the Madgwick filter published by
Sebastian O.H. Madgwick [5]. It is capable of using all three
possible kinds of sub-sensors a MARG sensor offers but it
can also work from accelerometer and gyroscope only. This
filter was used by multiple researchers, for example the already
mentioned Dost et al. (2020) [1]

The first iteration of the DCD was made using almost
exclusively off-the-self components, such as an ESP8266
development board and a Bosch BNO055 sensor breakout
panel. Within the 3D printed housing these were connected
by hand-soldered wires and kept in place by hot gluing them
to their respective places.

a. b.

Fig. 1. The middle section and the assembled housing of the old DCD

As seen on figure 1, the first version was quite larger
than it needed to be. For example, note the padding at the
microcontroller unit needed because the originally used unit
was larger, furthermore much space was left unused. Another
sub-optimal property of this version is the placement of the
IMU. As seen on figure 1 it was fixed to a side of the housing,
rather than in the middle of the DCD, as it should be.

One of the aims with the second version (see figure 2) was
to reduce the size of the DCD. To achieve this, a PCB was
designed to hold together the parts needed, making it possible
to ditch the rather space-wasting development board. The
BNO055 sensor was also replaced in favor of the less capable
but faster MPU-9250, but its use still requires a breakout panel.
During the design care was taken to place the IMU both in the
middle of the board and the centre point of the new spherical
housing. Said housing now also has one of its pars 3D printed
using semi-transparent material, making it possible to have a
color-coded LED-based status feedback.

a. b.

Fig. 2. The housing and the PCB of the new DCD

The summary of the differences between the two DCD
versions can be found in table I

TABLE I
COMPARISON OF THE DCD VERSIONS

Property Older version New version Comment

Housing size
78mm
(inscribed
circle)

58mm (diame-
ter)

Sensor type BNO055 MPU-9250

Orientation
data source

Sensor’s
built-in micro-
processor

Madgwick fil-
ter used dur-
ing data pro-
cessing

Base MCU ESP8266
Communication WiFi

Control Socket based No control
necessary

Depends on
software,
so can be
changed

Data collection
method

Collect a fixed
amount of
data when
instructed then
send back to
controller.

Constantly
publish
measured
data to a
pre-specified
MQTT topic.

Depends on
software,
so can be
changed

III. MEASUREMENT ENVIRONMENT

We carried out two kinds of measurements. The first type
is done in a larger laboratory soil bin, but is locked to the
place of said bin, while the other uses a mobile soil bin but
has some disadvantages due to the bin’s smaller size.

A. Laboratory soil bin test

The first larger measurements were made in the soil bin of
the NARIC Institute of Agricultural Engineering. This offers a
great environment for the measurements, as the soil bin is large
and there is specialized equipment to carry out measurements.
As shown in figure 3/a, this laboratory is equipped with a 30
meters long and 2 meters wide soil bin and a guided measuring
cart. Figures 3/b and c show how the DCD was buried in the
ground.
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a. b. c.

Fig. 3. Early measurements in the NARIC Institute of Agricultural Engineer-
ing laboratory soil bin

Multiple measurements were carried out in this setup with
one (older style) DCD. During these measurements the DCD
was controlled from a laptop, its displacement was determined
by measuring its position relative to the soil bin before
and after the tillage process as seen on figure 3. Later we
determined the paths using the algorithmical method discussed
in the IV section.

This environment offers a great way of examining the soil-
tool interactions in a scenario that is as close to a real-life setup
as possible whilst maintaining the repeatability expected from
a laboratory setting. Furthermore it also offers the possibility
of using the tool itself which is to be evaluated. On the other
hand, this solution is not scalable, as for each measurement
travelling and the notification of authorized personnel would
be needed, thus another setup was needed.

B. Mobile soil bin

For the better manageability of the measurements a smaller
(900×450×190 mm) soil bin was created. This made it possible
to carry out “on site” measurements relatively freely and with
a small amount of setup.

a. b.

Fig. 4. The soil bin in use during a measurement

This soil bin was filled with dry loamy sand soil. This
solution is also called “mobile”, as it is possible to relocate
it, thus it was used in multiple laboratories using different
robotic arms to move the 3D printed example soil tool, as
seen on figure 4.

C. Mechanism

As it is later mentioned in section IV, amongst others
Artificial Intelligence (AI) was also used as a data processing
tool. For this to work properly, it is important to have a
sufficient amount of training data, which can be used to teach
the AI. An important requirement towards data like this is that
both the input and expected output of the AI is needed to be
known. For this, a closed-chain mechanism was created which
can transform circular motion to a non-circular closed path.

Fig. 5. The mechanism’s plan

As seen in figure 5, the links of the mechanism contain
multiple holes for joins. These can be used to set up, how
the output path of the mechanism (meaning the path the DCD
travels) will look like. It is also possible to tilt the board,
onto which the mechanism was fixed, making it possible to
take into account movements on all three spatial dimensions.
Knowing the properties of the mechanism (length of the links,
the selected holes) makes it possible to simulate the movement
of the DCD when the crank is rotated once. This was simulated
using Matlab and the data gathered from it is used as the
expected output of the AI, see figure 6 (and of course the
input data is what was measured by the DCD).

Fig. 6. Some simulated possible movement curves
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IV. DATA PROCESSING

The problem sounds simple. There are given acceleration
data and the path they described is needed to be known. This
could be done using double integration. The first problem is
that the sensor’s frame of reference differs from the global
one. This can be done easily because IMUs were originally
designed to be able to record their own frame of reference.
The BNO055 can directly supply orientation data in quaternion
format, for the MPU-9250 the usage of orientation filters is
needed.
But a much more significant problem arises when calculating
the path using double integration. It is known about MEMS
acceleration sensors that they are noisy. Because of the inte-
gration this noise becomes even more significant, in fact the
double integral causes an exponential error, making the results
completely unusable.

This first led to the utilization of various data correction
methods. First, the data needed to be trimmed to only contain
the studied path itself then the acceleration data needed to
be smoothened. Taking into account that the recorded data
needed to go through various processing steps, a data pipeline
focused application was developed. During the planning of
this application it was important to make the addition of new
processing steps easy, for this the interpreted nature of the
Python programming language was utilized.
The data trimming remained a manual task, and the smoothen-
ing was done by various filters which could be selected by the
user. But these efforts did not prove to be enough, as after the
double integration the calculated path still did not resemble
the original.

At this time it was noted that the acceleration data were
shifted from its desired level. One could see this, because
optimally in a closed path, the acceleration data on each axis
should start and end at zero (the performance of the system
was mainly tested using circles and semicircles), but it was not
the case. Because of this a solution was implemented, where
the user was able to shift the data by a constant value. This led
to much better results, the mentioned circles and semicircles
became distinguishable.
For automating this, extra information was needed, namely the
endpoint of the traveled path. This was known to be possible
to measure in the intended context of use, as there were
already multiple researches where simple passive devices were
used to record their endpoints during soil-tool interactions,
for example Songül et al. [6] Using this extra information,
a P-controller-like algorithm was developed. This algorithm
iteratively shifts the collected values by a certain amount based
on the difference between the intended and currently calculated
endpoint.

The aforementioned solution was in use for a while but its
precision could not match the desired level. Because of this,
the usage of Artificial Intelligence was considered. First neural
networks were used, but with those, the desired better accuracy
was not achieved, but it was noted that one of the reasons for
this can be the limited amount of training data, as the accuracy

of these systems fluctuated when the models were retrained.
This can happen because the initial (randomized) biases of the
networks mattered too much in the end result, indicating an
insufficient amount of training data.
By using a different type of AI, namely the gradient boosting
technique with the XGBoost library, much better results were
achieved. One of the great properties of this technique is the
automatic feature selection, meaning that it can decide, which
“columns” in the supplied data it deems to be important.
Because of this, a large amount of data was supplied to these
models, including (but not limited to) the raw sensor data, the
data returned by the sensor fusion filters, time, a percentage
metric showing, where within the current measurement the
data record stands, and maybe even the results returned by the
aforementioned “analytical” solution. Another difference was
between “wide” and “thin” models. This means a difference
in how the different types of data (meaning acceleration,
gyroscope data, and other metrics), in case of the “wide”
model the X, Y and Z axes are separated into different
“columns” (where applicable), while with the “thin” model
these data are only categorized by type. The rationale behind
the “wide” model is that the sensor’s output can be different
depending on the axis (for example the measured acceleration
on the Y axis tends to be more noisy) while in the case of the
“thin” model a greater level of generalization can be expected.
The differences between these models are shown on table II.

TABLE II
THE DIFFERENCE BETWEEN THE “WIDE” AND “THIN” MODELS

“Wide” model:
accx accy accz gyrx gyry gyrz . . . metric m
accx1 accy1 accz1 gyrx1 gyry1 gyrz1 . . . metric m1
accx2 accy2 accz2 gyrx2 gyry2 gyrz2 . . . metric m2
. . . . . . . . . . . . . . . . . . . . . . . .

accxn accyn acczn gyrxn gyryn gyrzn . . . metric mn

“Thin” model:
acc gyr . . . metric m-1 metric m

accx1 gyrx1 . . . metric m-11 metric m1
accx2 gyrx2 . . . metric m-12 metric m2
. . . . . . . . . . . . . . .

accxn gyrxn . . . metric m-1n metric mn
accy1 gyry1 . . . metric m-11 metric m1
accy2 gyry2 . . . metric m-12 metric m2
. . . . . . . . . . . . . . .

accyn gyryn . . . metric m-1n metric mn
accz1 gyrz1 . . . metric m-11 metric m1
accz2 gyrz2 . . . metric m-12 metric m2
. . . . . . . . . . . . . . .

acczn gyrzn . . . metric m-1n metric mn

V. RESULTS

A. Results of the laboratory soil bin measurements

The data gathered from the measurements mentioned in
the III-A subsection was later evaluated with the usage of
multiple data correction methods and the algorithmical solu-
tion mentioned in the IV section. In this case measuring the
overall displacement of the DCD is absolutely necessary as
the mentioned algorithm is a vital part of the data processing.
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A large amount of user interaction is also needed.
This resulted in path curves (figure 7) that closely resemble
the expected output, but since the correctness of the output
depends on a large amount of variables (including the user’s
capabilities), a method for evaluating said correctness was not
defined.

Fig. 7. A result from the algoritmical method

B. Results of the mechanism and AI

As mentioned in the subsection III-C a mechanism was used
to create movement data and a Matlab simulation was used to
create the paths belonging to the movement data. This was
used as the input for the AI mentioned in section IV.
Regarding the results of the AI it was observed that the wide
model worked overall much better than the thin model. Figure
8 shows the performance of the model when the algorithmical
solution was not used as an input for the AI, in the a. case
the prediction was done on training data while in the b. case
it was done on data similar to the training set but not seen
before by the AI.

a. b.

Fig. 8. Performance without algorithmical solution (sizes in mm, orange is
the expected values are shown in orange and calculated ones in blue)

In another case the output of the algorithmical solution was
also used as an input for the AI. As seen in figure 9/a, it can
greatly enhance the AI’s performance in case of predictions
made on training data but falls behind when used on not seen
but similar data (figure 9/b).

a. b.

Fig. 9. Performance with algorithmical solution (sizes in mm, orange is the
expected values are shown in orange and calculated ones in blue)

The results show that the AI-based solution can be viable
even if the overall displacement needed for the algorithmical
solution was not measured, however its existence can enhance
the precision of the model and further training of the AI is
needed to get better quality results.

VI. SOIL MODEL

The numerical soil-tool interaction model is prepare in the
YADE software [7]. The DEM model follows the structure
of laboratory measurements. The geometry of the soil bin,
the simple soil tool, and the tracker in the soil, and the tool
speed are the same as during the laboratory measurements.
The DEM soil model can be calibrated based on laboratory
measurements specified macro-mechanical parameters (in this
case average force acting on tool, and the path of the tracer)
of soil. However these parameters are not able to directly
characterize the DEM model, because the DEM model can
only be parameterised by not measurable micro-mechanical
relations between two grains. For this purpose the genetic
algorithm is applies to find the appropriate micro-mechanical
parameters [8], which are able to model the tested soil. It
is also under testing what kind of simulation and micro-
mechanical parameters have an impact for the path of the
modelled tracer.

VII. CONCLUSION

The main novelty value of our research is a measurement
system that can enable us to analyze the inner movements of
granular materials. The results from the measurement system
can serve as a basis for the calibration of discrete element
method models of soil. During our research a laboratory
environment for the study of soil-tool interactions was created,
example soil tools were planned and manufactured. Artificial
intelligence was also used to determine the paths taken by the
DCDs during such interactions, but further measurements and
developments are needed to enhance the performance of the
method.
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