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A DEDUCTIVE REASONING SYSTEM ON THE BASIS OF A
; NONMONOTONIC LOGIC
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Abstract. This paper presents a deductive reasoning
system vs. a set of default theories. Syntactical and
semantical aspects of a nonmonotonic logic is considered
that provide the background for the deductive reasoning

system.

l. Introduction. DNonmonotonicity is the main feature in
commonsense reasoning. The statement "3irds fly" is
usually given to explain the nonmonotonicity. LicDermott
and Doyle /1980/ outlines an approach to modeling nonmono-
tonic reasoning system, lL.cDermott/1982/, Reiter/1980/,
Reiter and Crisuolo/1981/, ioore/1983/, Lukaszewicz/1983/
are of much interests in that direction. Various inter-
pretations were made, each gave a specific semantics for

a deductive reasoning system. Therefore, it turns out

that nonmonotonic logic should be context-sensitive - the
set of beliefs of a theory deperds on the determination

of a set of axioms for this theory. This paper presents
a compromised approach which simultaneously aims to in-
vestigate proof-theoretic and model-theoretic aspects

of a nonmonotonic logic - modal operators li, L are
combined in a single framework of S5-nonmonotonic logic
together with a set of default theories. The main intuition
is the restriction on the set of needed assumptions when
specifying nonmonotonic theorems for a theory. The Compu-
tational basis for this deductive system is fixed point
properties of an algebraic operator that defines a default
theory.
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Default theories are treated within the framework of
propositional language for simplicity sake, after introducing
a set of logical axioms and two monotonic inference rules, the
nonmonotonic theorems are recognised by terms of modal
operators.

Lang /iiendelson - 1965/ which contains:
. a set of proposition letters,
. the set of connectives: A (and, V (oz) « (not) &<
if end only if, () brackets, = implication.
to Lang, we attach a modal II "it is consistent", Lané now
is usuel modal propositional language.
symbol, or an expression f(tl,...,tn) , Where f is a function
symbol and tl,...,tn are terms.
An atomic formula is an eXxpression p(tl,...tn) where p
is a predicate symbol and tl,...,tn are terms.
A formule is either:
. & proposition letter,
. an expression ~p, where p is an atomic formula,
« p> q, where p,q are formulas. A
Definition 2.1.3. A formula of the form
pALigghece A Mg, > r
or simply
HqyAe-o Nligg = r
where p,ql,....,qn,r belong to the classical propositional
calculus is named a default.
together with a set of non-logical axioms of that theory.
Bach non-logical axiom either belongs to propositional calculus

or is a default.
We attach the second model operator L to Lang, and in the

following, L is interpreted as " It is believed ",
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Definition 2.,1.5. Let p, q, r be formulas in a default
theory A. Logical axioms schemata is defined as follows:
/lel/ Lp = p
[la2/  lip = Lip
/1a3/ Lip > 4q)= (Ip. = “Lq)
[ledfdds (pD(g 50p) .
/est (ps (a3 =)= Hpa 9)5 (b= 24
Flebf  (~q5 - pD il Li0g™D w5 q)

l.onotonic inference rules:
fmrl/ " “p, piq =g / modus ponens /
/mr2/ p it Lp / necessitation /
where " |~ " is understood in an ordinary monotonic sense as
provability: let S be a set of formulas of a default theory,
if p S is provable from S and instances of /lal/ - /lab6/ and
by application of mrl and mr2, we denote St p. If not,tSh# Po

From LicDermott and Doyle /1980/, we have

This)=3p: Shp 3
It is easy to see that Th has tke monotonicity:
/i/ A € Th(a)
/ii/ Let A, B be two default theories, from A € B we have
Th(A) € Th (B)

/iii/ Th(Th(A)) = Th(4) /idempotence/

The last property of Th can also be viewed as fixed point
equation, stating that the set of theorems monotonically
derivable from a default theory is a fixed point of the operator
which computes the closure of a set of formulas under the
monotonic inference rules.

Definition 2.1.6. Let S be a set of formulas, S is consistent
if and only if SHp for only some p € S. A default theory
is consistent if and only if its non-logical axioms are
consgistent.

The above monotonic structure is identical to S5 modal
propositional logic /see Hughes and Cresswell, 1972/. In the

logical axiom schemata, /lal/ means that everything believable
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is true, /la2/ shows that p is unprovable only if it
provable only if it is provably unprovable, this assertion
is useful in nonmonotonic system, /la3/ describes behaviour
of modus ponens: it allows to infer q from p q and p,
where modus ponens is activated. The instances of the last
three axioms /la4/-/la6/ form the axiomatisation for the
sentential calculus.

In the following, we settle up the nonmonotonic
structure of our default theories, a set of assumptions is
added to a default theory by the usual way
Definition 2.,1.7. Let d be a default, a formula of the form

Ligg h... Nig
is called an assumption of d, and is denoted il d ..
Definition 2.1.8. Let d be a default. Conditjon fotr d,

denoted by cond 4 , is defined as follows

or simply lq

(p i d4="p A I-.Iql/\ oL :q, > r

lp Y o p 1T "d= i‘.iqll\ T o
Comment. We give here the similar definition with the ones
in lioore /1983/ about objective /resp. subjective/ inference
in which we mixture objective and subjective inferences, but
define for mixed inferences a condition /in ddfinition
2.1.8/, thils serves for convenience of some forms of proof
later.
Definition 2.17.9., Let S5 be a set of formulas, the set of

agssumpiions for S, denoted as As S,d, is defined as

fi(@)} it cond(d) e S and
SUjii(d)] is consistent

L 1) if otherwise
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theory A, denoted by As, S , is defined as:

As, (8)= ! as (5,4 )

g d € def 4

where def A denotes the set of all default of A.
Defimition 2.1l.1l. Let A be a default theory and S be

any set of formulas. ‘e define operator HQA as follows
W, LetE ml S ie, (5 )

3efore giving a definition of the special extension,
we consider an example belows to clarify some intuitive
idea supporting that definition

A = {p A by aydp =50 A E.-.’p‘Dp}

There are two fixed points with resnect to NLA :
Th(A) eand Th(A.U 3Lp, 1.9¥) . There exists only one
extension for A, which is Th(4) , because we have no
reason to believe p or ﬁ::q, so it results in the fact
that none of the default of A can be activated. The
available way to avoid such situations is that by analogy
with the monotonic case, we should treate extensions for
a default theory A as minimal fixed points of NMA. Ve come
to the following definition
S of formulas is called a minimal extension for A if and
only if S is a minimal fixed point with respect to NEA,
i.e., S is minimal set of formulas such that

s =m,(s) = m™(aU as, (s))
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The above definition naturally leads to the following
definition of beliefs.
The intersection of all minimal extension for A is called
the set of beliefs derivable from A and is denoted by
TH(A) .

We have the following theorem.

Theorem_2.1.15. There exists a minimal extension
for every default theory A.

Proo!. In the case the default theory A is inconsistent
it is clear that the set of all forrnulas becomes the only
minimal extension for A. With this, now on we may suppose
that A is consistent.Our treatment now is to build up
a minimal extension for A.

Consider an arbitrary sequence of defaults of A:
(dj) .From this sequence we define a sequence(Si) by
the following manner
Put

5, = Th(a)

From a given Si we define

l ~t
s 8y
J+1 j 23
] s U as(sy,a,
Put
. oo
5. kel 8,
i=1

It is essy to see that S} € 55 C ...

We prove that S is a minimal extension for A, i.e., S
is minimel set of formulas and

5=1th (AU as, (s))
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S is consistent by induction on i, and also by
induction on i, we have

2

¢ & Tala.U d (8))

which immediately leeds to

5 € Th(aU as, (S)) ()

Tet pc AL As;Ax (S). With some d € def(4) , we have
B.C As(S,dk) .« By definition 2.1.9 we have cond(dk)é &
and S U {pﬁ is consistent. It implies that for some natural
m, cond(dm)é S_, furthermore, we have cond(dk)é Sg
because Sm C Sm . By the construction of S, we have
SIIE C S. Hence S;;'IU { piis consistent. From here we have

L€ S S

()]

It implies that
AU ASA(S) € S (2)

By definition of Th, we have S € Th (3).

.r i Ble % 4 i

because 5 - Sy € ... @and for some natural m, we

get St p. It implies that peTh(Sm) € S .1 -

Altogether we get p€ S. So
s = mn(s) (%)

From&l) > (2) = (3)we obtain
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s = t(4U4s, (s)) (4)

In the rest, we show that S is minimal fixed point.

Suppose that there is a fixed point SX such that
B S o8 We have S S 5; by the result of induction
o, At inplies thatE-p" & Sx' Thus S = Sx’

This completes the proof of the theorem 2.1.15.
Consider theor.y 5 —’Lp A ¥r=iry g A K{~ph r)::> r} i
Yor this theory, we have three possibilities: if p is
given, then it is consistent to infer r; if q is given,
then it is consistent to infer ~or; if p, q are given
simultaneously, it is consistent to infer r. Suppose
q is is given, we then have theory C iALJ{q]]and its
extension Th(C U ih (~p A~or)}> If we add the
assumption 1r&to A, we then get two extensions for C,
which are: Th(CqU{L{(mp/\N r)j) and Th(CqU furt) .
The second one contains the formula of the form p>r
that contradicts to the given conditions, thus we can
not accept it in reality.

This example put forwards the fact that when
considering a default theory, it is strictly necessary
to give attention to those assumptions which are needed
for drawing available conclusions.

Hotation 2.1.17. The set of needed assumptions for a default

theory A is denoted as NA A and

vA(a) = = $12(a) ¥

& Edef A

3. Semantical considerations.

T - - - ————— —— -
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is a nonempty set of possible worlds and f is a func?ion
from the set of all proposition letters of Lang to 2d.

respect to w € W, denoted by u(w,p) ,is defined by
mapping v:

ve ‘W x8 —>» iO,l}

so that
1 AeLiwm & £(a)

/t1/ v(w,a) =

0 otherwise
where a is an arbitrary proposition letter in Lang.
/t2/'va,n»p) =1- v(w, p)

Q ox

1}

1 "iff v(w,p)

v(w,q) =

I
[

/t3/ v(w,p> q)

0 otherwise

1" g2 (v D) %3

for some Wx e Vv

/t4/ v(w, Nq)

0 otherwise

true in M, denoted by I = p, if and only if v(w,p ) =1
for every weW.

in M if and only if M‘=p for every p&€S. In this case
we call that M is a model for S.
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Definition 3.1l.5. Let A be default theory. A set

XCNA(A)is called an activation set of a set YCdef A
if and only if the following conditions are satisfiead:

/actl/ A U X is consistent.
/act2/ Y={d € def(A): cond(d)Ali(d)eTh(A U X)).
/act3/ if pe X, then p= ¥(d)for some de Y.
/act4/ for every d; € def(A) - Y

cond(d;) € Th(AU X) or

Th(AU X)Uiti(d) 3  is inconsistent.

Definition 3.1.6. A set XS NA A is called a minimal

activation set of a set YCdef A if and only if the
following conditions are fulfiled: :

/mel/ X is an activation set of Y by definition 3.1.5
/me2/ There i35 no activation set of any Ve X

In the case Y <def A satisfies /mal/ and /ma2/,
we call Y minimally activable,

Definition 3.1l.7. Let LI be a model for a default

»

theory A. II is called a minimal model for A if and
only if M is a model for a minimal activation set
X € NA A of a agt Ycdef A .

3.2. Some results.

that X ¢NA(A)is a minimel activation set of a set Y <
def(A). Then Th(A UX )is a minimal fixed point with
respect to operator NMA.

Th(AUX) = Th(AUAs, (AUX))

Firstly we prove

as,(th(aUx)SmmauUx)
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Let peAs, (7n(aux ). There is d € def A such that p = m(d)
cond (d)eTh(AUK) and Th(a U X)V}ii(a)fis consistent. By the
theorem‘s hypothesis X is an activation set of Y, hence by
/act4/ we get pe Y. By /act2/ we have moreover i (d)€ Th(AU X)
because p = li(d), so pe Th(AUX).

We prove now that XCAs, (th(avux)).

Let p¢ X. Because X is an activation set of Y and by /act3/,
we have p = lu(d)for some deY<def(A) . By /act2/, cond(d)Ali(d)e
¢ Th(4UX). Therefore , Th(A\JX)U{y(d)ﬁ is consistent by /actl/
and /act2/. Thus de)eAsA(_Th( AUYX)) .As p = xﬁd)
p€As, (Th (A U X)) which completes the proof of (5)

Let 2 < NA(A) be a fixed point of Ni;, and suppose
that Z is consistent. Consider As,(Z) , we have

Lo AsA(Z,d)

asy (z) - d € def (4)

by verifying through /actl/ - /act4/ we conclude that As
is an activation set of the set

NED,

\

ild €def(a): cond(d)N i(d)eTh(a Uas, (2 ) }
Suppose that Z< Th(AUX). Ve have

thia U as,\z))cTh (4 U X ) (6)
Denote
=% acdef(a):cond(\i(d)cTh(a Uas,
Y = fidgdef &) : cond(d)Au(a)ern(a U x) Y

From (?) we have YlQ Y . But ¥ is also a minimal
activation set, so by(}) / in Thorem 2.1.15 / we get
Y = Ylo
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It is clear'thet Z 2@ Th (A U X ) because from Y =Yy
we can naturally take Y Q,Yl.

The Theorem 3.2.l. is proved.

theory and p be any foemula. Then p € TH (S) if and only
if p is true in every minimal model for A.

Proof. The belows lemmae immediatey lead to the complete-

of formulas and p be an arbitrary formula in S. Then
p € TH(S ) if and only if I & S for every model for S.

point with respect to the operator Nk, . Then every model
Ii for Z is a minimal model for A.

Proof. Let M be a model for Z. It is clear that every
model for Z is also a model for A. Because Z = TH(ALJ AS&(Z»
I. is a model for Z, so Ii is model for As, (2):s By (3)

/in Theorem Z.1.15 / As; (z) is en activation set for
Y, = 5[d € def(a) : cond(@)\ m(@)e (AU AsA(z))}

In the rest, it suffices to prove that i is a model for
a set X € NA (A)which is an minimal activation set of Y.

Suppose that some set X € NA(A)is an minimal activation
set of a set Yl c Y.

Aimimg to prove that X is minimal activation set for
Y, we show that

th(a U X)) c ™ (AU a5, (2)) (7)
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To prove(?) it is equivalent to prove

Xc T (A Uas, (2))

“gsume that p € X. For some d € Y; , we have p = 1(4)
/by /act3/ /, as Yl C Y we have p € Y. lioreover we have
p € Th (AKJASA(Z)) , this completes the proff of (7).

From 4 , we have
Th (AU X)= Th (AU As, (z))* '.(8>

(8)together with Y, C Y implies that ¥, = Y. This
finishes the proof of Lemma 3.2.2.2.

Lemma 3.2.2.3. Let A be a default theory and p be any
formula. Then p is true in each minimal model for A if
and only p belongs to each minimal fixed point with

respect to NKA.

Proof. /If/ By applying Theorem2.).A5we immediately
fulfil. the “IfY part.
/Only if/ This part is direct result of application of
two Lemmee 3.2.2.1 and 3.2.2.2,

From lemma 3.2.2.3 we have directly the Completeness

Theorem.

4. Conclusion. This paper shows a compromised approach
to nonmonotonic reasoning system in comparison with those
of iwcDermott, Doyle, MNoore, Reiter and Lukaszewicz : we
treate simultaneously two modal operators I and L which
allows to consider not only in the light of proof-theoretic
but also of model-theoretic aspects, furthermore default

theories are manipulated here with the intuitive idea that
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every time when a theory is activated, the set of assump-
tions is carefully considered in order to provide plausible
conclusions. We shows the context-sensitivity of our system.
It should be noted that our nonmonotonic reasoning system
is not semi-decisive, so some intuititions and heuristics
are used in building this system - definition 3.5.1 and
Theorem 3.5.15 are instances. Ilioreover, well-defined non-
monotonic theorems are derived from each default theory.
Our aporoach, instead of competing the previous ones, is
above all the completion of them.
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A DEDUCTIVE REASONING SYSTEM ON THE BASIS OF
A NONMONOTONIC LOGIC

Ha Hoang Hop

Summarz

The paper presents a deductive reasoning system, where
both syntactical and semantical aspects of a non-monotonic
logic are considered.

Non-monotonicity is the main feature in commonsense
reasoning. Many approaches to modelling non-monotonicity
are known. The author presents a compromised approach which
simultaneously aims to investigate proof-theoretic and

model-theoretic aspects of non-monotonic logic.



EGY NEM-MONOTON LOGIKAN ALAPULO DEDUKTIV KOVETKEZTETESI

Ha Hoang Hop

Osszefoglald

A cikk egy deduktiv kdvetkeztetési rendszert mutat be,
amely a nem-monoton logikak mind szin€hktikai, mind
szemantikai aspektusain alapszik. A szerzd a nem-mono-
tonitasnak /amely a "jbézan kOvetkeztetésnek" f& tulaj-
donsaga/ egy kompromisszumos modelljét mutatja meg,
amely a nem-monoton logikak mindkét targyaldséanak
/[modell-elméleti illetve bizonyitas-elméleti/ aspektu-

sait felhasznalja.
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