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1 Introduction

A key problem in Design Automation is the arrangement of com-
ponents of a large and complicated system. As an important
example consider the placement problem, where the modules of
a oircuit have to be assigned to favourable locations on a
placement media. At the strongly idealized level of topologi-
cal design large systems can be represented by graph- or hy-
pergraph models, Moreover, in many cases it is also adequate
to represent the one-, two- or multidimensional placement me-
dia by special graphs. (An important example is a grid graph.)
Using such models placement problems can be considered as dis-
crete optimization problems, in particular as embedding prob-
lems for graphs or hypergraphs. Some examples of embedding
problems of this kind are the following NP-hard problems

(see /GaJo/, /Jo/):

OPTIMAL LINEAR ARRANGEMENT OF GRAPHS,

MIN CUT LINEAR ARRANGEMENT OF GRAPHS,

MINIMUM BANDWITH, CROSSING NUMBER,

EDGE~-EMBEDDING ON A GRID,

MINIMUM AREA EMBEDDING OF PLANAR GRAPHS,

WEIGHTED GRAPH EMBEDDABILITY.

Stimulated by the practical importance of such problems many
attempts and different approaches have been made in order to find
approximative solutions or solutions for subproblems., Among
the numerous heuristic solution procedures for the various
kinds of problems one can find greedy strategies, iterative
and Monte-Carlo-procedures and even such kinds of solution
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methods which are founded on non-discrete mathematical meth-
ods. Different from those discrete strategies which proceed
stepwise on the basis of local decision, the non-discrete
models represent global optimization criteria. Examples of
non-discrete approaches and strategies concerning one-~ and
two-dimensional arrangement problems can be found in /QuiBr/,
/0tten1/, /Otten2/, /Fuku1/, /May/. In our paper we deal with
a non-discrete heuristic approach which is based on a model
of mathematical statistics -~ the scaling of random variables
by optimization of the correlation coefficient.

Starting from an idea of /Fuku/ we shall apply this model to
various arrangement problems, where the two-dimensional em-
bedding of hypergraphs is in the oentre of our attention.

The mathematical treatment of this approach is explained in
detail. Furthermore, the embedding algorithm is generalized
to the case of additional placement constraints by incorpora-
ting these constraints into the model from the beginning.

A natural and important application of this approach is the
layout design for electronic circuits.
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2 Scaling by Optimization of Correlation Cocfficient

Here we consider the following problem: Let two discrete ran-
dom variables be given, then we search for a scaling of these
random variables such that the correlation coefficient is maxi-
mum. This problem leads. to the determination of extremal points
of quadratic forms, which is treated in detail in standard 1it-
erature (¢f. /Ga/, /Co/). In subsequent chapters we will apply
scaling theory to the solution of certain arrangement problems.
Though the mathematical solution of the scaling problem appears
in full detail in statistics literature, we shall present a
short derivation of this solution here, so that we can refer

to this derivation in § 5.

Let two random variables X and ¥ be given, which are va-

rying within the sets f:ffc’,l,...,;fm} and T={y1,...,yn§,

respectively. Here ii and §. are arbitrary elementary events.

Let the probability distribution on XxY ©be given by the

matrix P = (pij) . This means that Py 4 is the probabil-
m,n

ity of the event "%:%’i and ¥=F." . For short, we will

J
n m
write TPy = Z pi:j and CPJ = Z Pi;] for row- and
=1 =1

column-sums, respectively. These values represent the proba-
bility of "X '=5‘c’1 " and "Sr’zfj " . respectively.

If we are scaling the %i and ?’ to positions on the x-axis
and the y-axis, then from ¥ and ¥ we obtain real random
variables x and y , respectively. This permits to define
the expectation values:

m m
EX = 2, TDy°X; Ex® = S rD;e xi (the definition for y
i=1 : i=1 '

is ahalogous),

m n
E(x:y) = Z z X4 pij. yj .
: i1 J=1 ;

From this definition we may also define the variances and the
covarianoces :
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Var (x) = Ex? - (Ex)2 (analogous for y) ,
Cov(x,y) = E(x-y) - Ex-Ey .
The correlation coefficient is defined as follows:

g COV(XQY)
Sx,y (Var(x)-Var(y))’ <

The correlation coefficient ranges in size between -1 and +1.
If Ifx, | =1, thén the variables x and y are deterministic-
ally correlated,and the (xi,yj) with Py 4 + 0 are all located

on a straight line. If ¢ = +1 , then this straight line has

a positive slope, for ¢ = -1 the slope is negative.

The value of [gx, | is a measure for the concentration of
the probability density function P around a straight line.
Notice, that the correlation coefficient has the property of
being invariant with respect to linear transformations, i.e.

g(ax+b,cy+d) ’_‘fx,y 5

Our aim is a scaling of the random variables X and ¥ (i.e.
to find values Xy and yj) such that we obtain a maximum
value of ¢ .

First, we can assume without loss of generality, that the
matrix P possesses neither zero-rows nor zero-columns. This
is because an elementary event with zero-probability could be
scaled on any place without influencing the value ¢ .

Since ¢ is invariant with respect to linear transformations,
we can assume the values of x and y to be normalized such

that
Ex = Ey = 0 (2.1.)
Var(x) = Vax(y) =1 . (2.2.)

From (2.,1.) we obtain

2

Var(x) = Ex2 s Var(y) = By“ and Cov(x,y) = E(x-y) .

Thus, from (2.1.) and (2.2.) we conclude the simplified formula

Sx,y = E(x-¥) . (2.3.)



i . ] A

We use the following notations:

A 4 T
X=<x1,--°’xm) g ()’1"“;3’n> Y. P = (b;_\:_'\zj) s
m
and

=
lae
!
(@'
lae
I

Thus, Wwe can write

T

T
EX=X-RP'em ’ Ey:y

'CP'en ’

< |

ExT=x »RP~X and Ey2

= yTu CP. y

The normalization conditions (2.1.) and (2.2.) then read as
follows:

xT-RP-em = yT-CPoen =0 (2.4.9)

XTeRpeX = J%Cpey = r (2.2.8)
Finally, expression (2.3.) has the form

o = xT~P-y : (2:3.8)

Now, the problem is to determine extremal points of $= xT-P-y
under the conditions (2.1.a) and (2.2.a). By the use of

Lagrangian multipliers we obtain necessary conditions for local
extremal points under certain conditions.

First we will consider only the second restriction from
(2:2:8), 1.0,

% Cpey =1 .
Thus we have to define a function
H(x1,ooo,xm?y1’coo,yn) = X ‘P'y - g'.y .CP.y .
Necessary conditions for extremal points are:

oH

— for = 4y00esD
9?3 J geeey
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or, for short,

ox
oy

Hence we obtain

% (x"-P.y) =¢'- 53- (7% Cp 7

PT‘X = 2§'OCP'Y . (2'4)

In order to clarify the meaning of the factor 2§' we multiply
equation (2.4.) by yT and obtain

T
Yy PT'x = 29" y . CP ¥

Under the above condition this leads to

XT-P-J’ = 2‘?' ’ ioeo

§=28' -
Thus, from (2.4.) we obtain

PL. x =.f-CP-y (2.4.a)

Since the matrix P does not contain any zero~rows or zero-
columns, Rp and Cp are regular matrices.

Thus, from (2.4.a) we obtain

ey = 051'PT-x " (2.4.1)
On the other hand, multiplying (2.3.a) by ¢ s We have

92 o S.xT.P.y = xL P-(g-y) i
Substituting (2.4.Db) we oonclude

82 w (p-CplPT)x o (2.5.)

Equation (2.5.) describes ‘g as a quadratic form in x . Our
aim is to find maximum values of g under the conditions
(2.1.a) and (2,2.,a). Thus, we seek for
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max XTI R Canbe)
XT' RP’X = 1
s
X -RP-e =0
m

For this purpose, the well-known theorem about extremal points
of quadratic forms (ef. /Co/, /Ga/) can be used.

Theorem

Let S and D be (m »m)-matrices, S being symmetric and D positive
definite. Let the (real) eigenvalues of

Sex = A+D-x

be 11 Z 12 7 eee zulm , and let x(i) be the eigenvector cor-
responding to 11 » - Then

li = max {xT-'S-xf xT- D:x=1 and xT- D-x(j)=0 for all j=1,...,i—-1},

where the maximum value is assumed for x==x(i) .

Hence, for the special case i= 2 the theorem yields

12 = max xl.S.x
'xTo Dox = 1

x%: DxC 10

where the maximum value is assumed for x = x(z) . For our
purpose the theorem can be applied to (2.6.) with S=(P-C§1-PT)
and D=Rp . The maximum value (2,6.) equals to the second-
largest eigenvalue of

(P~C§1-PT)-x‘= l}RP'X or

-1 -1, T
(RP .p.cP . P )-x =Ad-x . (2.7.)
For the proof of this assumption it remains to show, that
x(?)= e holds.
m
Lemma

The matrix R§1-P-C§1‘PT is a stochastic matrix.



- 70 =

Proof, Both the matrices N, = R;1-P and N, = C;1-PT are
clearly stochastic, i.e. all items are nonnegative and all row

sums equal to one. Thus, N1-N2 is again a stochastic matrix.

According to the lemma, (2.7.) has the largest eigenvalue A,=1,

with e, as a corresponding eigenvector.

We discuss some more conclusions from the theorem.

Hotioe ;. ket Exb2) o x(z)T-RP-em = x(2)T, RPox(1) Gl 3

The same holds true for the other eigenvectors x(3),...,x(m).
The eigenvalues 7{.5,/\4,... are also extremal points of .gz
under the conditions (2.1.a) and (2.2.a), where the additional
condition of orthogonality of the vectors (with respect to the
matrix RP) holds.

Hence it is evident, that all eigenvalues of (2.7.) are real
and positive: 1 =3,1>,2,2 % eee 7,}Lm 7 0 . Notice that these
properties can also be seen directly from the structure of
(2.7.). First note that (2.7.) is equivalent to

= =i,
P.C 1'PT'RP/2)-Z < O

B

which is a symmetric problem, and therefore all eigenvalues

=) =3
are real ones. Furthermore, let F = RP/Z-PocP/2 s then the

problem has the form
 (FeFD)eg = Qez

Hence A 20 follows from the fact, that this matrix is pos-
itive definite. '

Now we consider a further fact concerning the spectrum of
(2.7:)

Lemma

For the eigenvalue problem (2.7.) the property 1 >J{2 holds
if and only if the matrix P is connected.

A matrix P d1s called unconnected iff there are permutations
of the rows and columns transforming P into




b 2. 0

~

<

oA

-

Given a (mxn) matrix P we can define a corresponding graph
Gp = (V,E) in a canonical way as follows:

V={1,...,m} and (1,k)e€ E<—¢33e{1,...,n}:pij4=0,\pkj=§:o .

The graph defined in this way is conneoted (in the usual sense)
iff the matrix P is connected.

Proof of the lemma

Let GP be the canonical graph corresponding to P. Consider

the matrix B = (R§1°P-CE1-PT) of the eigenvalue problem
(2.7.). Clearly, sgn (B) is the adjacency matrix of Gp. Then
P is connected iff sgn (B) is connected. Now the theorem of
PERRON/FROBENIUS (cf./Ga/) can be applied to the stochastic
matrix B, This yields the assumption of the lemma.

The olaim of P being connected will be natural for our appli-
cations (cf. subsequent chapters). Thus, for the spectrum of
(2.7.) we can presume

1 =A1 72_2 2&3} eoe >/ln>/0 °

Hence, the eigenvalue 4, together with the vector x = x(2)
is a nontrivial solution for the problem (2.6.).

Similarly to (2.7.), one can derive an eigenvalue problem for
the veotor y: '

(3l PL Ry By = Loy (2.8.)

Again, for the eigenvalues the equation A = 92 holds. If we
take

3 o
N1 = RP .'P and Nz = CP 'P ’ (2090)

then the problems (2.7.) and (2.8.) have the form
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(N1-N2)-x =A% and
(NyeN )y =257

Such problems are equivalent with respect to their non-zero
eigenvalues (including the multiplicities). The relations be-
tween equivalent eigenvectors are given by

X = N1-y and y = Nz-x .
In our case we obtain the following formulas:

X

(R;1-P)ny and

(C.}:'j.PT).x : (2.100)

b 4
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3 Bandshape Optimization for Rectangular Matrices

There are numerous practical applications, where bandshape op-
timization for rectangular matrices is a key problem. Bandshape
optimization means to permute rows and columns of a given ma-
trix in such a way that the non-zero elements (and especially
the "heavy" elements) are located as tight as possible around

a diagonal line.

Example
< 5 08 ¢ g < 6 0000
00150 15060 0
1 499 0 0414 08

4wl 07010 AY = 00190
010 900 0..0% 1.8
00600 000 6 1
6 0001 0 003 %

If the row-sequence of A is permuted according to

7To = (6,2,4,5,3,7,1) , and the column-sequence of A is permu-
ted according to d, = (3,4,2,1,5), then we obtain the matrix
A' whioh possesses a very good bandshape.

The fuzzy notion of bandshape can be made precise with the help
of the correlation coefficient, regarding the given matrix as a
probability density function.

Let A = (a ) be a real nonnegative rectangular matrix with
A0, e bbbk, L6 She fhb mtelt |

1
P=g+4 , where a= . a4 - (3.17)
i=1 j=1

Then P is a probability distribution on {x:,...,x }x{y1,...,y }.
The correlation coefficient P for the distribution P under the
special assignment Xy = i and y, = j represents one pos-
sible measure of the bandshape of A (or P respectively). The
closer o is to +1 , the better is the bandshape of A. For

our example, we obtain P = 33 A and [ 2 =-0,5931, The per-

mutation TTO = (6,2,4,5,3,7,1) corresponds to the new assign-
ment Xy = 7, X, = 2, X5 = 5 Xy = 3y Xg = 4y Xg = 1, Xy = 6 .
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The permutation d; = (3,4,2,1,5) corresponds to y =4, Yo=3,
y3=1, y4=2, y5=5. For the new assignment we obtain a correla-
tion coefficient @' a2+0,9712, which expresses the bandshape
quality of A'.

Let us now assume the given matrix A to be connected. Hence,

the matrix A does not have any zero-rows or —columns. Clearly,
P is also connected. The re—arrangement of rows and columns of

A can be determined by scaling of the variables X3 and yj -

The eigenvalue-problem (2.7.) can be reformulated in the fol-
lowing form:

R T e I, R (302D

where R = Ry and C = CA e Then the eigenvector correspond-
ing to the largest nontrivial eigenvalue 12 of (3.2.) yields
the optimal real values for the Xy o According to (2.4.b) or
(2.10.) the corresponding scaling of the Y5 is derived from
the transformation

y = (C-1‘ AT)-X -

Notice, that x and y are of course real vectors and thus in
general do not represent permutations of the rows and columns
of A. The real components of these vectors have to be trans-
formed to discrete ones. This can be performed simply by
sorting the components.,

For our example, the largest nontrivial solution is

A20,9671 with

0.0888 \
-0.0807 0.0773
0.0411 0.0022
x =| -0.0368 y = -0,1014
0.0022 -0.0734
-0,1048 0.0875
0.0815 }

The sorting of the components leads also to the permutations
T, and d; s which produce the above matrix A' .
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The correlation coeffioient is ¥ =V§7Q§O.9834 y Wwhereas the
matrix A' has only a correlation coefficient g' x 0.9712 .
The loss of bandshape quality is connected with the transfor-
mation of the optimal eigensolution to the (discrete) sorted
components. This is the reason why the method described here
does not necessarily produce an optimal permutation of the
given matrix. It is an open problem to evaluate the quality
of approximation of this non-discrete method.

The method described here was presented in various forms and
independently in /Fuku1/, /Otten1/ and /May/ (see also
/Fuku2/, /MaMe/). Note that the derivation of this heuristic
method with the help of the correlation coefficient -~ as
described above - is due to /Fuku1/. In /Otten1/ the prob-
lem MIN CUT LINEAR ARRANGEMENT of hypergraphs was considered.1)
This problem reads as follows:

Let a finite hypergraph H = (V,E) be given. Determine an
embedding (i.e. a one-one-mapping) W : V —9»{1,2,...,YV|} such
that the out-width (or track number)

max |{e:eeE and minW(uw)2£i< max T(v)}| 1s minimum.
16i<(Vi-1 uee vee
This problem is NP-hard. (In 1974 STOCRMEYER proved that the
MINCUT LINEAR ARRANGEMENT problem is NP-hard for graphs, cof.
/GadJo/. This problem is NP-hard even when restricted to graphs
with degree & 3, whereas it becomes solvable in time O(nlog n)
for arbitrary trees, see /CMST/.)

As an example, consider the hypergraph H = ({1,...,7},
{e1,...,e5}), where e, = f1:3,71; e, «{3,4,5}, 93={2,6},
ey =12,4}, e5 = {1,7} together with the embedding (i) = 1.
We have the following figure: . '

1) This problem is often called Board Permutation problem.



The cut-width for MT(i)=1i equals 5. It is assumed for i=3.

Let us consider the incidence matrix of the hypergraph.

100 0 1

g 54 Here the rows correspond

11900 to the vertices, and the
fmis Vet @9 0 columns correspond to

VAR Do the edges of H .

00100

10001

The lines in the above figure (corresponding to the edges)
appear as non-zero intervals, i.e. the regions between the
first and the last non-zero element in the columms of A .
Thus one can expect a reduction of the ocut-width by reducing
the lengths of these intervals. This goal clearly corresponds
to the bandshape optimizatidn for the incidence matrix. For
our example, we obtain the above mentioned permutations ‘ﬁ;

and d; for the rows and ocolumns, respectively. The resulting
matrix is

00

10

11
Al 0 1
01
00
00

PTOHOTO QO = ‘=

0
0
0
0
1
1
1

= & 000 OO0
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The corresponding re-—arranszement of the hypergraph yields

©, c?) ?—@f

The cut-width under this embedding equals 2.

Another arrangement problem is considered in /May/, /MaMe/
where bipartite graphs are investigated.

For an illustration of this problem consider the following
example.

Roughly speaking, the problem
consists of finding permutations
of both columns such that we
obtain a clear and readable rep-
resentation of the graph. This
fuzzy description was made pre-
cize in /May/ by formulating the
following tasks:
a) Minimize the total sum of edge-
lengths'.
b) Minimize the number of edge
crossings.

The heuristio procedure developed in /May/ is based on the
algorithm described above.

This can be seen by describing the given bipartite graph by a
rectangular 0/1—matr;x, whose rows/columns correspond to the
nleft" / "right" vertices of the graph. For our example this
matrix coincides with the incidence matrix A of the hyper—
graph presented above. (This is because hypergraph and bi-
rartite graph are equivalent notions if we identify "right"
vertices with edges and "left" vertices with the vertices of
the hypergraph.) Thus we can expect, that a bandshape opti-
mization will reduce both the total sum and the crossing number
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for bipartite graphs. For our example, the permutations 7T; and
cg mentioned above produce the following representation of the
bipartite grarph.

Notice, that - similarly to
the MINCUT problem - no
results concerning the quality
of the approximation are known
for this optimization problem.

Now we shall discuss another
aspect of the eigenvalue prob-
lems €2:F« ) and (3,2:.): It ds
connected with the power method
(v. Mises method) which can be
applied here.

Let B'x = A*x be an eigenvalue problem, and assume that all
eigenvalues are real and nonnegative. The power method consists
of the iteration of x := B:x , where the vector x has to
be normalized from time to time during the iteration process.

In our problem we have
B = N1°N2 s Where

N, =R

;=R and N, = C~1epT ,

2

Since N1 and N2 represent the transformations between x

and y (of, 2.10.), we can divide the iteration step of the
power method into:

J 8= z'x ‘ (3.3.8)
X $= N1’.Y (3.3ob)

Consider (3.3.a) :
¥ = ¢l aT. x

m
yj = -6%-‘:]- . Z aijoxi j=1,ooo,n ° (3.4.8)
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inalogously, from (3.3.b) we get:

n

Xy i= ;%— . a4 47y : - YRR | B (3.4.0)
< 2 j=1
Now we 'turn back to the arrangement problem for bipartite
graphs. Let x;, be the (real) locations of the m "left" ver-
tices. Then applying step (3.4.a) means, that the "right" ver-
tices are shifted into the center of gravity of its "left"
neighbours. Similarly, applying (3.4.b) means to shift the
"left" vertices into the center of gravity of its "right"
neighbours. Therefore, the successive iteration protess, al-
ternating (3.4.a) and (3.4.b), is called "averaging". The
averaging process oonverges, if an equilibrium state is at-
tained., Those states correspond to the solution of the eigen-
value problem. Notice that in /Otten1/ and /May/ the
heuristic procedures are derived and based on the averaging
model.
Note that the averaging positions are really superior with
respect to the minimization of crossings, as the following

example demonstrates.

Finally, notice that it may be very profitable to use (3.3.a)
" and (3.3.,b) in connection with the application of sparse-
matrix techniques, even in the case that A is sparse. Instead
of B =N¢N, =R +a-cCT+AT , (which may be very dense in
comparison with A) one has only to handle the sparse matrix

A and the diagonal matrices " anE e
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4 Flacement of Circuits in the Flane

Design-automation for electronic circuits includes searching for
sophisticated methods for the solution of placement and routing
problems on the level of topological design. This level is char-
acterized by a more or less rigorous idealization Iinasmuch as
the geometrical shape and size of the modules and of the con-
necting wires are disregarded. Thus, in topological design, usu-
ally the representation of circuits by hypergraphs is a suffi- |
cient model. The modules correspond to the vertices, and the nets
(signal sets) are represented by the edges of the hypergraph.
Consider ‘the following example of an electronic circuit.

1
1 2 5 4
TR
‘ ‘r—jl
3 6 7
[
|
e 10 9 12
i

The corresponding hypergraph has 16 vertices and 25 edges.
The following table defines an enumeration €13e009€55 of the
edges.

The table shows the incidence matrix of the given hypergraph.
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Notice that the model of an edge-weighted hypergraph may be
more efficient in practical computation. In our example, we
could join the edges e, and €y g and €gs €44 and €40 9
€oy and €559 respectively, to constitute new edges with
weight = 2 ., For the subsequent discussion, however, it is

more convenient to handle the simpler model of unweighted
hypergraphs.

We consider the topological placement problem, i.e. the prob-
lem to locate the modules (vertices) in the plane in such a
way that the subsequent routing process is able to find a
"good" wiring, We shall assume that a wiring is good if 1t
has minimum (or at least near-optimal) total wire-length.
Since -~ in the placement step - the real final wiring

has not yet been performed, the total wire- length has to be
approximated in a certain way. In spite of the concrete model
used for this estimation, a general goal for any placement
procedure should be that strongly connected modules are lo-
cated close together, i.e. that proximity reflects connectivity.
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Notice that the connectivity of vertices intuitively determines
distances dij between vertices. The distiances derived from con-
nectivity (and possibly from additional data) may be defined in
various ways (cf. /Fuku/, /Otten2/) . 1In any case, a good
placement result will. be an embedding of the given hypergraph
in Euclidean plane such that the distances are preserved "as
well as possible"j> In mathematioal statistics, this problem
is called the multidimensional scaling procblem (MDS). The for—
mulation of the placement problem as MDS-problem is an idea

due to OTTEN, and it was pointed out in /Otteni1/ and /Otten2/.
However, we shall not use here the classical MDS-solution (due
to SCHOENBERG, cf. /MaKeBi/) which was applied in /Otten2/ .

We consider a slightly different solution, proposed in /Fuku/.
The investigation of this approach leads to a generalization
which will be presented in § 5.

The problem of "scaling of a hypergraph" can be treated by
solving the eigenvalue problem (3.2.), maximizing the correla-
tion coefficlent. The eigenvector corresponding to the largest
nontrivial eigenvalue yields a favourable embedding of the
vertices of the hypergraph on the real axis, According to MDS-
theory it is proposed in /Fuku/ to use the eigenvector accord-
ing to the second-largest nontrivial eigenvalue for the loca-
tion of the vertices in the second dimension of the plane.
Since the eigenvectors are orthogonal, this leads to a fa-
vourable distribution of the vertices with gzero-correlation.
Let 2.2 and ‘13 be the largest nontrivial eigenvalues, and

let u==x<2) and v=:x(3) be the corresponding eigenveotors.
The correlation coefficients are ¢, = V?LZ and §3 =VA_3 ’

respeotively. In order to take into consideration the dif-
ferent weights of the two solutions, the eigenvectors are
normalized to “u[[=‘92 and [|v] = $ -

1) Notice that this problem is connected with the WEIGHTED
GRAPH EMBEDDABILITY problem (ef. /Jo/) .
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The set of points (ui,vi) — the scatter diagram - is called
graphspace /Fuku/. Consider again our example. The solution of
the eigenvalue problem (3.2.) yields

A, = 0.884 and.}l3 = 0.858 , where

= (1.29, 1.57, 439, 4,89, -0,85, 0.92, 2.38, 2.64,
"1081, "'1079, "0093, -0068, "'3.36, -3090’ "2093, "1081>
= (+4013, +3032, —1015, _1‘72, +4.51, +1.76’ —1.21’ _2023’
+5¢OO, _1 042’ _3015, _2'69, +1 064’ _0035’ _2077, -3p66)

4
N
Fssiip.)
A
N
|

Q) 5 1
O]
(€2
® | ®
s
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@ | @ @
® @@.
O]

Thus we have an embedding of the hypergraph in Euclidean space,

preserving in some sense the distances, i.e. reflecting the

connectivity. In many applications (e.g. in gate array tech-

niques), the set of possible module locations (slots) form a

discrete and regular 'set of points.

An equidistant grid is a simple model of a discrete placement

media whioch is often used. In this case the points of the scat-

ter diagram produced by the non-discrete method have to - be

shifted to the grid points.

This is performed in two steps.

1. The set of points derived from the eigensolution is normal-
ized in such a way that the first and second moments are
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equal to the first and second moments of the grid, respec-

tively.
2. The points are translated to the grid points (see also

/Fuku/). This step is performed with the help of a linear-
assignment procedure (see e.g. /BuDe/).

For our example we obtain the following assignment to a regular
(4 x 4)-grid:
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5 The Placement Problem under Constraints

In most real-world placement problems we have to satisfy addi-
tional constraints as far as certain modules have a-priori
fixed places on the placement media (grid). In consideration
of such constraints in /Fuku/ a solution is proposed which yet
disregards the connections between the fixed and the free mod-
ules. However, there is a possibility to incorporate the con-
straints (from the very beginning) into the eigenvalue problem.
We shall explain the idea for this approach in terms of the
x-direction of the grid. According to the relations between

the components corresponding to the fixed modules, not all
vectors x = (x1,...,xm)T are admissable now. The admissable
vectors form a subspace, which can be described as the range

of a linear transformation. Without loss of generality assume
that the variables x1,...,xq
and the remaining variables XQ+
free modules. Consider the' example presented in § 4 under the
following placement constraints.

B

12

First we have to perform a re-numeration of the modules:

correspond to the a-priori fixed,
'EEEETE correspond to the

¥ .4 1213 e & 2 ewe L4 4516

2 8 T e 4315516

0old index

new index ; Bt WL !

Aocording to the new indices we have the following placement

constraints. (?\_ >
v 8

Gt |
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With respect to the solution method using scaling theory it
would not be adequate to formulate the constraints (related
to the x-axis) in the form x;=x,=1, X,=X5=4. What we
need in this model (because of the conditions Ex=0 and
Var(x)=1) are two degrees of freedom: translation and ex-
pansion. They serve as parameters for x1,...,xq o Therefore,
we introduce two variables a, and a, instead of £ yenagXoite
Here the varlable aj corresponds to the left border of the
placement media (grid), whereas the variable a, corresponds

to the expansion of the media.

N‘H
o
N

v

a4 T ' e

Assume that module k is pre-assigned to the jk-th column of
the grid, and assume that the grid has s columns. Then we
define
. = 1
k
Gk = e —— (k=1,ooo,(1) ° (5.10)
s - 1
For our example, we have G4 =0,=0 and G'2=63=1 .

Then for each x (k £q) we have the condition

xk = a1 + Gk‘ a2 9 i.e. (502.)
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6
j a
: ( 1) (5.3.)
a
6q 2
1 ('.71 ay
If we define = ’ 2: 2 5 o a .
: a
1 Gk ‘2
then from (5.3.) we get
(5.4.)

If we assume, that not all fixed modules occupy the same column,
then the rank of 3, equals 2, Otherwise, this rank equals 1.
In the latter case we could turn to the reduced form

dias
i

In order to unify both cases, we can assume in (5.4.), that

)‘(81) . (5.5 )

-t 009 =>

a
1
a= ( : and Q= (6'13) . with rank () =t . (5.6%)
a Q,

t

Now we define

4]
g
Lol

: T4

a AP EN G  PEN
u = x:+1 and 4): 0 . €

. m—-q

5

Instead of (5.4.) we obtain
X = é-u , where rank ($) = m-q+t . (5.7.)

Furthermore, we oan assume (cf. (5.3.) and (5.5.)) that there
exists ee€ mm—q+t such that

em = é' g . (508.)
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Now we can apply (2.6.) using the formulas (5.7.) and (5.8.)
derived from the constraints. Doing this, we obtain the fol-

lowing optimization problem:

max [uT (@T- »- c - PL$).ul (5.9.)
T(QT RP é) u=
u'(§" Ry $)- é’

Here the matrix Rp is a quadratic nonnegative diagonal ma-

trix. Hence RP also exists., Thus

3T Rp- §= (YRp &)+ (VRp ) (5.10.)

is a Gramian and obviously a positive semidefinit matrix.
Moreover, since the columns of & are linear undependent,

this is also true for Rp * é . Therefore, the matrix @T-RP- @
is even a regular and in particular a positiv definit matrix.

Hence, similarly to the derivation shown in § 3, we can use
the theorem about extremal points of quadratic forms. Doing
this, we obtain the eigenvalue problem

(3% 2-c;" PR @)ou = (§TRpe ) - Avu

Considering this eigenvalue problem we first remark, that -
similarly to § 3 - we can write this problem in the fol-
lowing form:

(8T a-cn™3)u = (TR F) 2w (5.11.)

Because of the relation e =¢.& , the vector & is clearly
the trivial solution corresponding to 11 =1 ., Hence we are
interested in the second-largest eigenvalue le and the cor-
responding eigenvector u £ . .
From this solution, using the transformation (5.7.), we obtain
the vector x containing the x-coordinates of the m modules.
(Note that we have to turn back to the original enumeration of
the modules.)

For our example we have G, = 6_ =0 and G 6' w3 Lofs 5i3:)
The eigenvalue problem (5. 11 ) then yielda the solution 1 ,=0.881
with
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X= (-1.082,—0.892, 0.671, 0.882,-1,648,-0.510, 0.588, 0,936,
-1.954, 0,285, 1,004, 0.882,-1.082,-0.358, 0.676, 1.130)
(Here the order of components already corresponds to the origi-

nal enumeration of modules.)

The y-coordinates of the desired grid placement can be computed

in a oompletely analogous manner. For our example we have

6 =6, =1, 65 =75, 6, = 0 . The solution of the eigen-

value problem (5.11.) then yields 4, = 0.860 with

vy= (1.247, 1.225, 1,241, 1,247, 0.500, 0.698, 0.644, 0.552,
O.205,—0.865,—0.752,—0.407,-1.235,-1.661,-1.508,—1.067).

The following figure shows the graph space together with the

final solution derived from the application of a linear as-—

signment procedure to the "free points".

oo | 06
e ® @
®

=2 =1 3
®
@
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We add some remarks concerning the placement proocedure desoribed
in this chapter.

First notice that certain problems may arise using the prccedure
for special instances. As an example, assume Gii = GT; for

i=1,..049. Then both eigenvalue problems (5.11.) derived from
’ ;
2L and 2, respectively, would coinside. Hence all modules

would be located on a straight line. This is also the case, if
1-6;=6;" for i=1,...,q. Moreover, if there exists an

automorphism ¢ of the hypergraph such that
ioL("),ooO’K(Q)}':{",ooo,q} and
B/ G(i) (i 1,.--,(1) or 1= 6 &'(1) (i 1,...,(1) ’
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then all free modules would be looated on a straight line.
Notice that we have indicated only sufficient conditions yield-
ing pathological solutions. For practical applications we rec-
ommend the following procedure. First recognize by considering
the graph space, whether the free modules possess a good dis-
tribution. This should be done by determining the correlation
coefficient 90 of the free points in the graph space. In the

case that ¢ ¢.[-1+£§ 1-€] we would recommend to take the
second-largest nontrivial solution of (5.11,) (instead of the
largest one) to be the locations in one of the dimensions. If
then the distribution of the graph space of the free modules is
not improved, then take the third-largest solution etc.

The second remark concerns the numerical solution of (5.11.)
and constitutes a relation to the averaging model discussed

in § 3. This remark is directed to the application of sparse-
matrix techniques.

Remember that we have the problem

Beu = 3.u , where
Bow (B Ry s (BT A A% S) .
Define

(QT.R.é)—‘l. éT‘A

C-—‘l g (QT-A)T :

Ny

N

2
Then we can write

Ba= N1'N2

Consider the special shape of these matrices:
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Then we have

e
- A ZT 0 .,{\9, 5 T (5:43:)
SR Ay Ay
and
]
T R0 0
($™R.E)" ( ? = =
§ §> <o ) O R‘l) ( (8] t) ]
(5.084)
T -1 T SR
Z &0 =R, 3, L0 g St R 51 0
O ' Ry O R‘l-1 :
Hence we obtain
(2 ‘R, H ) (z ) 3 D
N‘1 o-r-o : -.-1.-.-.¢-
. 5R1 . Ay (5453

. T
N, = ¢ le((gTa)TiaD) = s ki A

Considering (5.15.) we see that there is an evident similarity
to the formulas (3.3.). Notice that the approach presented here
can also be derived using the averaging model, modified by ad-
ditional conditions. Then in the alternating averaging process
because of the constraints arises the problem of approximating
an overdetermined systems of linear equations. Using the least
squares method the eigenvalue problem (5.11.) can be derived
(see /NeGoe/).

Note that the matrioces N1 and N2 can be determined more con-
cretely when separating between the ocases

i
3 = and 7::

1

- BOP  wd
- 900
H eee



- . -

The derivation is omitted here. From the above consideration
follows: In order to solve the eigenvalue problem with the
help of the power method, it is necessary to store the matrices

T e P ) and (ZT.RO-Z)-1 .

Here it may be efficient to apply sparse-matrix techniques for
the matrix Ai . Finally remark that for both the x-axis solu-
tion and the y-axis solution of the placement problem the ma-
jority of the necessary information is identical, in particular
the matrices A, , C and R, . For a simultaneous solution of the
eigenvalue problems this could be used in order to improve the

efficiency of the whole procedure.
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N

Scaling of random variables and arrangement problens

in layout design

B. GCoetze and W. Nehrlich

Surmary

An optimization model from mathematical statistics

- scaling of random variables by optimization of
correlation coefficients- 1is applied to several
arrangement problems for graphs and hypergraphs.

The two-dimensional embedding of hypergraphs is in
the centre of our attention because of its importance
for the topological design of electronic circuits.
For this case, the optimization model is generalized
for an important case of additional constraints.

The mathematical derivation of this non-discrete
optimization strategy is presented in detail.
Moreover, relations to similar non-discrete methods
as well as some computational aspects of this approach
are discussed.



Valbésziniliségi valtozdk skélazasa és elrendezési

problémdk az ililtetési tervben

B. Goetze, W. Nehrlich

Osszefoglald

A szerzdk a valodszinliségi valtozdok skalazasara a mate-
matikai statisztikdban haszndlt optimalizdcids modellt
/korrelacids egylitthatdok optimalizalasa/ alkalmazzak
grafok és hipergradfok elrendezési problémaira. Figyel-
milket leginkdbb a hipergrafok két-dimenzids elhelyezé-
sére Osszpontositjak, mert ez egy fontos feladat az
elektromos aramk&rdk "topoldgiai" tervezésénél. Ebben
az esetben az optimalizacidés modellt ugy altalanosit-
jdk, hogv az korlatozd mellékfeltételek jelenléte
esetében is miikédjdn. Az igy felmeriild nem-diszkrét
optimalizédlasi stratégiat a szerzdk részletesen is
ismertetik. Ezen fellil a médszert mas nem-diszkrét
modszerekkel is Osszevetik és a modszer szamitastechni-
kai aspektusait is targvaljak.
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