MTA Szamitdstechnikai és Automatizdldsi Kutaté Intézete, Kozlemények 27/1982

A NEW TIMING BASED ALGORITHM FOR CONCURRENCY
CONTROL OF DISTRIBUTED DATABASES

ANDRAS POGANY

Computer and Automation Institute
Hungarian Academy of Sciences

1. INTRODUCTION

In the last few years very high research effort has been
devoted to the development of new concurrency control algo-
rithms,

The goal of concurrency control is to ensure database
consistency despite of paralel database accesses. The problem
is presented by an example:

The database is composed of three records A,B,C.

The consistency criteria is A=B+C.

There are two accesses accessl and access2.

accessl: A=A+1, B=B+1

built up from the following steps
al/ read A
bl/ write A
cl/ read B
dl/ write B
access2: B=B-1, C=C+1
built up from the following steps
a2/ read B
b2/ write B
c2/ read C
d2/ write C

In spite of that each access executed alone, preserves

database consistency but, the next paralel execution for

example will destory that: al, bl, a2, c1, d1, b2, c2, d4d2.

The concurrency control algorithm deal only with those
accesses which executed alone preserve database consistency.
These accesses are callaed transactions. The step of a trans-

action is an access to a database element (a read or a write).

=5)

The sequence of transaction steps built up from the steps of

a given transaction set is called a log. Some logs preserve
database consistency while others do not. The task of con-
currency control is to avoid the execution of those logs which

destroy consistency.

Algorithms can be classified with respect to the
permitted logs. Algorithms which result in not strictly
serial logs (logs in which the steps of a transaction are side
by side) are quite sophisticated and always need some prelimi-
nary information about the transactions. A typical example of
this type is the algorithm of SDD-1 [1,2,7].

To achieve a strictly serial log seems to be a very
simple task. What it only needs is to lock the database
elements which are to be accessed, before the execution of a
transaction. Here we note that the term strictly serial log
often means it is strictly serial only with respect to the
conflicting transactions (two transactions are said to be
conflicting if one of them reads or writes a data element
which is to be written by the other one). Some distributed
methods have been developed to solve the problem of mutual
exclusion, i.e. Agrawala [4], E. Chang [5], but generally
the concurrency control algorithms do not use them. The
reason is the fact that they increase the number of messages

needed to execute a transaction.

Most concurrency control methods are optimistic. Issuing
the transaction, they assume that the system does not contain
any conflicting transactions. If in spite of this expectation
there is a conflict then the algorithm ensures that there is
at least one node where the conflicting transaction meet. This
meeting results in suspending one of the transactions. This
suspension either means waiting for the end of the other one
or causes the death of the suspended transaction (which should
be rolled back and started again). If sufficiantly great
number of nodes (not necessarily all) with data element written

by the transaction has been visited then the so called synch-

= Ll L=

ronization phase is terminated. The number of nodes required
to achieve synchronization depends on the concurrency control
algorithm which has been used. We might say, a transaction
must visit as many nodes as necessary to meet all the possible
conflicting transactions. If concurrency control works correct-
ly then one and only one of the concurrent transactions can
finish its synchronization phase. As a result of this concur-
rency determination method, the nodes should not execute the
updates of a transaction until its synchronization phase is
terminated. The nodes are informed about the termination of
the synchronization by a message. This message is often called

confirmation.

There are many methods known from the literature which
really result in serial logs i.e. Thomas [8], Rosenkrantz et.
al. [6]. They differ in the solution of synchronization, but

confirmation is resolved always by messages.

The algorithm described in this paper has a different
solution for the realization of confirmation. It uses timing
instead of messages. In case of reliable network, in this way,

a transaction can be executed with minimal number of messages.
2. ENVIRONMENT CONDITIONS

The conditions our algorithm works among are quite strong,
but the methods applied are very simple. Later it will be
shown how the conditions can be weakened or even left out

while adding new features to the algorithm.

Conditions:

1/ fully duplicated database.

2/ A clock to every node. If the clock in node i shows
Ci(t) at the moment t then

i\’/jCi(t) Cj(t)

3/ The transactions must be moment-like. This means that
the time of the first read and last write must be at

the same instant.

=il 28

4/ The network, used by the database should be reliable.
This means that every node always works correctly and
each node can have access to all other nodes.

5/ A time interval t can be defined in the network so
that for every pair of nodes the transmission time of
a message from one node to another is always less than

Te
3. THE PRINCIPLE OF THE ALGORITHM

Independently from the concrete concurrency control
method, to execute a transaction the minimum of one message
per node is necessary. The time of a message exchange depends
on the participant nodes, the type of message forwarding
(broadcast, daisy-chain), the state of the network etc. There
is no concurrency control algorithm which provides minimal
execution time for every transaction on any network at any
time. An optimal algorithm must be constructed in a way.that
permits an optimal implementation, that is the execution of a
transaction should need at most one message per node and
should not constraint the choice of the message forwarding
method.

For algorithms which work by locking all the database
elements accessed by a transaction, a sufficiant condition
to achieve this locking is that the system executes only those
transactions which are issued at a moment when no conflicting
transaction is under execution. To decide whether there are
transactions under execution conflicting with the transaction
to be issued, the system has either to wait until the effect
of conflicting transactions arrive at the node where the
transacfion is to be issued or to send inquires about trans-
actions to every node. If we are to achieve an optimal solu-
tion then the former possebility is the better choice. The
system has to wait before initiating a transaction as long as
a message needs, in worst case, to arrive from the farthest

node in time at the node where the transaction is to be ini-

S AEE=

tiated. This time is not more than t, defined among the con-

ditions.

An algorithm is to be constructed that matches the above
mentioned considerations. This algorithm, in order to execute

a transaction

a/ sends only one message to a node
b/ with arbitrary mode of message transferring, while
c/ the time interval between two conflicting

transactions is at least T.

The execution history of the transactions represented on
a time axis will look like this:

T ! ¢ T2 7T T3
< T : &
. e e -~ o
ST S T ST
[A J
A 2 o
2T 2T

Ti is the issue and

Ti is the execution time

To fulfil condition a/ the confirmation can not be done
by explicit messages but can be done - i.e. by timing. This
timing is started at every node that receives a synchroniza-
tion message.

To execute a transaction both of the following conditions
must hold:
Cl: Every node in the newwork is noticed of the transaction.
C2: At the time when the transaction is issued there are no

conflicting transaction under execution.

If the node where the transaction is initiated, distributes
the description of the transaction simultaneously with issue
time (Tm) then C1 is fulfilled at the latest Tm+r. However, at
time Tm+r condition C2 is also hold because transactions
conflicting Tm had to be issued in the interval Tm—r, Tm thus
they arrived at each node till Tm+r.

o 1 1 R

To avoid concurrency let the strategy be the aborting and

restarting of the transaction issued later.

Each node can check the concurrency independently from
others. That is, if a node did not receive any transaction
until Tm+r that was concurrent with the transaction issued at
Tm then conditions, C1, C2 are hold and the transaction of Tm

can be executed.

With the terminology used heretofore, for a transaction
issued at Tm, the synchronization will be finished at Tm+r
and the confirmation is the termination of timing t started
at Tm.

4, THE IMPLEMENTATION OF THE ALGORITHM

The issuing node assignsa timestamp (the value of the
local clock at the local virtual execution of the transaction)
to the transaction. Following this the transaction is compared,
in the same way as described for an arbitrary: node later, with
the outstanding ones what have been received by the node. If
the transaction has not been aborted (at the issuing node)
then it is distributed in the network (timestamp which is the

identifier, the read or written data elements).

The events of the system are: the termination of a timing,
and the reception of a transaction.
Node actions taken at events:
A/ receiving the description of a transaction
1/ If the node does not contain any outstanding transaction
conflicting with the received one then the received will
be- outstanding and a 1—(Th—Tm) long timing is started.
Th is the local time at receiving the transaction. This
timing will be referred to as primary timing.
2/ If the node contains any outstanding transaction

conflicting with the received one then

=#115 o=

- ') if Tm<Tw (Tw is the issue time of the outstanding
transaction)
the transaction timestamped by Tw is aborted and
the transaction of Tm will be treated as described
in point 1.;
5 15 1 Tw+r>Tm>Tw the transaction of Tm is aborted

i I Tm>Tw+r the transaction of Tm is treated as

described in point 1..

B/ a primary timing is terminated
The transaction indicated in the timing is executed and an

auxilary timing with interval t is initiated.

C/ an auxilary timing is terminated
The transaction indicated in the timing from this time

onward is not outstanding.

At first sight, auxilary timing seems to be unnecessary.
Though not unnecessary, it is not the only solution of the
next implementation problem: each node at every time instant
Tm must have the ability of checking every confliction it has
got enough information for. Two conflicting transactions can
meet at a node in such a way that the one issued earlier has
been executed when the later arrives. Therefore the trans-
actions, having been executed, must be reserved for a time

interval .

5. MODIFICATIONS TO LEAVE OUT OR TO WEAKEN THE CONDITIONS
A. Eliminating the condition of moment-like transaction

If the reads and writes of the transactions form a finite
notzero interval then the previous time axis representation
shows the following picture. For the sake of simplicity the
moment of execution is not displayed.

Ty T Tyy Tyo Ty T;,

S—
2T 27T

bl

The Ti] is the time of the first data access of the
transaction i while Ti2 is the moment when the transaction is
finished, that is, from this time the transaction can be

distributed.

" Theorem 1.

Lf Tm2 is regarded as issue time then using Tm2 instead
of Tm the actions to be taken at events remain unchanged

supposing that C3 is holding at the issue node.

C3: a transaction m is distributed only if the node did not
receive any conflicting transaction during ij, TmZ'

" Proof

For every pair of conflicting transactions in the

network
1.1 <T- <5

is true. This is because if T. —T. >t then the node, where

J 2
'i is initiated, recelved the transactlon i woell T, In this

49
case C3 ensures that transactlon i is not dlstrlbuted It

follows from 1.1 that
{ TiZ_TJZZT_*TiZ_TJIZT

The condition part of this implication is true if the algo-
rithm is used with the substitution Tm=Tm2.
qg.e.d.

B. Eliminating the condition of reliable network
Instead of reliablity each node is expected to notice

in p time the failure of its message.

Let’s complete the algorithm with the following supplement:

o B L7

Sl: if a node regonises that its message (containing the
descritption of a transaction) is undelivered then distri-
butes an abort message. A node, having received an abort

messages, does not execute the referred transaction.

To ensure a possible abort message to arrive at each node
in time, instead of 1, t+p+t should be used everywhere in the
algorithm. With this modification the next execution log is
obtained:

3 4
— + +

S N =7 5 ~

T o] T
message dist- error abort message
ribution time recogni- distribution

tion time time

In spite of introducing abort messages, there may be
some nodes (those whose separation from the network happens
after receiving the transaction but before its corresponding
abort message is obtained) which execute the transaction,

causing inconsistency. Since =-in case of network failure-
the inconsistency is unavoidable, the algorithm must contain

methods to recover the database according to the last proper
state (the state resulted by the last properly executed

transaction).

To solve the problem discussed above let’s add the follo-
wing supplements to the algorithm:

S2: a node interrupts its work until the system is recovered

if it receives or generates an abort message.

S3: for every node, a log is maintained containing the iden-

tifiers of locally executed transactions.

Suplement S2 ensures every node to suspend its work in
case of network failure sooner or later. Only a newly arised
network failure can prevent the delivery of an abort message
to a node which has got the transaction to be aborted. This
means for a node that to the execution of each aborted trans-

action belongs a network failure. This seqﬁence of failures

= kB -

approaches the node until, in the worst case, the node dis-
coveres the failure itself. The maximum number of transactions
a node can execute during the interval of network failure and
its recognition can be calculated for each node from the num-
ber of nodes and from the topology of the network. Let K denote
the largest value of the above counted maximums. Because each
failure which prevents the delivery of an abort message sepa-
rates at least one node from the network, a topology indepen-
dent upper bound for K is equeal to n-1, where n is the number

of nodes in the network.

Supplement S3 is used during database recovery. In an
error free network every log contains the same identifiers.
Logs diverge, when -because of failure- Some nodes start an
independent life (they execute transactions that were to be
aborted). There is at least one node which detected the first
failure of the network. The log and the database of this node
are correct and this log will be a common slice of all logs.
After system recovery, this log must be searched and on the
basis of the database of the same node the whole database can
be recovered. The sufficiant length of the logs to be kept at
the nodes for the above search is K, while logs are circular

lists of transactions in execution order.

To use the algorithm in an unreliable network, the
t=21+p substitution can’t be left out. The further discussion
above describe only a possible extension of the algorithm in
the field of unreliable networks. Certainly, there are other
solutions of this problem and these considerations can be used

to solve different problems.
C. Eliminating the condition of fully synchronized clocks

Instead of the hypotetical Vv Ci(t)=Cj(t) heretofore
1sd
the realizable V ICi(t)—Cj(t)|<e condition will be used.
L.yl

= AR =

Because of asynchronous clocks the nodes aren’t able to
determine the exact time a transaction has spent in the net-
work. This time determination has a twofold role: first to
ensure the simultanious execution of a transaction at different
nodes secondly, to be the base of concurrency checking. To
modify the algorithm, first the clock conditions should be
exactly defined.

Chs: YV 1TC.(x)=C.(t)I1<e
fed * #

G54 & Ci(t)/n=t+A
=1

Where A is an additional factor to the real physical
time and it is constant in the interval of our investigation
(2-31).

Although, only time differences have role in the algo-
rithm, for the sake of exactness t'=t+A instead of t will be

used.

Theorem 2.

The difference between the real physical issue time

(Tm) and the timestamp Cm(Tm) of a transaction is at most «¢.

(@ (T)=T I<e
m m’ m

e = t 1

Proof

According to condition C5, the real physical time
always lies between the minimum and the maximum of local
times. By C4 the differences between local times at a given
moment are less than e. Consequently, the local time at any

node has a smaller difference from the physical time than e.

= Ll B0 =

Theorem 3 .

The differences between the local execution times of a

transaction are not more than €.

" Proof
Let the transaction arrive with timestamp Cm(Tm) at node

i at physical time Ti and at node j at physical time Tj' The

timing started at node i terminates at:
r-[Ci(Ti)—Cm(Tm)]+Ti

The timing started at node j terminates at:
= C.. (T)=C (T +T.
t=[C(T)=C (T)]1+T,

The absolute value of their differences is:

l{r—[Ci(Ti)—Cm(Tm)]+Ti}—{r—[Cj(Tj)—Cm(Tm)]+Tj}I=

IC (T,)=C.AT.)+T :=T. I=1C. (T,)=C.(T.+At J+T.#At-T: |I=
E e R e T et i R o Tl

lci(Ti)-cj(Ti)—cj(At)+zi+At-¢i|<e

because IC.(T.)-C.(T.)I<e and
U T g

for the time interval At the local clocks may be regarded
as fully synchronized, therefore
Cj(At)=At

g.e.d.

Using the theorems, the time axis representation of a log

shows the following picture:
the execution
of T at dif-

. o fgreﬂt nodes

. VA 'e. : ‘]; ‘ E# Tl 41’_1;——\‘\1 Tk' 4 tl
\'_v_——’ L4 “&——V———’
\Cm(Tm) . ck(Tk)

= 1200 =

The time represented by Tl must be long enough to ensure,
for every node, the reception of the transaction of the
transaction of Tm and the reception of all conflicting trans-
actions timestamped earlier than Tm. If value t+e¢ is assigned
to T1, then the time between the physical issue time (Tm) and

the first local execution is at least T.

In the interval succeeding T1, the database may be incon-
sistent. Because of this possible inconsistency, the execution
of transactions conflicting with the tranaction of Tm is not
permitted in this interval. Consequently, the value of T2
should be at least t+2e¢.

Summing up the modifications to be done in case of real
clocks:

a/ The timing should be changed from t to t+e.

b/ In timestamp comparison t+2¢ should be used instead

of «x.
D. Weakening the condition of fully duplicated database

Instead of total duplication, the following constraint
will be used: the issuing node has to contain the whole read-

-set of the transaction.

The execution of a transaction can be completed within a
node, if the node satisfies the weakened condition with res-
pect to that transaction. That is, a transaction can update
its whole write-set on the basis of its read-set. The distri-
bution, similarly to fully duplicated databases, serves only
for introducing updates into the local databases. The nodes
execute only the part of a transaction write-set that refers
to its own database. Unfortunately it is impcssible to reduce
the number of meséages since, to have the same decision re-
sults on conflictions, every node must be informed about all

messages.

sT22" =
6. CONCLUSIONS

The suggested algorithm has some disadvantages. These
are the restricted usage area and the timing that may cause
implementation difficulties. On the other hand the advantages
of the algorithm are that the execution of a transaction
needs minimal number of messages and the amount of auxiliary
information (waiting lists or the reservation of timestamps

in the database etc.) is rather small.

We have some concluding remarks related to timing. The
minimal time, calculated from the paramteres of the network,
does not have to be used for the value of 1. With increasing =,
the number of transactions executed in time unit decreases;
but on the one hand the timing can be implemented more easily
using digital methods and on the other hand the short failures
do not result the exceeding of t that stops the system and

needs recovery.

Other demands of the algorithm are usually provided by
modern systems. In computers the preciousness of real-time
clocks is in the order of 10_7, 10-8. That is, it is possible
to hold the clock conditions for a long time without any
synchronization even for an ¢ that is one order less than .
Moreover, the clocks can be synchronized by messages. To
determine the preciousness of synchronization the results of

L. Lamport [3] can be used.
ACKNOWLEDGEMENTS

The author would like to thank L. Maté his continuous

help during editing of this paper.

P

=2 =

REFPERENTCES

Bernstein, J.B.Rothnie, N.Gooedman, C.A.Papadimitriau;
The Concurrency Control Mechanism of SDD-1: A System
for Distributed Databases (the Fully Redundant Case)
IEEE Transactions on Software Engineering

may 1978 154-167

Bernstein, D.W.: Shipman, J.B. Rothnie:;
Concurrency Control in a System for Distributed
Databases (SDD-1)

ACM Transactions on Database Systems

march 1980 18-51

L.Lamport; Time, Clocks and the Ordering of Events in a

Distributed System
CACM july 1978 558-565

G.Ricart, A.K. Agrawala; An Optimal Algorithm for Mutual

Exclusion in Computer Networks

CACM january 1981 9-17

E. Chang; n-Philosophers: an Exercise in Distributed

Control

Computer Networks sept 1980 71-76

Rosenkrantz, R.E. Stearns, P.M. Lewis II;

System Level Concurrency Control for Distributed
Database Systems

ACM transactions on Database Systems

July 1978 . 178~198

Rothnie, P.A. Bernstein, et.al.; Introduction to a
System for Distributed Databases (SDD-1)

ACM Transactions on Database Systems

march 1980 1-17

Thomas; A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases

ACM Transactions on Database Systems

June 1979 -180~-209

= ip2 g —
Osszefoglalds

EGY UJ IDOZITESEN ALAPULO ALGORITMUS AZ ELOSZTOTT ADATBAZISOK
KONKURRENS FELUJITASAINAK VEZERLESERE

A dolgozat réviden ismerteti a duplikalt elosztott adatbazisokon alkalmazott konkurrencia
vezérl algoritmusokat, majd megad egy 1j eljarast, amely a feltjitdsok szinkronizaldséra
tizenetek helyett id6zizést alkalmaz. A modszer optimalis az egy feltjitashoz tartozé lizene-
tek szdmara nézve.

06 OOHOM HOBOM aJI'OPUTME B DPAaCHIpeleseHHEX o6paboTKax OaHHBIX

B HacTosAmell pa6oTe 3aHUMaAeMca DpaclnpenesieHHON o6paboTKOi
NaHHBIX. JlaeM HOBHIM aJIFOPDUTM OJIA CHUHXDOHM3AlMU KOHKDETHHIX MPO-
neccoB. Ham ajropuTM ONTHMaJIbHO paboTaeT OTHOCHUTENBLHO MOMHOCTH
IakeTOB, KOTOpPHE HEOOXOIWMBl IJIA NEPEnoChHUIKM HHOODMAlIUH .

	András Pogány: Egy új időzítésen alapuló algoritmus az elosztott adatbázisok konkurrens felújításainak vezérlésére���
	Oldalszámok������������������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������

