
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Do Automated Vehicles Reduce the Risk of
Crashes–Dream or Reality?

Árpád Török

Abstract— In the future, the role of the human factor in the
driving processes is expected to decrease continuously. At the
same time, based on the global trends, the role of computer-
supported decision systems and artificial intelligence (AI)-based
control solutions increases in relation to driving processes, which
carries a significant safety-enhancing potential. To assess the
possible social benefits of automated vehicle systems objectively,
it is necessary to analyze the possible negative effects in detail
as well. Accordingly, the aim of this article is to present a
statistical survey of crashes involving automated vehicles today
in order to identify and evaluate the factors that are relevant in
the crashes. The analyzed data showed that when the autopilot
mode was turned off and the human driver made the control
decisions, the severity of crashes on straight roads was greater
at α = 0.1 significance level than when the vehicle was in
autopilot mode and the vehicle system made the control decisions.
In addition, if the α significance level is 0.2, then crashes on plain
terrain, during the day, or in the speed range of 80-100 km/h
are generally less serious for vehicles driven in autopilot mode
than for vehicles with autopilot mode turned off. In light of the
considerations above, it is also important to emphasize that this
paper only investigates crash severity given occurrence but not
the probability of occurrence itself.

Index Terms— Automated vehicles, crash severity of highly
automated vehicles, risk factors, statistical data analysis, collision
causes of highly automated vehicles.

I. INTRODUCTION

SEVERAL technical and social benefits are expected if
highly automated vehicles with self-driving functions con-

nected into a network spread widely [1], [2]. Safety and
Security Research Group of the Department of Automo-
tive Technologies at TU Budapest, in cooperation with the
ZalaZONE proving ground, launched a new research project
to assess the possible social benefits of highly automated
vehicle systems. For this purpose, it is necessary to analyze
the possible negative effects in detail, enabling us to mitigate
unfavorable processes’ negative effects.

Today, in the majority of road vehicle crashes, the human
factor plays a significant role. Consequently, if the role of the
human factor is diminished, the significant safety risk posed by
the human factor will also decrease. At the same time, as future
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highly automated systems are expected to be more reliable
than human drivers, computer-aided and artificial intelligence
(AI) based decision-support [3], [4]; and decision-making
systems [5] have a high safety enhancing potential [6], [7].
However, the estimated safety-enhancing effect of highly auto-
mated vehicle systems might be significantly reduced by the
risk related to the artificial intelligence based decision-making
processes and the issues of reliability related to the role of
communication processes in highly automated systems [8].

Regarding the risk of artificial intelligence based
approaches, it has to be mentioned that nowadays, the
operation of artificial intelligence based solutions can
primarily be described as a black box [9]. As a result,
we cannot precisely describe these complex systems’
behavior in the entire operational and decision space. One
of the consequences of this system characteristic is that we
can frequently meet with crashes where all the individual
components of the system function perfectly. However, among
the infinite possible combinations of a large number of input
variables, a case can occur where the entire system’s proper
functioning was not tested, and the decision made by the
system does not meet the safety requirements [10].

Until the final bridging of this set of problems, artificial
intelligence-based decision solutions related to highly complex
systems may carry potential risk factors in addition to their
favorable safety effects.

In addition to the above, compared to classical solutions
in the vehicle industry, we must also guarantee the reliabil-
ity of information flow and data transmission for the safe
implementation of highly automated functions. Compared to
mechanical systems, highly automated systems can be quite
data intensive. In light of this, the reliability of both wired and
wireless communication processes will significantly influence
the safety of future systems [11].

The objective of this article is to present a statistical survey
of crashes involving highly automated vehicles today in order
to identify and evaluate the factors that are relevant in the
crashes. Accordingly, the paper aims to use various statistical
tests to investigate whether crashes in autopilot mode or mode
off are more serious under different conditions. The used
database consists of 40 crashes, to evaluate the influencing
factors of crashes occurred in autopilot mode and when
autopilot mode was turned off. According to the reviewed
literature, highly automated vehicles cannot be blamed for the
crashes under investigation. After all, the person behind the
wheel is still responsible for the vehicle’s safety.

Several articles discuss the crashes caused by highly auto-
mated vehicles. The primary aim of the research conducted
by Alrefaie and his colleagues was to evaluate the self-driving
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function responsible for takeover by the human driver with
respect to the psychological characteristics of the driver [12].
They proved that system limits [13] must be defined for SAE1

3 level automated vehicle systems. In line with this, scenarios
must be determined in which the system cannot be expected
to carry out a safe intervention. The experiment proved that
based on pulse rate and pupil size, both the time required for
the driver to intervene and the efficiency and reliability of the
intervention can be reliably forecasted.

According to, as the level of automation is increasing, it is
becoming more complex to determine the responsibility for
a crash. In such investigations, the person(s) responsible for
the crash must be identified, the facts and principles under-
pinning their responsibility must be specified, and the degree
of damage caused by the person responsible for the crash
must also be determined [14]. Human error is among the
primary causes of road crashes; however, the increasing role
of decisions made by machines during the driving process can
affect this ratio in the future related to the spreading of highly
automated vehicles. Owing to these tendencies, the limits of
human responsibility must be explored [15]. In order to be able
to determine the degree of the driver’s responsibility in crashes
involving highly automated vehicles, the degree of automa-
tion of the relevant functions that influence the operation of
the vehicle must be known. Conditionally automated vehicle
systems are categorized as SAE 3 or above.

Let us mention the highway pilot system of the Audi, which
is able to drive the vehicle automatically on the condition that
the human driver can take over driving at any time in the case
of faulty system operation or if the system signals that human
intervention is required. The system gives the control to the
human driver, i.e., human intervention is required, when in a
special situation, the decisions required for safe operation are
ambiguous (i.e., not straightforward) for the control system.
These traffic situations include cases when an emergency
vehicle appears, or roadworks are in progress. Consequently,
if an SAE 3 level automated vehicle causes a crash and the
system had given the control over to the driver prior to it,
the responsibility goes over to the driver even if disturbing
conditions hindered appropriate human intervention.

When determining the driver’s the responsibility, several
factors must be considered that might have affected the inter-
vening ability of the driver significantly. Such factors may
include the characteristics of the disturbance, the proper or
improper way of using the vehicle, and the length of the time
period available for the intervention. If we suppose that the
proportion of crashes in which the driver is responsible for
the case is to diminish, the proportion of crashes in which the
responsibility of manufacturers, maintainers, and operators is
expected to grow.

Merriman and her colleagues analyzed five crashes in which
highly automated vehicles had been involved. The authors
drew general conclusions which can contribute to a better
understanding of the reasons for such crashes and thus to the
mitigation of the related risks [10]. The study explains what
role the human factor plays in such crashes, with a special
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focus on load, perception speed, characteristic mental models,
and trust. Concerning load, in four crashes out of the five
analyzed cases, the drivers’ mental load was low, owing to the
fact that the highly automated system had taken over several
tasks. As for the perception speed, it was found that drivers
did not watch the road but were engaged with something
else. They did not perceive the hazard, thus the information
required for the intervention could not be processed or could
be processed with significant delay by them. On the question
of mental models, it was true for all five analyzed cases that the
conditions required for the self-driving mode were not present,
but the users still operated the vehicle in autonomous mode.

The enhanced vehicle control model by Monkhouse, Habli
and McDermid makes it possible to identify risks connected
to highly automated functions, especially risks of human-
machine interactions [16]. The enhanced model combines
Michon’s Hierarchical Control Model and the Motor Industry
Software Reliability Association (MISRA) Vehicle Control
Model. The study found that improper usage is a high risk
for highly automated vehicles, i.e., if the driver uses the
self-driving mode in circumstances that do not meet the
requirements of the feature. The study also proved that in
addition to the above, the decline of the driver’s awareness
is also a critical risk, which significantly influences the length
of time required to take over the control of the vehicle [17].

The aim of the study written by Petrović, Mijailović and
Pešić is to evaluate the unique characteristics of crashes
involving highly automated vehicles [18]. Their study analyzed
the distribution of the crash types and maneuvers of highly
automated vehicles and the drivers’ mistakes. They exam-
ined 300 crashes altogether. The three major findings of the
research are summarized as follows. The introduction of highly
automated vehicles is expected to reduce the share of broadside
and pedestrian accidents, as these cars are able to compensate
for the effects caused by drivers who fail to give way. At the
same time, the spread of highly automated cars is to increase
the share of rear-end crashes due to the short safety distance
between cars and unsafe speed choices. One of the reasons
for this is that drivers are not used to the vehicle dynamics
characteristics (speed choice, braking) of highly automated
vehicles.

Dichabeng, Merat and Markkula conducted focus group
research to reveal the factors that influence the acceptance
of self-driving vehicles. All the 21 participants agreed that
the reliability of autonomous systems critically influences trust
towards the system and its usage. Additionally, the majority
of participants felt that fully automatic systems are less safe
due to the impossibility of intervention [19].

Some research focuses on exploring the possible risks of
the autopilot mode. Morando and colleagues focus on the
developed a model that can investigate the glance pattern
observed around driver-initiated, non-critical disengagements
of autopilot in naturalistic highway driving [20]. According
to their findings, when autopilot was turned changes a lower
visual attention was observed in the moajority of the observed
cases. Biondi et al. investigated the unexpected safety conse-
quences of semi-automated driving. The research proved the
significance of the disadvantageous effects that semi-automatic
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driving causes reduced awareness of traffic hazards [21].
In order to compare the results of this evaluation with other
research, the outcomes of other studies dealing with the
statistical data of highly automated and autonomous vehicles
were reviewed. Many previously conducted analyzes were
primarily aimed at comparing the crash rate of autonomous
and conventional vehicles. However, the results are relatively
widely distributed, mainly depending on the investigated envi-
ronment and the types of vehicles included in the analysis.
For example, the crash rate of Google autonomous vehicles
is about 2.19 crashes per million vehicle miles traveled [22],
while Favarò et al. estimated 23.9 crashes per million vehicle
miles traveled [23]. Xu et al. state that crashes involving con-
nected and autonomous vehicles are less severe than normal
crashes [24]. Based on the reviewed research studies, it is
advisable to choose the examined sample so that the vehicles
participating in the crashes that occurred in self-driving mode
and those that occurred under human control are equipped
with similar technology. Therefore, this paper aims to examine
crashes involving only automated vehicles, applying the prin-
ciple of ceteris paribus. The cases are primarily distinguished
by whether the autopilot mode was engaged or not.

The next section describes the database and the methods
used for the analysis. Then the analysis of crashes involving
automated vehicles is presented, and conclusions are drawn.

II. METHODOLOGY

A. Database

This study is based on an inventory of crashes involving
automated vehicles [25]. A primary goal of the analysis was
to investigate the crashes as close as possible to the time
of the analysis, in contrast to the statistical data sets, which
in some cases have a longer processing time, the data came
from publicly available, independent sources. In this way, the
necessary data set was available and could be inferred and a
thorough textual description of the cases was also available.
In light of the above, the injury data may differ from the final
crash data recorded in the statistical database, as the severity
of the injured may have changed over time. At the same time,
the above deviations affect both crashes in autopilot mode and
when the autopilot was turned off, so expectedly this phenom-
enon only slightly affects the comparison. In all cases, the data
source is indicated in the referenced database created by Török
and Mammadli. Regarding the crashes, we determined that at
least one participating vehicle had SAE 2 or higher automation
level. Tesla vehicles were involved in 70% of the cases, and
vehicles from other highly automated vehicle manufacturers
were involved in the remaining crashes.

Following the conclusions of the literature review, the
database only includes crashes involving highly automated
vehicles. This can guarantee that vehicles involved in a crash
are equipped with similar technology. Concerning the crashes
collected following the introduced selection principles, the
available descriptions provided information on whether the
vehicle was under human control or whether the autopilot
mode was turned on. The analysis as a whole and all its ele-
ments were carried out for the 40 crashes collected. As authors

TABLE I

ANALYZED CRASH DATA

of the database collected crashes for which information was
available that the vehicle was in autopilot mode or under
human control at the time of the collision, the source of
the human-driven data could also be the database created by
Török and Mammadli. Accordingly, the human-driven cases
were also provided by the created database, which contains a
total of 40 cases. In line with this, the crashes are primarily
distinguished by whether the autopilot mode was turned on
or off in the examined vehicle. On the other hand, it must
be emphasize that beyond the use of autopilot mode, other
important factors can also contribute to crash probability and
severity, such as the environmental conditions, the period of
the day, or the relationship between the permitted and the
driving speed. These factors are represented in the current
study by comparing the different subcases. Furthermore, it is
also worth noting that the literature review confirms that
operation under conditions outside the operational design
domain (ODD) of an automated function is often identified
as an important crash factor, which is also the responsibility
of the driver [9].

Based on the characteristics of registered and analyzed
crashes, the critical factors of the operation of highly auto-
mated vehicles can be identified. The database comprises
40 crashes from all over the world, which occurred between
2016 and 2021. The following variable were used from the
database to evaluate the investigated crashes (Table I).

Concerning the places of crashes, 54% of examined cases
occurred in the United States. When visibility was high, more
than 53% of crashes happened during the day. In 48% of cases,
the speed was higher than 60 km/h. Autopilot mode was on
only in 38% of crashes. 61% of crashes involved cars that were
at least two years old. A bit more than one-third of crashes
(36%) occurred while the vehicles were driving in a curve.
Meanwhile, 43% of cases involved vehicles driving in opposite
directions. Furthermore, the primary cause of these crashes
was the human fault in 66% of cases, which correlates with
the fact that the autopilot mode was on in 38% of cases.

The contents of the autopilot mode database field need
to be interpreted. In general, the meaning of autopilot is a
system module that controls certain functions of the vehicle
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independently, without the intervention of the driver [26].
If autopilot mode was turned on during the collision, it is
assumed that the machine logic made the related decisions
during the pre-crash driving process. If the autopilot mode
was switched off, the driver made the decisions related to the
driving process. In the first case, it is assumed that the crash
happened under the control of a machine. In the second case,
it was assumed that the crash was under human control.

B. Normality Test

In order to make the analysis of the crash data well-
grounded, various statistical methods were applied. In the first
step, it must be checked whether the examined collection
of data conforms to the applicability requirements of the
statistical tests and models [27].

Normality of the analyzed variables is often a requirement
for various statistical tests and models. More precisely speak-
ing, the normality condition is valid for the distribution of
sample means taken from the whole population. However,
no reliable information on this distribution is available; there-
fore, the conclusions regarding the population must be drawn
from the available sample. For this, it is possible to use
the assumption that if the population variable is normally
distributed, this must also be true for the distribution of
the sample taken from the population. Thus, if the normal
distribution of a given variable is proven, the given variable
can be regarded as normally distributed.

If a sample does not meet the requirement for normal
distribution, the hypothesis should be underpinned by applying
methods that allow the analysis of samples with a non-normal
distribution: typically, non-parametric tests. It must also be
noted that if the sample is cut up into subsamples, each subset
must meet the requirement of normal distribution.

As for the evaluation of the results, it must be noted that
sample size and the relative element numbers of the population
and the sample can significantly influence the results. Both
type I and type II errors may occur, thus when in doubt, several
types of normality tests are to be run.

Owing to its outstanding performance, the Shapiro–Wilk
test (SWT) is widely used to test normal distribution [28].

SW T =
��n

i=1 coef f i · X(i)
�2

�n
i=1 (Xi − X̄)

2 (1)

where

• Xi : the i th element of the analyzed sample;
• X(i) : the i th smallest element of the analyzed ordered

sample;
• coef f 1..n = �

m� · V −1
� · �

(m� · V −1)(V −1 · m�)
�−0,5

,
• m� = (m1, m2, . . . , mi , . . . mn), is the vector

of the expected values of the ordered sample
X(1), X(2), . . . , X(i), . . . , X(n).

C. Comparison of Expected Values of Two Samples

During examinations, including serial sampling and during
the comparison of experiments comparing various subcases,
it is often the task to quantify the relationship of specific

samples and the degree of differences between samples in a
statistically well-founded manner. The t-test is one of the most
widely used methods for comparing the expected values of two
samples. However, the basic prerequisite for the application
of this statistical test is that the samples to be examined
should have a normal distribution. Thus, if the value of the
Shapiro–Wilk test is lower than the chosen alpha significance
level and thus the null hypothesis must be rejected, another,
non-parametric test should be applied, for which the normal
distribution of the sample is not a prerequisite. If the normality
of the examined independent samples cannot be proven, the
Mann–Whitney U test (MWT) should be used to carry out the
pairwise comparison of expected values [29].

In essence, for the Mann–Whitney U test the elements of
the two analyzed sample sets must be paired up. Thus, all
the elements of one sample (Xi ) are paired up with all the
elements of the other sample set (Yi ). The total number of
pairs is N × M, where N is the number of elements in the
first set while M is the number of elements in the second
set. The number of those pairs must be counted in which the
first element is greater than the second one (Xi > Yi ). The
number of such pairs is the value of the Mann–Whitney U
test. If the expected value of the analyzed sample pair does
not differ, the number of element combinations for which
Xi > Yi and Xi < Yi is almost equal. If one type of
element combination significantly outnumbers the other type
of element combination, it is highly probable that the expected
values of the two samples are different.

MW T 1 = R1 + N · (N + 1)

2
(2)

MW T 2 = R2 + M · (M + 1)

2
(3)

where

• R1 : sum of ranks for Sample 1;
• R2 : sum of ranks for Sample 2;
• N : size of Sample 1;
• M : size of Sample 2.

D. Comparison of Expected Values of Several Samples

Multivariable statistical tests are to be applied if there are
several samples and several variables. If the samples have
a normal distribution, the ANOVA (ANalysis Of VAriance)
method should be used [30]. If the normality of the samples
cannot be proven, and the samples to be compared are inde-
pendent of one another, the Kruskal–Wallis Non-parametric
test (KWT) should be utilized [31].

For the Kruskal–Wallis Non-parametric test, the indepen-
dent samples are unified, and all the members of the unified
sample are ranked. If there are members with equal values,
their rank is determined by calculating the mean of the ranks
of that these elements would get if they were not equal. For
example, for the sample 2, 3, 3, and 6, the ranking is 1;
2.5; 2.5; 4 because if the two elements did not have equal
values, their ranks would be 2 and 3, respectively. The average
of 2 and 3 is 2.5.
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The test function can be calculated as follows.

K W T = (N − 1) ·
m�

i=1

ni · (r̄i − r̄)2 ·
⎛
⎝

m�
i=1

ni�
j=1

(ri j − r̄)2

⎞
⎠

−1

(4)

where
• N : is the total number of members in the unified group;
• m: is the number of analyzed samples;
• ni : is the number of members in the i th sample;
• ri j : is the rank of the j th element of the i th sample in the

ranked unified set;
• r̄i : is the average rank of all members of the i th sample

in the ranked unified set;
• r̄ : the average of ranks ri j .

If no significant result is arrived at, there is no pair in the
compared samples that would have a significant difference
in the expected value. However, if the test proves to be
significant, there is a sample whose expected value is greater
than that of another sample.

E. Pairwise Comparison of the Expected Values of Multiple
Samples

If the analyzed samples are independent of one another,
in reality, m independent statistical tests are carried out. The
type I error, i.e., the probability of the mistaken acceptance
of the alternative hypothesis (H1) in m tests is marked by pi ,
where i = 1…m.

In this case, for the whole test series, the probability of
mistakenly accepting the H1 hypothesis at least in one test
can be calculated as the difference between the whole event
space and the probability of the error-free case.

P = 1 −
m


i=1

(1 − pi )

=
m�

i=1

pi −
m−1�
i1=1

m�
i2=i1+1

pi1 · pi2

−
m−2�
i1=1

m−1�
i2=i1+1

m�
i3=i2+1

pi1 · pi2 · pi3 − . . . −
m−(m−2)�

i1=1

. . .

m−1�
im−2=im−3+1

m�
im−1=im−2+1

pi1 · . . . · pim−1 −
m


i=1

pi (5)

According to the above, if the number of compared exper-
iments grows, the risk of mistakenly accepting the phe-
nomena and effects described in hypothesis H1 grows
exponentially.

In the case of multiple hypothesis tests, the risk of type I
error, i.e., mistakenly identifying a non-existent effect, is called
family-wise error rate (FWER).

In order to correct the hypothesis test, the confidence
interval (p) is modified. In the present analysis, the Bonferroni
correction was applied [32], [33].

p = p ∗ m (m + 1)

2
(6)

TABLE II

CORRELATION BETWEEN CRASH SEVERITY INDEX (B) AND OTHER
CRASH CHARACTERISTICS. OUTLIERS ARE GIVEN IN BOLD

where

• m: is the number of samples examined with the
Kruskal–Wallis test.

F. Preliminary Analysis of Expected Effects of Crash Factors
on Severity

The next step is the preliminary analysis of correlations
between crash severity and various factors. Thus, based on
the analysis of rank correlations between the cells of the
database and the newly introduced crash severity index (B),
the expected relevance of each factor’s effect on the severity
of crashes is to be estimated.

The crash severity index (B) is calculated for each crash
based on the number of injuries (Si ) represented with the
applied severity weight (bi). The severity index is derived from
the number of injured people involved in each crash, not the
number of injuries sustained. Given that many studies examine
the crash risk based on the crash rate, it is reasonable to
investigate the relationship between the severity index and the
crash rate. Since the severity index does not contain vehicle-
miles-traveled data, it is primarily suitable for evaluating the
severity component of the risk, so it does not carry information
about the probability of crash occurrence. The severity weights
are identified based on the costs of crashes of different
severity [34], [35], adjusted to round values (fatal: serious:
slight – 100 : 10 : 1).

B =
�

bi · Si (7)

The introduced approach to express severity index is often
applied in selecting dangerous crash locations; hence its ability
to discriminate is not further investigated [36], [37].

Correlation (R) is calculated by the following formula (8),
shown at the bottom of the next page, where rank(Xi ) and
rank(Y i ) are the ranks of the members of samples X and Y ,
respectively, and rank(Xi ) and rank(Y i ) are the means of the
ranks of members in the corresponding samples.

The results of the correlation analysis between the crash
severity index (B) and the relevant cells of the database are
given in Table II.

Although far-reaching conclusions cannot be drawn from
the comparison of rank correlation parameters, based on the
observed correlations, hypotheses can be set up. Some of
the correlation coefficients are characterized by outliers in
autopilot mode (see bold data in Table II).
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Consequently, there is a much stronger correlation between
two of the factors, i.e., the time of the day and the driving
speed [38], [39], and the crash severity index in autopilot mode
than if the autopilot mode was turned off. Consequently, the
crash data of automated vehicles suggests that, extra attention
should be paid to the time of the day and the driving speed
when determining critical test cases in the development phase.

The above results suggest that a comprehensive statistical
analysis is due to explore the effect size of individual crash
factors. In the next step, I will examine whether the effect of
each factor is greater in crashes when the autopilot mode is
on or off. For this, the two types of crashes (autopilot on vs.
off) are compared for each factor. In the first step of the
analysis, the averages of crash severity indices for each factor
are compared. As the samples are not distributed normally, this
comparison is solely applied for the setting up of hypotheses.
To test the hypotheses, problem-specific, non-parametric tests
are applied: for the pairwise comparison of independent sam-
ples, the Mann–Whitney test, while for group-wise comparison
of independent samples, the Kruskal–Wallis test are used.
In the next step, a pairwise comparison of the crash groups that
occurred in autopilot mode and when the autopilot was turned
off is performed within each factor. Based on these results,
the relevant factor categories are compared, while the cases of
the autopilot mode being turned on and off are distinguished.

To reveal whether it is relevant to rank crash factors proven
to be critical in pairwise comparisons, the averages of each
sample are analyzed and compared. It must be emphasized
that the samples are not normally distributed; thus, the sample
mean cannot characterize the expected value of the sample.
Therefore, the comparison below only serves to facilitate
setting up sensible hypotheses, which are further analyzed with
other statistical methods. Based on the sample means, it can
be assumed which crash factors have an exceptionally high
crash severity index value in autopilot mode on or off.

III. RESULTS AND DISCUSSION

A. Comparison of Crash Group Averages

In the case of crashes that happened in autopilot mode, the
exceptionally high value of the crash severity index indicates
that in industrial development processes, it is advisable to
allocate considerable resources to diminishing the unfavorable
effects of the given factor. This can lead to a significant
increase in the safety of highly automated systems. In the case
of crashes that happened in human-driving mode, however,
the exceptionally high value of the crash severity index might
help to identify how and to what extent the highly automated
systems can make transportation safer.

It must be noted that the database does not contain any
crashes in which the driving speed was over 100 km/h, and
the vehicle was in autopilot mode. Therefore, the present
analysis cannot determine whether, in this speed range, there

TABLE III

COMPARISON OF SAMPLE MEANS. THE RANK OF THE CRASH SEVERITY
INDEX IS SHOWN BY THE BACKGROUND COLOUR

(GREEN – LOW; RED – HIGH)

is a difference in the severity of crashes in the two driving
modes.

Concerning crashes in autopilot mode, the highest values
in the crash severity index compared to the crashes involving
human-driven vehicles in the same factor are found if the crash
happened at night or if it took place in mountainous terrain.
Therefore, the data show that in these circumstances, the safety
risk of automated vehicles is higher than that of human-driven
vehicles.

I must note here that the vehicles are not responsible for the
crashes in these cases either, but primarily the inappropriate
control decisions made by the driver in autopilot mode. The
wrong control decision refers either to a failure to resume
control by the driver when requested or the activation of
autopilot mode at an inappropriate time.

On the other hand, the crash severity index is much higher
for vehicles with autopilot mode turned off than for vehicles
with autopilot mode turned on, on plain terrain, during the day,
when the travel speed is between 80-100 km/h, or on straight
roads. It is expected that for these factors, more detailed
statistical analyses can reveal how highly automated systems
can enhance traffic safety today.

For other factors, the crash severity index for cases where
the autopilot mode is off is higher, though not significantly.
Developments aiming to reduce the unfavorable effects of
these factors have further safety-enhancing potential.

As the above data prove, the average crash severity index
for crashes that occurred in the speed range 80–100 km/h
or flat terrain is much higher if the involved vehicle was
driven in autopilot mode turned off than if the involved vehicle
was driven in autopilot mode. Therefore, for these factors,
tests matching the characteristics of the samples may reveal a
significant difference in the severity of the crashes.

Thus, the members of the non-normally distributed,
independent samples were compared pairwise by the
Mann–Whitney test. The results are presented in Table IV.

R =
�

(rank(Xi ) − rank(Xi )) · (rank(Y i ) − rank(Y i ))��
(rank(Xi ) − rank(Xi ))

2 ·
��

(rank(Y i ) − rank(Y i ))
2

(8)
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TABLE IV

RESULTS OF THE MANN–WHITNEY TEST

As the above data prove, the p-value of the Mann–Whitney
test for crashes in straight road sections approaches the α =
0.05 significance limit, but it does not reach it. Thus, the
probability of a type I error (i.e. rejecting an accurate null
hypothesis) is the lowest in this case.

As mentioned earlier, the significance level refers to the
tolerable probability of type I error, in other words, the
probability of rejecting a true null hypothesis. Accordingly,
in some cases, if the probability of rejecting the correct null
hypothesis exceeds the originally determined acceptance level,
but is close to it, a higher significance level is also investigated,
which is already higher than the calculated probability of type
I error. This concept tries to show that if we can improve some
of the limiting factors affecting the representativeness of the
current study (e.g., the small sample number would be larger),
then the hypothesis would probably be acceptable.

Accordingly, the data of the examined database, therefore,
supports that the probability that crashes with vehicles driven
in autopilot mode turned off is more severe than crashes with
vehicles driven in autopilot mode if the road is straight.

At significance level α = 0.2, crashes involving vehicles
driven in autopilot mode are less severe than those in autopilot
mode turned off in the following circumstances: in plain
terrain, during the day, or at a speed between 80 and 100 km/h.

If a human drives a vehicle, the severity of crashes in plain
terrain, during the day, or on a straight road might be due to
the risk compensation phenomenon [40] Chen et al., 2017),
which does not modify the risk level of machine-driving in
an unfavorable way. Contrarily, the increase in severity in the
80–100 km/h speed range in the human-driven category may
be due to the fact that automated driving is more effective; the
time to react and act for a machine is shorter for a machine
than for a human [41], [42].

As the above pairwise comparison suggests, the examined
database shows that it is only crashes occurring in straight
roads where the crashes involving vehicles driven in autopi-
lot mode turned off are more severe than those involving
vehicles driven in autopilot mode in the same circumstances
(significance level α = 10%). Consequently, in all other

circumstances, the development of automated driving systems
has good safety-enhancing potential, safety risks can further
be diminished.

After the pairwise comparison, the expected values of the
crash severity index for each factor were compared in groups.
The Kruskal–Wallis test was applied to the non-normally
distributed independent samples. The error rate for the family-
wise error arising due to multiply hypothesis testing was
corrected by the Bonferroni method.

B. Group-Wise Comparison of the Effects of Critical Crash
Factors Regarding Vehicles Driven in Autopilot Mode

The next step of the analysis explored the crash factors
with a high safety-enhancing potential for autopilot system,
in order to identify factors that are connected to signifi-
cantly more severe crashes. For a family-wise comparison, the
Kruskal–Wallis test was applied with Bonferroni correction.
The test proved that the null hypothesis could not be rejected
as p > α (0.006). It is supposed that the average rank of
all groups is equal. In other words, the differences between
the means of all groups are not big enough to be statistically
significant. If the result is not significant, it does not prove that
H0 can be accepted. It only proves that H0 cannot be rejected.
Therefore, concerning the present analysis, it is true that the
probability that the value of the crash severity index is higher
for a randomly chosen crash from the given group than this
value for a randomly selected crash from any other group is
the same for each group. Consequently, there is no significant
difference between the means of ranks for any pairs.

C. Group-Wise Comparison of the Effects of Critical Crash
Factors Regarding Vehicles Driven in Autopilot Mode Turned
off

As preliminary tests proved, if the significance level
α = 0.05, there is no factor category in which crashes involv-
ing automated vehicles in autopilot mode are less severe than
in autopilot mode turned off. In order to identify critical factors
for human driving, those factors were selected that exhibit a
statistically relevant difference, for which the significance level
is higher than α = 0.05, but it is still in the “acceptable” range
due to the low number of elements.

Based on the present database, those categories were iden-
tified for which the null hypothesis H0 can be rejected if the
significance level α = 0.2. In other words, if the significance
level α equals 0.2, crashes involving automated vehicles in
autopilot mode are less severe that crashes involving vehi-
cles driven in autopilot mode turned off in the following
circumstances:

• plain terrain;
• during the day;
• in the speed range 80–100 km/h;
• in a straight road.

In these circumstances, if significance level α = 0.2, vehicles
driven in autopilot mode turned off took part in more severe
crashes than vehicles driven in autopilot mode. Consequently,
in these cases, the higher level of safety of automated systems
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TABLE V

RESULTS OF PAIRWISE COMPARISONS WITH KRUSKAL–WALLIS TEST
(NEARLY SIGNIFICANT P-VALUES ARE BOLDED)

can be detected even at the present level of technological
development.

The next step of the analysis explored the factors that
can be associated with crashes that are significantly more
severe than crashes occurring in other circumstances. For a
group-wise comparison, the Kruskal–Wallis test (KWT) was
applied with Bonferroni correction. The test proved that as
p (0.02995) < α, the null hypothesis should be rejected. It is
supposed that the average rank of a given group is different
from that of other groups. In other words, the differences
between the means of all groups are big enough to be statisti-
cally significant. Therefore, concerning the present analysis,
for certain groups, it is true that the probability is higher
for the given group that the value of the crash severity index
is higher for a randomly chosen crash from the given group
than this value for a randomly selected crash from any other
group. Consequently, there is a significant difference between
the means of ranks for certain pairs.

Table V shows the results of the Kruskal–Wallis test,
together with the critical values and the calculated p-values
for sample pairs. The significance level determined with the
Bonferroni correction is α = 0.0125. Based on the above, the
family-wise comparison cannot provide a ranking of factors.
If the significance level is moderately raised (α = 0.025), it is
proven that the expected mean rank of the severity of crashes
is lower for crashes during the day with vehicles driven in
autopilot mode turned off than for crashes happening in the
80–100 km/h range or for crashes occurring in straight roads.

IV. CONCLUSION

This article presents the most important factors of safety
analysis for automated vehicles. Based on the evaluation
results and the reviewed literature, considering the legal,
social, and technical conditions, in most crashes with auto-
mated vehicles, the driver is generally responsible for the
safety of driving. Therefore, among other things, my inves-
tigation sought answers to whether automated vehicle crashes
are more severe in autopilot mode or with autopilot mode
turned off.

As the first step of the analysis, the outcomes of other
research studies were compared briefly with the presented
concept. The research carried out by Morando and colleagues,

and Biondi et al. showed the potential risks of the autopi-
lot systems, which, in line with my suggestions, supports
the need for further development [19]. According to their
findings, during the application of autopilot mode, lower
visual attention was observed in most cases. Biondi et al.
investigated the unexpected safety consequences of semi-
automated driving. The research proved the significance of
the disadvantageous effects that semi-automatic driving causes
reduced awareness of traffic hazards [20]. It was also revealed
that the results of the different analysis are relatively widely
distributed, mainly depending on the investigated environ-
ment and the types of the investigated highly automated and
autonomous vehicles (from 2 to 24 crashes per million vehicle
miles) [22], [23], [24]. Based on the reviewed research studies,
it is advisable to choose the examined sample so that the
vehicles participating in the crashes that occurred in autopilot
mode and those that occurred when autopilot mode was turned
off control are equipped with similar technology. Therefore,
this paper examined crashes involving only highly automated
vehicles, applying the principle of ceteris paribus. The crashes
are primarily distinguished by whether the autopilot mode was
engaged or not. Furthermore, in addition to the autopilot mode,
other relevant factors can also influence crash probability and
severity, such as the environmental conditions, the period of
the day, or the relationship between the permitted and the
driving speed [43]. These factors were represented in the
current study by comparing the different subcases. However,
in future investigations, it is advisable to consider these factors
as separate regression parameters when estimating the crash
risk.

As the first step of the analysis, it was determined whether
the data to be analyzed are normally distributed. This hypoth-
esis had to be rejected, so for further analysis, statistical tests
that do not require a normally distributed sample were applied.
The comparison of mean values of the data correlations
justified further analysis of the database.

The Mann– Whitney test was applied to analyze the data.
The p-value for the Mann–Whitney test approached the α =
0.05 significance level for crashes on straight roads; thus,
the possibility of a type I error for the rejection of an
accurate H0 is the lowest for this factor. Furthermore, the
data evaluation showed that the severity of crashes on straight
roads, if autopilot mode was turned off is higher than if the
vehicle was in autopilot mode at a significance level α = 0.1.
In sum, crashes in the analyzed database were significantly
less severe on straight roads if the vehicle was in autopilot
mode than in the case of human driving.

Moreover, if significance level α equals 0.2, crashes that
occurred in plain terrain, during the day, or in the speed range
of 80–100 km/h also tend to be less severe for vehicles driven
in autopilot mode than for vehicles driven in autopilot mode
turned off.

The increase in the severity of crashes by human-driven
vehicles in plain terrain, during the day, or on straight roads
might result from the risk compensation phenomenon that
characterizes human drivers, while it has no effect on the risk
levels of automated driving systems. In contrast, the fact that
the severity of crashes occurring in the 80–100 km/h speed
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range is higher for human-driven vehicles might be due to the
effectiveness of automated driving systems, which exhibit a
shorter reaction time than humans.

The above results were arrived at by analyzing a sample of a
relatively low element number (40), which cannot be regarded
as representative. However, the methodology presented here
can be readily applied to larger, more comprehensive data-
bases. As a limitation of the introduced methodology, it has
to be noted that the introduced severity index does not contain
any value related to probability; thus, it is not possible to
comment on how much self-driving vehicles might reduce
the crash probability. However, we can use the severity index
in the future to estimate the aggregate severity level of a
fleet of vehicles for a given penetration level of vehicles
with a specific SAE level. Furthermore, I there are other
factors that contribute dramatically to the overall severity
(such as the impact of the crash partner or location). This
paper did not examine these factors due to the limitations
of the current study. Still, in the future continuation of the
research, we must examine the mentioned factors in detail
when estimating severity. Besides, this, further analysis should
be performed with a more extensive data set. The identified
assumptions and limitations so far have helped to avoid false
conclusions. Nevertheless, it is recommended to expand the
dataset in the next phase of related research. Thus, this allows
the new findings to be compared with the results of the
baseline analysis.

Finally, it must be noted that even those factors that have
not proven to be significantly more serious for vehicles driven
in autopilot mode turned off than for vehicles driven in
autopilot mode, can also be potentially important for the safety
developments of vehicle industry.
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