
A Comprehensive Performance Analysis of Stream
Processing with Kafka in Cloud Native

Deployments for IoT Use-cases
István Pelle1,2,3, Bence Szőke1, Abdulhalim Fayad1,2, Tibor Cinkler1,2, László Toka1,2,3

1HSN Lab, Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary;
2ELKH-BME Cloud Applications Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary;

3MTA-BME Network Softwarization Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
pelle.istvan@vik.bme.hu, szoekebence@edu.bme.hu, fayad@tmit.bme.hu, cinkler@tmit.bme.hu, toka.laszlo@vik.bme.hu

Abstract—The constant growth of the number of Internet of
Things devices drives a huge increase in data that needs to be
analyzed, at times in real time. Multiple platforms are available
for delivering such data to analytics engines that can perform
various operations on the data with low processing latency. These
platforms can find their home in cloud native environments where
high availability and scaling to the actual workload can be easily
achieved. While the deployment environment is elastic, clusters
still need to be adequately dimensioned to accommodate the
components of the platforms even under high load.

In this paper, we provide an analysis in this regard: we discuss
key performance indicators of the popular Kafka message bus
and the related Kafka Streams processing engine. Namely, we
analyze latency, throughput, CPU and memory resource footprint
aspects of these services under varying load and processing tasks
that appear in Internet of Things applications. We find subsecond
processing latency and linear but heavily task-dependent scaling
behavior in the other performance indicators’ case.

Index Terms—Kafka, Kafka Streams, stream processing, per-
formance analysis, IoT

I. INTRODUCTION

In the “always-on” world we find more and more devices
getting interconnected which induces a rise in the demand
for developing and maintaining highly available systems that
can store, analyze and manipulate extremely large and con-
tinuously expanding amounts of data safely with low latency.
With the advance of cloud computing, many of these systems
are transitioning into a cloud native environment where they
can be operated in a robust and easily scalable fashion. Such

This work was supported by: i) Ministry of Innovation and Technology
of Hungary from the National Research, Development and Innovation Fund
through projects a) no. 135074 under the FK 20 funding scheme, b) 2019-
2.1.13-TÉT IN-2020-00021 under the 2019-2.1.13-TÉT-IN funding scheme,
c) 2019-2.1.11-TÉT-2020-00183 under the 2019-2.1.11-TÉT funding scheme,
d) 2021-1.2.4-TÉT-2021-00058 under the 2021-1.2.4-TÉT funding scheme,
ii) ÚNKP-22-5-BME-317 New National Excellence Program of the Ministry
for Culture and Innovation from the source of the National Research, De-
velopment and Innovation Fund. L. Toka was supported by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences. On behalf of
the Performance Analysis of Stream Processing project we are grateful for
the possibility to use ELKH Cloud (see Héder et al. 2022 [1]; https://science-
cloud.hu/) which helped us achieve the results published in this paper.

systems are indispensable for many areas, as Internet of Things
(IoT), e-commerce, financial and investment services.

The abundance of sensors used in IoT ecosystems creates
astronomical amounts of data and analyzing it has vast benefits
in controlling complex environments via enhanced decision-
making [2]. By looking at data snippets in real time, stream
analytics can create control decisions, patterns, and statistics
assisting IoT applications in decision-making in a range of
use cases encompassing societal, environmental, and economic
aspects [3]. Among others, Amazon Kinesis and Apache
Kafka [4] are present for stream delivery, while Apache Flink,
Spark and Kafka Streams exist for processing tasks [5]. Due
to Kafka being one of the most widespread platforms and
having a tight integration with Kafka Streams, here we are
setting out to examine their conjoined processing capabilities
in cloud native deployments that grant adaptation to actual
load. We argue that understanding the implications on resource
footprint still remains crucial for designing adequately-sized
data processing clusters that can handle the expected load
while still consuming as few resources (CPU, memory, energy)
as possible to keep expenses low and satisfy green aspects.
Our contributions are thus threefold. First, we identify IoT
use-cases that can benefit from stream analytics and provide
the background for the cloud native deployment. Second, we
define a measurement framework for capturing throughput,
processing latency and (CPU and memory) resource footprint
metrics. Third, we evaluate these metrics using various sce-
narios under different processing operations deployed on a
Kubernetes-managed [6] environment.

Consequently, we organize our paper in the following struc-
ture. In §II, while also underlining the motivation behind our
investigations and selection of stream delivery and analytics
tools, we give a comparison with related work. In §III, we con-
tinue this by looking into various IoT use-cases that showcase
the importance of data analytics. We also summarize Kafka
and Kafka Streams capabilities and briefly review cloud native
deployment aspects here. Later, we discuss the considerations
of our measurement framework’s setup and selected scenarios
in §IV. We provide a detailed description of our measurement



environment in §V and also evaluate measurement results
there. Finally, we conclude our paper in §VI.

II. RELATED WORK

The IoT stream processing technology using the Apache
Kafka framework has gained attention in several papers in the
literature. A comprehensive survey [5] of several distributed
data stream processing and analytics frameworks studies open
source (Storm, Spark Streaming, Flink, Kafka Streams) and
commercially available (IBM Streams) distributed data stream
processing frameworks from multiple angles, however, it
does not supply quantitative resource footprint, throughput
or latency analyses. Other authors [7] provide an evaluation
and comparison of Kafka with other available technologies.
According to their results, Kafka proved to be one of the
best options to achieve high performance while staying un-
der budget to stream data in real-time. Theodolite [8] is a
benchmarking framework that assesses the scalability of Flink
and Kafka Streams. While its authors provide an evaluation
of different processing operations in terms of number of data
sources and used processing instances, they do not deliver
actual CPU and memory usage statistics that can be easily
used for dimensioning purposes. Other papers [9], [10] also
prepare comparative evaluations of different stream processing
engines, however, they do not cover Kafka Streams. A further
study [11] gives a detailed comparison of three major stream
processing frameworks (Flink, Kafka Streams and Spark) from
the perspective of different processing operations and input
characteristics of sustained load, single burst load and periodic
bursts. It offers CPU, memory and latency analyses of the
frameworks, but does not include dimensioning aspects spe-
cific to the Kafka event bus. Other authors [12] also investigate
Spark, Flink and Storm latency and scaling aspects but do not
include Kafka Streams.

In terms of discussing resource utilization metrics, the
work of Shahverdi et al [13] is the closest to ours. They
present a comparison of Storm, Flink, Spark (DStream and
Structured Streaming), Kafka Streams and Hazelcast Jet. They
provide latency and resource usage metrics both for the stream
analytics engines and the Kafka event bus. CPU can be easily
used for dimensioning purposes, while reported memory loads
can also be leveraged after additional calculations. However,
in their case, Kafka is used only for delivering events to the
processing engines, their output is pushed to an external Redis
in-memory cache instead of back to Kafka. This separation
hinders the results’ applicability for cases where Kafka is used
as a unique, general event delivery mechanism that forwards
derived data as well.

III. BACKGROUND

A. IoT data analytics use cases

The vast amount of data with different velocities generated
by various IoT devices makes IoT data analytics an important
and challenging topic. From smart cities [14] and buildings
through environmental monitoring, agriculture, healthcare and
education [2], many IoT settings profit from data analytics.

Analytics of data generated by IoT devices in smart industry
environments is employed for predictive maintenance, in the
retail sector for tracking and improving customer experience.
Analytics is also essential for smart metering which measures
and tracks power usage in smart grids to help predict future
electricity requirements [15]. In such situations, the demand
exists for sending data to scalable systems providing proper
collection methods, persistent storage with high throughput.
Apache Kafka emerged as a viable option for streaming data
coming from various IoT devices and then distributing streams
of data to different applications. It has become an essential
option for IoT data analytics due to its reliability and stability
in processing real-time streaming IoT data with minimum
latency, and high throughput [5], [16]. Various works suggest
its use in cloud native settings for scaling to real-time data
streams coming from IoT devices [17]–[19], they also leverage
compatible monitoring tools, such as Prometheus.

B. Event stream delivery: Kafka

Apache Kafka is a popular open-source, low-latency,
high-performance, fault-tolerant distributed messaging sys-
tem used for collecting, processing, storing, and analysing
event streams (replayable, ordered, unbounded, continuously
updating data sets of immutable events, records, key-value
pairs) at scale. Kafka clusters consist of (optionally geo-
graphically distributed) broker entities that are coordinated
by ZooKeeper [20] nodes and durably store event streams in
multi-producer, multi-subscriber replicable topics partitioned
across (a subset of) the cluster’s brokers. I.e, clients can
read or write events in a topic frequently accessing many
brokers at the same time. Upon publishing a new event to
a topic, it is appended to one of the topic’s partitions and
it will be replicated to other brokers for the sake of fault-
tolerance. Events are discarded only after the configured per-
topic retention time and the cluster’s performance is promised
to be constant with respect to stored data size. Distributed ap-
plications and microservices writing, reading, and processing
streams of events can be developed with Kafka clients using
the Producer, Consumer and Streams APIs [21], respectively.

C. Event stream processing: Kafka Streams

Leveraging this last API, Kafka Streams applications act
as stream consumer, processor/analyzer and producer applica-
tions. Their instructions are interpreted as processor topolo-
gies, logical abstractions of graphs consisting of processor
nodes connected by stream edges. Nodes get events from their
upstream nodes, perform their operation and forward one or
more (modified) events to downstream processors. Two special
node types are present: sources for reading Kafka topics (i.e.,
having no upstream nodes) and sinks for writing (i.e., without
downstream nodes). Different processing operations require
different aspects of the same data. On the one hand, a stream
can be considered a changelog of a table, where the stream’s
each data record captures a state change of the table. On
the other hand, a table can be considered a snapshot, at a
point in time, of the latest value for each key in a stream.



Kafka Streams provides support for both aspects, handling
the so-called stream-table duality via the KStream and KTable
interfaces that support a variety of transformation operations
specific for each aspect. Transformations are categorized as
being stateless (requiring no knowledge of other events, e.g.,
filter and map operations) or stateful (that use a state depend-
ing on data from multiple events, e.g., a windowing state in
aggregation or join).

Processing is scaled by launching multiple tasks created
from the processor topology. In layman’s terms, each task
is assigned to at least one partition and can be executed in
different application instances or threads (without shared state)
of a single instance providing similar performance but different
fault-tolerance. Partition to task assignment and load balancing
between parallel tasks are handled transparently.

D. The cloud native environment

Docker [22] is the de facto standard for running standard-
ized units of software isolated from each other and their
environment. Kubernetes is an open-source container orches-
tration platform for automating deployment, management and
scaling of applications (packaged as Docker images) making
it ideal for hosting cloud native applications that require
rapid scaling, like real-time data streaming through Apache
Kafka. Strimzi [23] provides an option for doing just that:
it is an open-source Cloud Native Computing Foundation
project providing an operator for running Kafka clusters. It
is able to set up ZooKeeper nodes, Kafka brokers and topics
with TLS encryption enabled between the components. It also
provides integration with the Prometheus [24] monitoring and
Grafana [25] observability tools for exposing, collecting and
displaying various performance metrics of the cluster, while
Netdata [26] can be used for collecting (among others) pod-
level CPU and memory load in a Kubernetes environment.

IV. MEASUREMENT LAYOUT AND SCENARIOS

Fig. 1 depicts the layout of the components and their inter-
actions that we used to measure the performance and resource
footprint of Kafka and Kafka Streams. The figure shows four
main components (from top to bottom): the Kafka Streams
Processor, the Kafka cluster, a Producer, and a Consumer,
all running as pods within a Kubernetes cluster. We used
the Strimzi operator for setting up a Kafka cluster consist-
ing of N brokers in Kubernetes. Strimzi created additional
operator pods (not depicted in the figure for the sake of
simplicity), certificates for TLS encryption and ZooKeeper
pods for coordinating the Kafka cluster as well. These latter
pods supply the available broker IDs and consumer offsets
(which event to consume next) to the Processor and Consumer
components. We also relied on Strimzi for configuring two
topics in Kafka: Tin is used for feeding the Kafka Streams
processor application while Tout stores its output.

We implemented the Producer as a configurable Java appli-
cation using the Producer API packaged into a Docker image.
It has access to 8760 event files which come from an industry
use-case and contain JSON data with multiple nested fields

Producer

Pod

JSON
event
file

Kafka cluster

JSON
event

Pod

Kafka broker 1

Tin topic Tout topic

Pod

Kafka broker N

Tin topic Tout topic

Pod
Kafka Streams Processor

Parse

Pod

Consumer

Operation
under test

Write
output

1

ZooKeeper
pods

ZooKeeper cluster

Managed by the Strimiz operator

...2

3

4

5

6

Fig. 1: Measurement setup.

relaying IDs, measurement and status data, as well as duration
related information using timestamps. The Producer randomly
selects a file (see step 1 in Fig. 1 and sends it to the Tin

topic of the Kafka cluster (step 2). As additional configuration
arguments, we used a target throughput rate for the Producer,
various batching and TLS configuration options, as well as the
Kafka cluster’s address for sending out events. The producer
tries to commit the events to the Kafka brokers at the given
rate and signals when it cannot match the defined rate.

From Tin the Kafka Streams Processor application reads
the events (step 3). We also implemented the Kafka Streams
Processor as a configurable Java application using the Kafka
Streams API packed into a Docker image. The application first
parses the incoming data: corresponding to a source node in
its processor topology, it deserializes events as Java entities
to have access to the various fields within the JSON records.
Then, in step 4, it performs a selected operation on the event
(see §IV-A for a discussion on the various operations used)
before writing back the operation’s results to the Tout Kafka
topic by serializing them again (creating a sink node in the
processor topology), in step 5. To configure communication
with the Kafka cluster, we supplied its address and TLS
setup options (certificates) to the Processor. To test parallelism,
we made the number of processing threads configurable and
defined the maximum commit interval in which the Producer
needs to write data to the Kafka cluster.

The optional Consumer Java application (also packaged as
a Docker image) reads data from Tout in step 6 (by connecting
to the configured cluster address). Using the Kafka Consumer
API, we implemented this component to check the validity of
the Processor’s output in a human readable format. We did not
use the component during the measurements but it proved to
be extremely helpful while developing, testing and validating
the stream processor application and the various operations.

For setting up the TLS encryption between the Producer



and Kafka, as well as between Kafka and the Processor, we
used the certificates created by Strimzi. For encrypted and
unencrypted communications, we used the dedicated listener
port provided by Strimzi and the respective service where it
granted communication access to the cluster.

During our measurements, we targeted the crucial metrics
of maximum throughput, CPU and memory footprint of Kafka
and Kafka Streams, as well as processing latency. Using
Strimzi, we exposed Kafka metrics via its Exporter [23] and
enabled a similar Java Management Extensions Exporter [27]
in our own Kafka Streams Processor application. We scraped
the exposed metrics with Prometheus and analyzed the data
through Grafana dashboards. Using these, we were able to
observe the input rate of the Tin topic form the Kafka metrics
and the processing rate and latency of the Processor from the
Kafka Streams metrics. To gauge the maximum throughput,
we increased the Producer output until the arrival of the signal
warning us that the specified event output rate cannot be
sustained. We captured CPU and memory load metrics of the
deployed components using Netdata.

A. Scenarios

We created three scenarios with subcases in order to define
different processor topologies and investigated their effects
on performance and resource footprint based on simple but
frequently used use-cases. Two scenarios focus on different
stateless operations while one examines stateful operations.

The first stateless scenario is a filtering use-case, where we
define conditions to filter out different amounts of events from
the input stream. By matching a certain ID field with the filter
operation in each of the events, we keep 0.05%, 1% or 10%
of the original data without any modifications on any of the
fields that we write to Tout.

In the second stateless scenario, we investigate the effects of
changing fields in input events. We perform anonymization to
mask sensitive data by replacing all the occurrences of certain
field values in events with X characters. We selected fields and
values to keep the number of fields where the operation takes
effect under 1% of the total number of fields present in each
event. To achieve this, we use the map method of the Kafka
Streams library before writing each input event to Tout.

The third scenario experiments with stateful aggregation op-
erations using three subcases. In the i) basic block aggregation
subcase, the aggregation is performed on a group of events
when a specific criteria is satisfied. Here we target the scenario
of counting the occurrences of different values of 11 keys in
the events. The aggregated result is a key-value pair containing
11 fields which is written to Tout. With the ii) grouped block
aggregation case, we aggregate a group of events in a specific
granularity window grouped by all possible values of one or
more fields. The targeted task is to count the number of various
distinct event codes in the input events. In the output written
to Tout, the keys are the occurring event codes, and the values
are the number of event occurrences. In the iii) averaging
block aggregation case, we perform the aggregation on all
events of a specific granularity window unconditionally. The

aggregated result written to Tout is a simple float number
supplying the average difference between each event’s start
and end timestamps.

V. MEASUREMENTS AND EVALUATION

To conduct our measurements, we used different environ-
ments. Results shown in the following were obtained from a
Kubernetes cluster set up in the ELKH Cloud [1], a compute
cloud service specialized for research purposes. Our cluster
consisted of a single master and 6 worker nodes running as
virtual machines (VM) managed by OpenStack. Due to the
nature of the provider, it was impossible to select the hardware
nodes where our VMs were set up by the provided automation.
To increase the possibility of VMs being deployed to different
hardware nodes and to provide ample resources for tests even
with high loads, we selected VMs with high resource flavors.
Thus, 32 vCPUs (Intel Cascadelake Xeon Processor), 64GiB
of memory and 1TB of SSD storage were assigned to each
worker node. As shown in the results discussed later, these
resources were never fully utilized, however. Results gained
on the cluster were validated by repeating the measurements
in a Kubernetes cluster deployed on a single bare metal
server having 40 physical CPU cores (Intel Xeon Gold 6230),
188GB of memory and 2TB of HDD storage. Both setups ran
Ubuntu 20.04 and Kubernetes v1.24. We configured Strimzi to
set up 3 ZooKeeper nodes in every scenario as those proved to
be sufficient for handling our measurement cases. We varied
the number of deployed Kafka brokers and Kafka Streams
processing threads to reach the highest throughput achievable
on our cluster. In each measurement, we used a Kafka repli-
cation factor of 3 for both topics, i.e., each event was stored at
3 brokers at any given time which is the recommended setting.
We always used twice as many partitions in both topics as
brokers and a corresponding number of parallel threads in the
Producer to push data to the Kafka cluster. In order to give
ample resources to the Processor, we set it up with limits of
15 vCPUs and 30GB of memory and specified a maximum
commit interval of 1 s.

A. Baseline measurements

To gauge the performance of our Kafka cluster, we first set
up a scenario without the Processor application. Employing
12 brokers, we reached a maximum throughput of 32 kEvent/s.
We also found that the highest throughput per vCPU can be
reached at 2 vCPUs and 4 GB of memory in each Kafka
broker. We used these settings for the rest of our measure-
ments. We also analyzed the effects of Kafka retention and
measurement time coupling Kafka with the Processor appli-
cation. According to our measurements, CPU and memory
loads do not show observable changes in the cases of setting
retention time to 1 h or 15min. We observed the same for
measurement times of 1 h and 30min. Thus, we ran all of
our further measurements for 30min with a Kafka retention
time of 15min and evaluated average performance metrics
gained during this time. We also found that due to their Java
implementation, at high loads, Kafka brokers fill up ∼90%



0 5 10 15 20
0

5

10

15

0 5 10 15 20
Throughput [kEvents/s]

3 brokers, 1 thread 6 brokers, 3 threads
6 brokers, 6 threads 12 brokers, 6 threads

12 brokers, 12 threads

0 5 10 15 20
0

5

10

15

K
af

ka

0 5 10 15 20
0

2

4

6

C
PU

lo
ad

[v
C

PU
]

0 5 10 15 20
Throughput [kEvents/s]

0 5 10 15 20
0

2

4

6

0 5 10 15 20
0

2

4

6

M
em

or
y

lo
ad

[G
iB

]

0 5 10 15 20
Throughput [kEvents/s]

0 5 10 15 20
0

2

4

6

K
af

ka
St

re
am

s

Filter 0.05% Filter 1% Filter 10%

Fig. 2: Resource footprint of the filtering case.

of the memory allotted to them during this measurement time
which they retain for extended periods. Due to this effect, we
do not discuss Kafka memory usage in the following, as it can
be calculated from the number of the used brokers.

B. Filtering scenario

Fig. 2 shows the measurement results of the filtering
scenario. The columns of the figure display the different
subcases (keeping 0.05%, 1% or 10% of incoming events) and
rows display Kafka and Kafka Streams CPU load as well as
Kafka Streams memory load. Different lines on each subfigure
represent different parallelism settings of Kafka brokers and
Kafka Streams processing threads. The rightmost endpoint
of each line shows the highest achievable throughput with
the given configuration. According to the results, we do not
find observable differences between the maximum throughput
of the first two filter cases, however they are already much
lower than what we reached in our baseline measurements,
and the 10% filter further loses ∼5 kEvents/s throughput.
Kafka and Kafka Streams CPU load characteristics of the
two smaller cases are extremely similar with the exception
of Kafka CPU load at the maximum throughput, where it is
significantly higher compared to the 0.05% case. For lower
parallelism, the 10% filter case causes similar CPU load albeit
at a lower throughput, while for high parallelism, CPU is also
significantly higher both for Kafka and Kafka Streams. The
evolution of Kafka Streams memory load is similar in every
case. Processing latency was always under 0.4 s.

C. Anonymization task

As depicted by Fig. 3, the anonymization task shows similar
minimum and maximum Kafka CPU loads, however, at the
much lower maximum throughput of ∼4.5 kEvents/s compared

0 1 2 3 4 5
0

5

10

15

Throughput [kEvents/s]

3 brokers, 1 thread 6 brokers, 1 thread
6 brokers, 3 threads 12 brokers, 3 threads
6 brokers, 6 threads

0

5

10

15

K
af

ka

0 1 2 3 4 5
0

1

2

3

Throughput [kEvents/s]

C
PU

lo
ad

[v
C

PU
]

0

1

2

3

0 1 2 3 4 5
0

2

4

6

8

10

Throughput [kEvents/s]

M
em

or
y

lo
ad

[G
iB

]

0

2

4

6

8

10

K
af

ka
St

re
am

s

Fig. 3: Resource footprint of the anonymization case.

to the filtering scenario. Maximum Kafka Streams CPU load is
also singificantly lower, reaching 2.75 vCPU compared to the
4–4.5 vCPUs of the filtering case. This is most probably due
to the increased load caused by writing each input event back
to the Tout topic thus causing Kafka to become a bottleneck
sooner. Kafka Streams memory load is significantly higher
than in the previous case due to the more taxing operation
type. Processing latency is still below 0.4 s.

D. Aggregation tasks

In all of the subcases, we aggregate the events using a
1 s time window. According to our measurements (shown in
Fig. 4), this scenario performs the worst as all subcases can go
only slightly above 1 kEvents/s. As we increase parallelization,
only an increasingly lower ratio of the available Kafka CPU
resources is leveraged. The evolution of Kafka Streams CPU
load is similar in each case while memory load is the highest
at the basic subcase (among every measured case) and signifi-
cantly decreases for the other subcases. Maximum processing
latency is ∼0.6 s.

E. TLS

When enabling TLS in our setup, we did not experience
a decrease in maximum achievable throughput or an increase
in processing latency. While memory usage was similar to
previous cases, we observed a 6%–9% increase in Kafka CPU
load and another 7–10% increase in Kafka Streams CPU load.
Table I details these changes for the measured filter cases.

F. Applicability of results

We have observed various performance differences that
can be attributed to the different execution environments. We
executed comparative measurements on OpenStack-managed



0 0.5 1
0

2

4

6

0 0.5 1
Throughput [kEvents/s]

3 brokers, 1 thread 6 brokers, 3 threads
6 brokers, 6 threads 12 brokers, 12 threads

0 0.5 1
0

2

4

6

K
af

ka

0 0.5 1
0

0.5

1

1.5

C
PU

lo
ad

[v
C

PU
]

0 0.5 1
Throughput [kEvents/s]

0 0.5 1
0

0.5

1

1.5

0 0.5 1
0

5

10

15

M
em

or
y

lo
ad

[G
iB

]

0 0.5 1
Throughput [kEvents/s]

0 0.5 1
0

5

10

15

K
af

ka
St

re
am

s

Basic Grouped Averaging

Fig. 4: Resource footprint of the aggregation case.

TABLE I: Footprint differences with enabled TLS.

Filter operation Change [%]
Kafka Kafka Streams Total
CPU CPU Memory CPU Memory

0.05% 6 10 −3 7 0
1% 9 10 −4 9 3

10% 8 7 −1 8 2

VMs with Intel Xeon E5-2620 v3 CPUs. Comparing the re-
sults to CPU benchmark scores, we found that the performance
difference ratio was corresponding to the ratio of benchmark
scores. We also found that running Kubernetes over a cluster of
VMs of the ELKH cloud severely limits achievable network
bandwidth. There, the throughput between Kubernetes pods
was around 30% of the throughput achievable between the
worker VMs which significantly limited our Kafka cluster’s
ingest capabilities. We attribute this to setup and configuration
specifics (undisclosed to us) of the used deployment and
provider, thus general conclusions cannot be confidently made
on this.

VI. CONCLUSION

We presented a measurement framework for gauging key
performance indicators of the Kafka event bus and the Kafka
Streams processing engine. We evaluated the indicators using
different operations and found that while both platforms scale
approximately linearly with low latency, their capability to
process data is heavily dependent on the performed oper-
ation. Evaluating the platforms in different hardware and
virtualization environments also revealed that the cloud native
environment can significantly affect performance, sometimes

through surprising interactions. Extending measurements with
new configurations and operations (e.g., working with multiple
topics, e.g., through join operations), could reveal further
insights into processing and data delivery performance.

REFERENCES

[1] M. Héder et al., “The past, present and future of the ELKH cloud,”
Információs Társadalom, vol. 22, p. 128, aug 2022.

[2] T. J. Saleem and M. A. Chishti, “Data analytics in the internet of things:
a survey,” SCPE, vol. 20, no. 4, pp. 607–630, 2019.

[3] E. Siow, T. Tiropanis, and W. Hall, “Analytics for the internet of things:
A survey,” ACM computing surveys (CSUR), vol. 51, no. 4, 2018.

[4] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messaging
system for log processing,” in Proceedings of the NetDB, vol. 11, 2011.

[5] H. Isah et al., “A survey of distributed data stream processing frame-
works,” IEEE Access, vol. 7, pp. 154300–154316, 2019.

[6] The Kubernetes Authors, “Kubernetes: Production-grade container or-
chestration.” Available: https://kubernetes.io/, 2022. [Online] Accessed:
2022-12-09.

[7] S. Vyas, R. K. Tyagi, C. Jain, and S. Sahu, “Literature review: A
comparative study of real time streaming technologies and apache
kafka,” in 4th CCICT, pp. 146–153, 2021.

[8] S. Henning and W. Hasselbring, “Theodolite: Scalability benchmarking
of distributed stream processing engines in microservice architectures,”
Big Data Research, vol. 25, p. 100209, 2021.

[9] J. Karimov et al., “Benchmarking distributed stream data processing
systems,” in 34th IEEE ICDE, pp. 1507–1518, 2018.

[10] Sanket Chintapalli et al, “Benchmarking streaming computation engines:
Storm, flink and spark streaming,” in IPDPSW, pp. 1789–1792, 2016.

[11] G. van Dongen and D. Van den Poel, “Evaluation of stream processing
frameworks,” IEEE TPDS, vol. 31, no. 8, pp. 1845–1858, 2020.

[12] H. Nasiri, S. Nasehi, and M. Goudarzi, “Evaluation of distributed stream
processing frameworks for iot applications in smart cities,” Journal of
Big Data, vol. 6, no. 1, pp. 1–24, 2019.

[13] E. Shahverdi, A. Awad, and S. Sakr, “Big stream processing systems:
An experimental evaluation,” in 35th IEEE ICDEW, pp. 53–60, 2019.

[14] H. Rajab and T. Cinkelr, “Iot based smart cities,” in ISNCC 2018, 2018.
[15] H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, “Survey of platforms

for massive iot,” in Future IoT, pp. 1–8, 2018.
[16] J. Perez, “Using Apache Kafka for Stream Process-

ing: Common Use Cases | OpenLogic by Perforce.”
https://www.openlogic.com/blog/kafka-stream-processing. [Online]
Accessed: 2023-01-14.

[17] A. Chawla et al., “Intelligent monitoring of iot devices using neural
networks,” in 24th ICIN, pp. 137–139, IEEE, 2021.

[18] K. Ogawa et al., “Iot device virtualization for efficient resource utiliza-
tion in smart city iot platform,” in PerCom Workshops, IEEE, 2019.

[19] G. M. D’silva, A. Khan, S. Bari, et al., “Real-time processing of iot
events with historic data using apache kafka and apache spark with
dashing framework,” in 2nd RTEICT, pp. 1804–1809, IEEE, 2017.

[20] P. Hunt et al., “ZooKeeper: Wait-free Coordination for Internet-scale
Systems,” in USENIX ATC 10, 2010.

[21] Apache Software Foundation, “Apache kafka documentation.”
https://kafka.apache.org/documentation, 2022. [Online] Accessed:
2022-12-09.

[22] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

[23] Strimzi Authors, “Strimzi overview guide.”
https://strimzi.io/docs/operators/0.30.0/overview.html, 2023. [Online]
Accessed: 2023-01-13.

[24] B. Rabenstein and J. Volz, “Prometheus: A next-generation monitoring
system (talk),” (Dublin), USENIX Association, May 2015.

[25] Grafana Labs, “Grafana: The open observability platform.”
https://grafana.com/, 2023. [Online] Accessed: 2023-01-13.

[26] Netdata Inc., “Netdata: Monitoring and troubleshooting transformed.”
https://www.netdata.cloud/, 2022. [Online] Accessed: 2023-01-13.

[27] Various authors, “JMX Exporter.” https://github.com/prometheus/jmx ex
porter, 2022. [Online] Accessed: 2023-01-13.


	Introduction
	Related Work
	Background
	IoT data analytics use cases
	Event stream delivery: Kafka
	Event stream processing: Kafka Streams
	The cloud native environment

	Measurement layout and scenarios
	Scenarios

	Measurements and evaluation
	Baseline measurements
	Filtering scenario
	Anonymization task
	Aggregation tasks
	TLS
	Applicability of results

	Conclusion
	References

