
87-104

N O T E S QN T R A C E L A N G U A G E S /
P R O J E C T I O N A N D S Y N T H E S I Z E D C O M P U T A T I O N S Y S T E M S

■ 73TA SZTAKI Közlemények 32/1935

DANG VAN HUNG

Computer and Automation Institute,
Hungarian Academy of Sciences

ABSTRACT

Connection between trace languages and projective products is
pointed out, the parallel product is defined. The way how it
can be used in analyzing synthesized computation systems is
presented. Relation of the trace languages to safe Petri-nets
is considered, too.

1. INTRODUCTION

Trace languages and projective products are used to represent
behaviour of parallel computation systems. Their relation to
Petri-nets have been studied by A.Mazukiewicz [8] and E.Knuth
[l] . The application of trace languages in representing pro­
jective products is presented in [2j .

It is worth pointing out the connection between that concepts,
how the projective products can be used to represent trace
languages. In this paper we shall be concerned with those
problems and their applications in studying behaviour of
systems synthesized from component systems, which has attracted
a great deal of attention to our knowledge.

The next section is devoted to considering the connection
between trace languages and projective products. In the third
section we attempt to apply this connection to study the

^ 88 -

behaviour of synthesized computation systems’. The way of veri­
fication of such systems is discussed in the last one.

2. REPRESENTING TRACE LANGUAGES VIA PROJECTIVE PRODUCTS

The main objects concerned to in this section are trace
languages and projective products. For their details we refer
to [Г, 2,8] . Here we recall only the basic definitions.

Let 2 be a finite alphabet. A binary symmetric and irreflexive
relation I over £ is said to be an "independency" one. Now
define as the least equivalence relation on 2 * satisfying
the condition:

a,b G. I => W'abW" ~ w'baw"

for all strings w' , w " £ 2 * and all symbols a,b62. Traces (with
respect to I) are defined as equivalence classes of the
relationrJ. The trace containing the word w (with respect to I)
is denoted by [w] , and the set of words belonging to trace T
is denoted by { T}.

Suppose that w, , w 0 , . . . , w 6 2*. The projective product of x. a m n
w , w , . . ., w (denoted by © w.) is the set { w&£*| Vi=l, 2 , . . . ,m,-L A v = \ 1
w| = w. x }, where w) denotes the projection of w into the v;. l ■ 1V r j

set of symbols constituting v.

The constructing of the independency relation, with respect to
which the given projective products is a trace, has been
presented in [2]. Now we consider the reverse problem. In doing
so, we need the following concepts, which has been presented
detailly in [б] .

Every independency relation is called sir-relation. Let I be
sir-relation, families of subsets ken (I) and ken (I) of 2 are
defined as follows:

89

ken (I) = {A |Va,b £ A, (a, b)£ll)idííVc^A,.3a6A, (a, c) £l} ,
ken(I)= {A|Va,b£ A, (a,b)^I&Vc$A,3a£A, (a,c)£I} ,

where id denotes identify relation.

ken(I), ken(I) are coverings of E. Reversely, from any,covering
Я of E, we construct a sir-relation sir (Я) as the following:

sir(£i)= { (a,b) | a^b&VA£&, a$A or b£A} .

Corollary 1 :
For every covering Я of E
a/ 4B(z9., 3 AG ken (sir (51)) such that BCA,
b/ Sir (,$(.)= sir (ken (sir (i£))) .

Now, let T be a trace language over E under I, Т=[ь]^ (L is a
word-language), A- be any covering of E such that sir(,SD=I,
$={A^, A 2 , . .., An >. Denote by h^, i=l,2,...,n the projections
from E to A., i=l,2,...,n;

h.(a) = if abA. then a else e,1 — 1 ---- ----

where e is the empty word. For every i=l,n, h^ can be extended
to a homomorphism from E* to At by the usual way.

Theorem 1 : Vt£T, there exist uniquely w^,w 2 ,...,wn , w t AÍ,
i=l,2 ,...,n such that

n
t = (x> w . .

i=l 1

Proof: Take wtt and put w.=h.(w), i=l,2,...,n. Let w'~w. By
1 1 (2) / \definition of relation ~, there exist w , w ,...,w m such

that w ^ = w, w (m)= w ' and Vj=l, 2 , . . . ,m-l

w
w (j) =
(3+1)_

w. ^ ab w~_L / • \ Z
w^ -* 1 11 ba w 2

(j)
(j) , (a, b)£ I .

90

We show by induction on j that:

Vi=l,2,...,n, h^(w) = h^ (w ̂) .

Because w ^ = w, the case of j=l is trivial. If (a,b)£I=sir (Д)
then Vi=l,2,...,n, a£A. or h$A.. Hence h . (ab)=h. (ba) and
h.(w(J»)= h.(w(j+1>). 1 1 1 11 1

The inductive hypothèse gives h^ (w ̂) = h(w). So h.(w')= h.(w),
Vi = 1,2,. . . ,n, V w'~»w . This implies that w n , w 0 , ..., wn are
defined and by the definition of projective product,

n
w'& (x) w. .

i=l 1
n

We have shown that Vt, VwGt, t £ (*) h. (w) .
i=l 1

Now, by induction on the length |w| of w, we show that
n
(x) h. (w)9t VtGT , t = [w] j .
i=l

n
When I w I =1, it is obvious since t and (x) lu (w) contains
exactly one element. ̂ ^

n
Suppose that (x) h. (w) s t, Vw, |w|<_ k, k>_l. Let w" = wa andn • __-j 1

€ (x) h. (w") ̂ Then
i— 1 1

w

(w") = -
h^ (w) if a^A^,
h . (w) a if aGA . .X 1

Because a has an occurence in w', w' can be written in the form

w = y 1 a y 2

where У2 does not contain an occurence of letters in A^
containing a by sir(&)=I. Hence:

9 J

(w') =1и (ух a y 2) = hi (y1 y2)'
hi (y1a) ,

a$A. 1
a£A.î

Of course, Ь^(у1 у2)= hr (w) ,h^ (y^a)- (w)a . Therefore
Ь^(у1 у2)= hi (w) , Vi=l,2,...,n and since that, y^y2 e.[w]I by
inductive hypotheses. For every b having an occurence in y2 ,
(a, b)£ I=sir (Л) . This implies that Уд_аУ 2 ~ УдУ2а ~ wa.

To complete the proof of theorem 1, we show that the represen- ntation t= (x) w^ is unique. But this fact is obvious by;= (x) w . i- 1 1definition of projective product,

Combining theorem 1 and theorem 5 (in [2]) gives that a set of
words in E* is a trace if and only if it is a projective
product of some words.

For the given independency relation I, we prefer to use this
representation in the case of ̂ 9t=ken (I) and for the given trace
language we prefer to consider the case when I is the smallest
relation, with respect to which T is trace language.

From the, representation of traces, we can define the parallel
concatenation of trace languages, which is useful for re­
searching the concurrency of combination of parallel compu­
tation systems.

Let S-^,£2,...,2 be alphabets (not necessarily disjoint),
I^,I2 ,...,Im be sir-relations on E^,E2,...,E respectively.
Suppose that

Jcen (I±) = (An v
1-1 ni-l+2'

An , i=l,2 ,. ,m,

n =0 . о

Let t,,t„,...,t be traces on E,,...,E with respect to -L ̂ m _l m
I-^,I2 ,...,Im respectively. By theorem 1, there exist

92

w lfw9,...,w such that:X " u_m
n .l

t . =l ® w. , i = l , 2 , . . . ,m, W.ÊA , j = 1,2 , . . . , n
+1 J J J ml-lj=n. ,+l

It follows from theorem 1 that if
nm
® w .фф,
j=l D

nm
t= ®

j=l
is a trace o\er Т,- E ^ D E ^ . . "U2m (with respect to

m ___
sir (U ken (I .)).

i=l 1

Definition 1 : The trace t defined as above is called parallel
concatenation of t1 ,t2,...,t and is denoted by
t, X t„ X . . . X t1 2 n

m ___
The following preposition shows the relation of sir(U ken (I.))

■ __T 2.
to (we restrict our attention to the case m= 2).

Preposition 1 : The parallel concatenation t of two traces t^
and t2 is a trace on E UZ2 with respect to

R = ((i1ui2)\(s1n s 2) 'и (I ni2) u ((s 1\ e 2)x (S2\S1)U

U ((S2\S1)X (E-jXZ^) .

Proof :

It is because of sir (ken(I)Uken(l2)= R. Now, with
'^2 '‘ '^m ^ ̂ above, let T-^,T2,..., T^ be trace

languages on E , E E under I.,I„,...,I and L,,L„,...,L j- £ пт x а гп X a m
be languages on E ^ . . . ^ respectively.

Definition 2 : The parallel concatenation of T-^,T2,...,T and
the projective product of ,L2 (denoted by Т^хТ2 х...xT^
and L1 ® L 2® . . . ® L m respectively) are defined as follows:

93

Т.хТ x...xT = {t t=t.Xt~X. . .Xt , t .£ T . , i=l,m},1 2 m 1 1 2 m' i ' '
L1 © L 2® ‘ ' ' ® Lm= u ̂wi(H)w 2 ® * ' * © wm I W î -Li ' i=ï7m} •

It follows from theorem 1. that if T=[l]^ is trace language
on E under I and ken(I)= { . ,An > then

n
{T} ^ © h. (L) . (*)

1 = 1 1

The trace language equating (*) plays an important role in
studying systems decomposable into sequential components. So we
refer to "decomposable condition" as:

n
{T} = © h (L).

i=l 1

This condition shall be concerned to in the next sections.

3. SYNTHESIZED COMPUTATION SYSTEMS AND THEIR BEHAVIOUR

In this section, computation systems take the general form
presented in [3].

Definition 3 : A computation system consists of:

(i) a set D (states),
(ii) an element x of D (the initial state),
(iii) a finite set E of operations,
(iv) a function from E to the set of partial functions

from D to D. The function — is extended to E* in the
usual way. We sometimes write S=(D,E,x) instead of
S=(D,E,x,).

The set Cg of all computation sequences (from x) and the
reachability set Rg of reachable states of computation system S
are defined as

- 94 ^

Cg ={a E*|a(x) is defined},
Rg =(yCD |3 a,6E* , а (к) =y} .

By a synthesized computation system, we think of computation
one comming from these being concurrently active with some
synchronization conditions. We shall confine our attention to
the case when synchronization conditions come from the fact
that some actions must take place at the same time. By
constructing homomorphisms, we shall reduce that case to the
one when the "contemporary" actions are common ones of some
component systems. The following definition is consistent in
that case:

Definition 4 : Let S^= (D^ , E^ , jjc , 1) , i=l,2,...,n be compu­
tation systems. The synthesized computation system of
S^,S2 ,...,Sn (denoted by spx?2 x'’‘*Sn̂ is the following:

S = (D,E, ,“)

where
D = D.xD_ X...xD ,

1 2 n
E = E.UE„X...x£

1 2 n
X = (x1 , x^ . . . ,otn) , and

~:E — > (D — ► D)
is defined as follows:

Va&E, a (У1 'У2 , • • * ,УП) = (z1 ,z2 , . . . ,zn) iff:

z± a1 (y±) , a.£E±

Zi * yi
in the other cases.

Now let fu, i=l,2,...,n be projection from E into E ^
i=l,2,...,n. When a(x)=y we write x — > у for convenience.
The connection between the behaviour of S and the behaviour of
£>1 ' £>2 ' ' ’ ’ '£>n is showed by the following theorem:

95

Theorem 2 :

Proof :

cs = cs © c s ® . . . ® C .
1 2 n

wecSi© cs2© • • • ® c £ Vi=l,2,...,n.
n

3Y-j_€d ̂ such that

lb (w)£Cs
i

h . (w)l---- >y •X h

Vi=l,2,...,n,

w£C,

by the definition of in S .

Remark: We sometimes deal with the set of computation sequences
of a computation system, which lead the system to the state in
the given set of states.
Denoting

Cg (>Q) = {o.eS*|^— y, y€Q£D}

we have also: (by modifying consistently the proof of theorem
4) :

cs (>Qi xQ2x• • • xQn)= cs © • •- 0 CS (>Qn 1 '1 n
where

Qi" Di' i=1'2'*••'n -

Now we consider computation systems realized by Petri-nets [3].
We shall combine Petri-nets with one to another in the way
presented in [5].

A Petri-net P = (П,Е,А,эс) consists of:

(i) a finite set П of places,
(ii) a finite set E of transitions,
(iii) an incidence function Д:ПхЕиЕхП
(iv) an initial marking х:П— > N .

-> (0,1),

- 96 N
A function у:П —* N is called a marking. When П={рр ,p2,...,p^},
we sometimes regard a marking у as an n-dimensional vector
<У (P2) 'У (P2) ' • • • гУ (pk)>.

Let Dp be a set of markings of P. Fór each a £E a partial
function a: Dp — > Dp is defined as follows:

Let y£Dp . Then a (y) is defined if and only if у (pp) (pp,a)
for all pp&n. Suppose that a(y) is defined, then

a(y) (Pj_)= У(Р±) - A(pi,a) + A (a,pp) , р£П.

The computation system Sp=(E,Dp ,x) is said to be realized by P.

The Petri-net P is said to be safe if R £{0,1}x {0,1}x ...x {0,1}.
When P is a safe Petri-net, each marking—у of Rc can be
written as a subset M of П , —
(namely, y(pp)=l iff pp£M) .

Definition 4: Let P be a safe Petri-net. A relation I on E is
said to be an independency relation generated by P iff:

Va,b£E, (a,b)£I В marking M6R
bP

such that both a and b are enabled at M and A(p,a). A(p,b)= 0,
Vpen (a is called to be enabled at M if VpGlI,
(A (p,a) =1) =>y(p)>_l).

Definition 5 : Trace language T is said to be realized by safe
Petri-net P if T is a trace language on E under the
independency relation generated by P and {T}=Cc

bP
Let Pp= (IL,Ep ,Ap, xp), i=l,2 be Petri-nets, Sp and S2 be the
computation systems realized by Pp and P2 respectively.
Assuming Пр={р2 , . . .p^} , n2 = 'fP]<;+]_ / • • •/Рт Ь П1ПП2=0. We consider
the Petri-net Ppx P2 received from Pp and P2 in the following
way [see 5] :

- 97

P = E 1xp 2 = (П, E , A ,k),

where

П= П1иП2, S=S1US2, A(p± ,a)=-
A^ (p.̂ ,a) if a£2^ ,

0 otherwise

for i=l,2,...,k and

Д(Р± #а) =
Д2 {p^,a) if a£E2/
0 otherwise

for i=k+l,k+2,.. . ,m,
к - (x1 x̂-2) ‘

Let S be the computation system realized by P.

Theorem 3 :
S — S-ĵ я S2

Proof : Each marking of P can be written as

(ух/У2) , У хе м к , y2eNm k .

By definition of Д, Vi=l,2 , . . . ,к ,

у (p±) >Д (р±,а)¥а£ (p±) >Л1 (р±,а) VatE-ĵ ,

¥i=k+l,k+2,...,m,

у (p±) >A (p± / a)Va£E^ y2 (p±)>Д2 (pi,a)¥a£E2 .

That is, a is enabled in marking у of P if and only if a is
enabled in y. when a£E., j=l,2. Furthermore3

¥i = 1,2,...,k

t 98

У (p ̂ “ A(pifa)+ A(a,pi)= <
y± (p±)-A1 (p± ,a) +Ai (a,pi) if a62^,

if i

V . — k+1,k+2í / • • • f m •

У2 (p±)"л2 (р±#а)+A2 (a,pi)if a£E2,
y(pi)- A (p± , a) + A(a,p±)= 1

3 if a£E2 -

3. 3Since that у — > у' <=*• у^ — > у(when а££^ (j=l,2) and у^=у(
when a£E . (j=l,2). That means, S=S.xs„j ' 1 2

Corollary 2: If and P2 are safe nets then P is a safe one.

Proof: Since R0 x Rno о b2

Theorem 4 : If T^ and T2 are trace languages realized by safe
Petri-nets then so is T^xT2>

Proof : Let safe Petri-nets P^,P2 be realisations of T-^,T2
respectively. By theorem 3 and corollary 2, P^xP2 is safe
Petri-net and Cg = {T^}x{T2}l Of course, {T1}x{T2}= {T^xT^.

is followed from the fact that I ̂ sir (ken (I -̂) Uken (I2)) , where
1^ and I2 are the independency relations generated by P^ and

¥t=t1xt2£T1xT2 , Vw£t =*> M j - t

where I is the independency relation generated by P-^xp^. This

P2 respectively.

■pr-lT* P T T P r v T.7 'C +■ there exist

(b,a)£sir (ken (I1) Uken (I2)) , w 1=w G[w] i . If wiG[w] , since

- 99

Wi'Wi+l£{Tl}x{T2 }' there exists mERg such that both
P1XP2

and b are enabled at m. On the other hand, from definition
of P-l*P2 an<̂ Preposition 1 it follows that if
(a,b)£sir (ken (I) Uken (I2)) then VpÉTI, Д (p, a) • Д (p, b) = 0. This
implies that, in our case, (a,b)GI which means w^+-^£[w]I . The
inductive principle gives w'€r[w] ̂ and this completes the proof
of theorem 4.

This theorem states the closure property of the family of trace
languages realized by safe Petri-nets under parallel
concatenation.

Corollary 3: A trace language T=[b] satisfying the decom­
posable condition (in the 2 section) is realized bv safe Petri-net.
if for every i=l,2,...,n, h^(L) is realized by safe Petri-net.

(The analogous and stronger result has been stated by E.Knuth
in [2] .)

Now we conclude this section by a small remark. Namely,
synthesized computation systems defined in this paper, to our
knowledge, are general enough to research the synchronization
of asynchronised processes. In the definition of it, if
E..,E„,...,E , are disjoint pairwise and E =Е.UE_U...UE .= EI 2 n-1 n 1 2 n-1
then the systems S can be considered as the synchronization of
asynchronised systems S,,S0,...,S , by S . When S is realized
by Petri-net, S turns to a multiprocessor system defined and
studied detailly by P.H.Starke [7]. When is a unshared
producer-consumer system [3] , S turns to a system synchronized
by P-V operations. The same method used in studying those
systems can be used to study our system also.

- ioo
4. ANALYSING SYNTHESIZED SYSTEMS VIA THEIR COMPONENTS

Many properties of synthesized systems can be received through
the properties of their components. Unfortunately, those
properties hav-e been based on the regularity and it is not very
useful to analyze synthesized systems by analyzing their com­
ponents as the regularity is preserved by synthesizing.

As for us, we think that the most useful thing of this way is
in verifying systems and proving the correctness of translating
from one to another.

This section is devoted to the application of the above concept
in the verification of synthesized systems. We shall take the
method presented in [4].

Let
S = S,xS„X . . .xS 1 2 n

By [4], our task is construct an assertion system for S.

Assume that AS^,AS2,.. . ,ASn are assertion systems for
S,,S„,...,S respectively, A S .=(V.,E .,M.), i=l,2,...,n. We _L u Г1 1 1 1 1
construct AS for S as follows:

where
AS = (V, E ,M) ,

V = V, xV.x. . . xV ,1 2 n
E = { ((vx,v2, . . . ,vn) ,t, (v' ,v' ----,v^)) I

if t€Si# (v i ,t^vp£Ei, if tfEi , v±=v'},
M = M-. xM„ X ... X M : V. XV x . . . xV — > 2° ,1 2 n 1 2 n
M (V l ,v 2 , . • . ,vn) = M (V l) xM2 (v2)x... xMn (vn) 9

D-. xD0 x . . . xD_ .1 2 n

- ICQ

Preposition 2: If AS^ are correct assertion systems for S^,
complete for \A',i= l,2,...,n than AS is a correct assection
system for S and complete for V'=V^xV'x...xv^ .

Proof : Denote

Xt = {y|Px£X, X — y} for any X9.D.

We have

v ((v1»v2,...,vn) ,t, (vj,v';...,v^)) £ E

M ((Vf, v2 , . . . / vn)) = Mx (v1)xM2 (v2)x . . .xMn (vn) f ф.

by NL (v^) ф ф Vi=l,2,...,n.

If táz . then V ' =v . and M . (v .) = M . (v) . Since thatГ 1 I X 1 1 1 1

M((vlfv2,...,vn)) — > Q = (Q^,Q2 »•••,Q^)

where = Çh if t€E^ and (v^) in the otherwise. It
means that AS is correct for S.

To show that AS-' is complete for V'=V'xV'x. . ,xV^ , we should note
that ¥ v'ev', Vx,y£D, t6E, if x — y, xfcM(v') then x± — у in
S^ when t£E^ and x^=y_^ when t^E . . Furthermore Vi=l, 2 , . . . , n ,
x.6M. (v'). Since Vi=l,2,...,n , AS^ is complete for V^, there
exist v^V. , (v',t,vi)£Ei for tes^ Hence, putting
v= 6 ,6 , ... ,6 , ô.=v' if t^E. and 6.=v. if t£E. we
have (v',t,v)6E.

-102 -г

5. CONCLUSION

We have shown certain connections between trace languages and
projective products. Mathematically, they are different from
each to other, but both are introduced to for the purpose of
studying the behaviour of concurrent computation systems,
especially in representing their concurrency.

The approach presented in this paper can be used in studying
concrete systems (such as distributed systems, multiprocessor
systems) and the concurrency measure of synthesized systems.

6. REFERENCES

11 1 E.Knuth: Petri-nets and regular trace languages. April,
1978, The University of Newcastle upon Tyne, Computing
Laboratory.

12 I E.Knuth, Gy.Gyory, L.Rónyai: A study of the projection
operation. Application and theory of Petri-nets.
Springer-Verlag, 1982.Vol.52.

I 3 I Takumi Kasai and R.E.Miller: Homomorphisms between models
of parallel computation. J. of Comp, and Syst.Sciences, 25,
(1982) .

j 4 1 Horst Müller: Inductive assertions for analysing
reachability sets (in 2).

I 5 1 C.André: Behaviour of a place-transition net on a subset of
transitions (in 2).

16[Ryszard Janicki: Nets, sequential components and
concurrency relations. Theoret.Computer Science 29, (1984)
87-121.

- J03

I 7 I Peter H.Starke: Multiprocessor systems and their
concurrency. J. of Information Processing and Cybernetics
- EIK - 20, (1984), 4.

I 8 j A.Mazurkiewicz: Concurrent program schemes and their
interpretations. DAIMI PB-78, Aarhus Univ. Press, 1977.

104

Megyjegyzések a nyomnyeIvekről, projekciós és szintetizált

számítási rendszerekről
4.

DANG VAN HUNG

Összefoglaló

A szerző definiálja a párhuzamos szorzat fogalmát és rámutat
bizonyos összefüggésekre a nyom-nyelvek és a projektív-szorza­
tok között. Megmutatja, hogyan lehet ezeket felhasználni a
szintetizált számítási rendszerek elemzéséhez. A biztonságos
Petri-hálók és noym-nyelvek egymáshoz való viszonyát is meg­
vizsgálja.

Замечания о языках-следах, проекционных и синтетизированных
вычислительных системах

Данг Ван Хунг

Резюме

Вводится понятие параллельного продукта и показывается связь
между языками-следами и проективными продуктами. Показывается
как могут использоваться эти понятия для анализа синтетизиро­
ванных вычислительных систем. Рассматривается также связь
между безопасными сетями Петри и языками-следами.

	Dang Van Hung: Notes on trace languages, projection and synthesized computation systems��
	Oldalszámok������������������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������

