o

TTA SZTAKI K&zlem&nyek 32/1985 87-104

NOTES ON TRACE LANGUAGES,
PROJECTION AND SYNTHESIZED COMPUTATION SYSTEMS

DANG VAN HUNG

Computer and Automation Institute,
Hungarian Academy of Sciences

ABSTRACT

Connection between trace languages and projective products is
pointed out, the parallel product is defined. The way how it
can be used in analyzing synthesized computation systems is

presented. Relation of the trace languages to safe Petri-nets

is considered, too.

1. INTRODUCTION

Trace languages and projective products are used to represent
behaviour of parallel computation systems. Their relation to
Petri-nets have been studied by A.Mazukiewicz [8] and E.Knuth
[ﬂ . The application of trace languages in representing pro-
jective products is presented in [2].

It is worth pointing out the connection between that concepts,
how the projective products can be used to represent trace
languages. In this paper we shall be concerned with those
problems and their applications in studying behaviour of
systems synthesized from component systems, which has attracted

a great deal of attention to our knowledge.

The next section is devoted to considering the connection
between trace languages and projective products. In the third

section we attempt to apply this connection to study the

- 88 =

behaviour of synthesized computation systems. The way of veri-

fication of such systems is discussed in the last one.

2. REPRESENTING TRACE LANGUAGES VIA PROJECTIVE PRODUCTS

The main objects concerned to in this section are trace
languages and projective products. For their details we refer

to [1,2,8] . Here we recall only the basic definitions.

Let Z be a finite alphabet. A binary symmetric and irreflexive
relation I over I is said to be an "independency" one. Now
" n

define "~" as the least equivalence relation on I* satisfying

the condition:
a,b ¢ I = w'abW" ~ w’baw"

for all strings %', w"e€ 3* and all symbols a,béX. Traces (with
respect to I) are defined as equivalence classes of the
relation ~. The trace containing the word w (with respect to I)
is denoted by [W]I, and the set of words belonging to trace T
is denoted by { T}.

Suppose that wi,wz,...,%ne I*, The projective product of

[}
W), W,, ..., W (denoted by g;(wi) is the set { wen*|V¥i=1,2,...,m;,
wlw =" i_l}, where w}v denotes the projection of w into the

set of symbols constituting v.

The constructing of the independency relation, with respect to
which the given projective products is a trace, has been
presented in [2]. Now we consider the reverse problem. In doing
so, we need the following concepts, which has been presented
detailly in [6].

Every independency relation is called sir-relation. Let I be
sir-relation, families of subsets ken (I) and ken (I) of I are

defined as follows:

- 89 -

ken(I)= {A|¥a,b€ A, (a,b)EIVid{¥c¢A,Ia€A, (a,c)¢I},

ken(I)= {A|¥a,bEA, (a,b)¢I&¥c¢A,3ac€A, (a,c)EI} ,
where id denotes identify relation.

ken(I), ken(I) are coverings of Z. Reversely, from any covering

Q of I, we construct a sir-relation sir(d) as the following:
sir (@)= {(a,b) |a#b&¥AEDN, a¢A or b¢A}.

Corollary 1:

For every coveringugfof)
a/ ¥BEQ, 3 A€ ken(sir (1)) such that BEA,
b/ sir ()= sir(ken(sir (d))).

Now, let T be a trace language over I under I, T=[IJI (L 1s a
word—language),él be any covering of I such that sir (9 =I,
3;{Al, Doy weny An}. Denote Py hi’ i=1,2,...,n the projections

=

from ¥ to Ai, 1=1,2; 60608

h.(a) = if aEAi then a else e,

where e is the empty word. For every i=1,n, hi can be extended

to a homomorphism from IZ* to A; by the usual way.

Theo§em l: ¥tET, there exist uniquely WirWore oo Wy wiEAg,
i=l;Z;:s+3;n such that

n
t= @w .
i=1 1

Proof: Take wét and put wiEhi(w), i=1,2,...,n. Liet w ~w. By

+ definition of relation ~, there exist w(l), w(z),...,w(m) such
that w'is w w ™o o7 and 21,2, .. 001
B s R o TN |

: Lo .
w(J+l)= wl(J)ba wz(J), (a,b)el .

= 90 -

We show by induction on j that:

T TR R By Ge'3%y
Because w(l)= w, the case of j=1 is trivial. If (a,b)€I=sir (4)
then ¥i=l,2,. e pDy a¢Ai or b¢Ai. Hence hi(ab)=hi(ba) and
hi(w(J))= hi(w(3+l))'

(j)) = h(w). So hi(w’)= hi(w),

¥i =1,2,...,n, ¥ w'~w . This implies that Wir Woye.., W oare

The inductive hypothese gives hi(w

defined and by the definition of projective product,

w'e ® W
i=1

n
We have shown that ¥t, wwet, t & ¥ hy (w) .
i=1
Now, by induction on the length |w| of w, we show that
n
i@l h, (WSt ¥teT , t = [w] .

n
When |w|=1, it is obvious since t and C)]qi(w) contains
i=1

exactly one element.

n
Suppoge that (:)hi(w)9 t, ¥w,|w|< k, k>1. Let w" = wa and
w’' € ()IH}W" %=l Then

i=1

h. (w) if aé¢A,
b (W8] =4 T if
hi: (w)ya 3if a€ed. .
i i

Because a has an occurence in w’, w' can be written in the form

14

Wi = Yl a Yo #

where Yo does not contain an occurence of letters in Ai

containing a by sir (d)=I. Hence:

- 91 -

h, (y.v,), aéa,

h, (w')=h, (y,ay,)= L 8- la
4 LTS Y tvoal o men
5 ek 4 i

Of course, hi(yly2)= hi(w),hi(yla)= hl(w)a . Therefore
h, (y,v,)= h; (w), ¥i=1,2,...,n and since that, ylyzeﬂi]l by

inductive hypotheses. For every b having an occurence in Yor

(a,b)e€I=sir (d). This implies that Y 3Y, ~ Y,Y,3 ~ wa.

To complete the proof of theorem 1, we show that the represen-
n

tation t=qc%_wi is unique. But this fact is obvious by
b f—

definition of projective product.

Combining theorem 1 and theorem 5 (in [2]) gives that a set of
words in I* is a trace if and only if it is a projective

product of some words.

For the given independency relation I, we prefer to use this
representation in the case of A=ken(I) and for the given trace
language we prefer to consider the case when I is the smallest

relation, with respect to which T is trace language.

From the representation of traces, we can define the parallel
concatenation of trace languages, which is useful for re-
searching the concurrency of combination of parallel compu-

tation systems.

Let 2
I

1’22""’2m be alphabets (not necessarily disjoint),
l,12,...,Im be sir-relations on 21,22,...,Zm respectively.

Suppose that

ken(Ii)= {An.
i-1

Let tl’tZ""’tm be traces on Zl""'zm with respect to

Il'IZ""'Im respectively. By theorem 1, there exist

- 92 -

Wy rWoreee Wy such that:

n

N
. * 5
wj, A=1,2 6 6w pI0, wjeAj, j=l,2,...,nm .

n. +1

% S

(&
Il

y 5

It follows from theorem 1 that if

n n
m m
® w.#p, t=

3=1 J j=1

is a trace over = I, UZ U...UZm (with respect to sir(

1Yz, ! ken(I,)).

ncs

12

Definition 1: The trace t defined as above is called parallel

concatenation of tl’t2""’tm and is denoted by

tlxt2>(...xtn

m
The following preposition shows the relation of sir(U ken(Ii))

to Il’IZ""’Im (we restrict our attention to the ca%glm=2).

Preposition l: The parallel concatenation t of two traces t

i}
and t2 is a trace on ElUE2 with respect to
o 2
R = ((IlUIZ)\(Zlﬂzz) U(IfﬂIz)U((Zi\EZ)X(Ez\Zl)U
U((Zz\zl)x(zl\zz)).

Proof:

It is because of sir(ken(Il)Uken(I2)= R. Now, with

21,22,...,Em, Il’IZ""'I as above, let Tl'TZ""’Tm be trace

1,22,..., 2,...,Im and Ll’L2""’Lm

be languages on El""'zm respectively.

m

languages on % Em under Il'I

1’T2""’Tm and
l,L2,...,Lm(denoted by Tlezx...me
and L1C>L2C>"‘C>Lm respectively) are defined as follows:

Definition 2: The parallel concatenation of T

the projective product of L

'_93_ o -

T xT,x...xT = {t|t=t xt,x...xt , t,€T,, i=I1,m},

12 A %2
LlCDLZCD...GDLm= U{wlCDWZC)...Cjwm|wf£Li, j=T 1},

It follows from theorem 1. that &2 T=[L]I is trace language
on £ under I and ken(I)= {Al,Az,...,An} then

n
(TS ® h,(@. (%)
i=1

The trace language equating (*) plays an important role in
studying systems decomposable into sequential components. So we

refer to "decomposable condition" as:
n
{T} = () h, (L)
. a
i=1

This condition shall be concerned to in the next sections.

3. SYNTHESIZED COMPUTATION SYSTEMS AND THEIR BEHAVIOUR

In this section, computation systems take the general form

presented in [3].

Definition 3: A computation system consists of:

(i) a set D (states),

(ii) an element x of D (the initial state),

(iii) a finite set I of operations,

(iv) a function "-" from I to the set of partial functions
from D to D. The function — is extended to £* in the
usual way. We sometimes write S=(D,Z, x) instead of
S= (DB, %y T«

The set CS of all computation sequences (from x) and the

reachability set R, of reachable states of computation system S

S
are defined as

- 94 =

Cy ={a I*|a(®) is defined},
R, =t yED |Ja€D*, a(x%)=y}.

By a synthesized computation system, we think of computation
one comming from these being concurrently active with some
synchronization conditions. We shall confine our attention to
the case when synchronization conditions come from the fact
that some actions must take place at the same time. By
constructing homomorphisms, we shall reduce that case to the
one when the "contemporary" actions are common ones of some
component systems. The following definition is consistent in
that case:

Definition 4: Let Si=(Di’zi’xi’-l)' i=1,2,...,n be compu-
tation systems. The synthesized computation system of
51'52""'Sn (denoted by SIXS2X...xSn) is the following:
S = (DIEI r_)

where

D = DlXDZX...XDn v

z = 81U22X...xzn ¥

X. = (xl,x2,...,xn), and

:Z2 — (D — D)

is defined as follows:

vaczo, a(yl,yz,...,yn) = (zl,zz,...,zn) TEf:
‘ z, = a‘(y,), act
i 4 S i
z &=
i 7 ¥

in the other cases.
Now let hi’ i=l,2,...,n be projection from ¥ into Ei,
i=1,2,...,n. When a(x)=y we write X Jiﬁ-y for convenience.

The connection between the behaviour of S and the behaviour of

81'82""’Sn is showed by the following theorem:

= 95 -

Theorem 2:

Proof:

weCy (ICg ®...®Cq <= ¥i=1,2,...,n,
i 2 n

hi(w)ECSi<==>Vi=l,2,...,n,

ﬂyiEDi such that hi(w)
i WECS

by the definition of "-" in S.

Remark: We sometimes deal with the set of computation
of a computation system, which lead the system té the
the given set of states.
Denoting

Cg (>Q)= {acz*| ~2 v, ye€Q D}

sequences

state in

we have also: (by modifying consistently the proof of theorem

4):
Cg (>Q1 xQyx...xQ)= Csl(>Ql)®...®CSn(>Qn),

where

Qi§ Di’ 1=1020; sioie M

Now we consider computation systems realized by Petri-nets [3].

We shall combine Petri-nets with one to another in the way

presented in [5].
A Petri-net P = (H,Z,A,xX) consists of:

(1) a finite set II of places,
(ii) a finite set ¥ of transitions,
(iii) an incidence function A:IIxzfUZxII — {O,1},

(iv) an initial marking x:I— N .

AL
\

A function y:II — N is called a marking. When H={pl,p2,...,pk},
we sometimes regard a marking y as an n-dimensional vector
<Y (Py) iy (Py)seee y(py)>.

Let DP be a set of markings of P. Fo6r each a €% a partial
function a: D, — D, is defined as follows:

Let y€D,. Then a(y) is defined if and only if y (p;) 34 (py ,a)
for all_piEH. Suppose that a(y) is defined, then

aly) (p;)=vy(p;) - Alp;,a) + Ala,py), pel.
The computation system SP=(2,DP,x) is said to be realized by P.

The Petri-net P is said to be safe if Rs {051 P {01 F%e o X021}

When P is a safe Petri-net, each markinggy of RS can be
written as a subset M of IT, E

(namely, y(pi)=l iff prM).

Definition 4: Let P be a safe Petri-net. A relation I on I is

said to be an independency relation generated by P iff:

¥a,bel, (a,b)éI =3 marking .MERS
P

such that both a and b are enabled at M and A(p,a). A(p,b)= O,

¥p€ell (a is called to be enabled at M if ¥pell,
(A(p,a)=l) = y(p)>1l).

Definition 5: Trace language T is said to be realized by safe

Petri-net P if T is a trace language on I under the

independency relation generated by P and {T}=CS "
P

= X i = | -
Let 31 (Hi,Zi,Ai, i), i=1,2 be Petri-nets, Sl and 52 be the

computation systems realized by El and P2 respectively.
Assuming Hl={p2,...pk}, H2={pk+l,...,pm}, HlﬂH2=®. We consider

the Petri-net Ple2 received from P, and P, in the following

§ B8 By
way [see 5]:

B = E XP = (HIZIAIX)I

where

A; (py ,a)if an1 '

1
M= A Ull.; 3=0.U8., Al(p; &)=
1772 1772 L o otherwise

for i=1,2, ..,k and

Asdpaya) it a€B4p
2
0 otherwise
for i=k+1,k+2; My
& = (X_l ,X.2) o

Let S be the computation system realized by P.

Theorem 3:

Proof: Each marking of P can bé written as
k -k

By definition of A, ¥i=1,2,...,k,

y(p;)>A(p, ,a)¥aEr = y,(pP;) 244 (pyra)¥akz,,

Vi=kal k+t2, ooy

y(pi)iA(pi,a)Va€E==»y2(pi)iA2(pi,a)Va622.

That is, a is enabled in marking y of P if and only if a is

enabled in yj when aezj, j=1,2. Furthermore

Wi & 1Pk

= 98 =

v, (p;)=A, (p,,a)+A, (a,p,)if a€z,.,
y(pi)— A(pl,a)+ A(a’pl)= 1 7 il AL ili ak i

L S A R

yz(pi)—Az(pi,a)+A2(a,pi)if a€r,,
Y(pl)" A(pira)+ A(a,Pi)=

2 1f a¢22.

Since that y £L>y"==>yj £L>y3 when aEZj(j=l,2) and yj=y§

when aEEj,(j=l,2). That means, S=Sl><S2

Corollary 2: Tf Pl and P2 are safe nets then P is a safe one.

. : =
Proof: Since RS__RSl X RSz s

Theorem 4: If Tl and T2 are trace languages realized by safe

Petri-nets then so is TlXTz.

Proof: Let safe Petri-nets Pl’PZ be realisations of Tl’T2
respectively. By theorem 3 and corollary 2, Ple2 is safe

Petri-net and CS = {Tl}X{Tz}; Of course, {Tl}X{T2}= {Tlez}.

Ve=t,xt T, xT,, Vwet => D{}IE:t,

where I is the independency relation generated by PlXPz. This

is followed from the fact that Ifisir(ken(Il)Uken(Iz)), where

Il and 12 are the independency relations generated by Pl and

P2 respectively.

For every w'et, w'e[w] there exist

sir(ken(Il)UEEH(Iz))’

1 2

1 2
W iy W pite @ g W w.=w, w. =w’', w.=w.,abw., w =w. baw.
AR R 4 & 7 Wy SR A0 wlba g

. 5 b i
(b,a)€sir (ken(I;)Uken(I,)), w=we[w] . If w,e[w] , since

nl

=~ 99 -

such that both a
175y
and b are enabled at m. On the other hand, from definition

wi,wi+rE{Tl}x{T2}, there exists mERSP

of Pl><P2 and preposition 1 it follows that if
(a,b)esir(ken(Il)Uken(Iz)) then ¥p€l,A(p,a)-A(p,b)= O. This
implies that, in our case, (a,b)eéI which means wi+l€[w]I . The
inductive principle gives w’é[ﬁ]l and this completes the proof

of theorem 4.

This theorem states the closure property of the family of trace
languages realized by safe Petri-nets under parallel

concatenation.

Corollary 3: A trace language T=[L]I satisfying the decom-
posable condition (in the 2 section) is realized bv safe Petri-net.

if for every i=l,2, «ss Dy hi(L) is realized by safe Petri-net.

(The analogous and stronger result has been stated by E.Knuth
in [2].)

Now we conclude this section by a small remark. Namely,
synthesized computation systems defined in this paper, to our
knowledge, are general enough to research the synchronization
of asynchronised processes. In the definition of it, if
21’22""’zn—l are disjoint pairwise and Zn=ElU22U...UZn_l= z
then the systems S can be considered as the synchronization of

asynchronised systems S S2""’Sn—l by Sn' When Sn is realized

'
by Petri-net, S turns té a multiprocessor system defined and
studied detailly by P.H.Starke [7]. When S_ is a unshared
producer-consumer system [3], S turns to a system synchronized
by P-V operations. The same method used in studying those

systems can be used to study our system also.

= J100 -

4., ANALYSING SYNTHESIZED SYSTEMS VIA THEIR COMPONENTS

Many properties of synthesized'systems can be received through
the properties of their components. Unfortunately, those
properties hawe been base& on the regularity and it is not very
useful to analyze synthesized systems by analyzing their com-

ponents as the regularity is preserved by synthesizing.

As for us, we think that the most useful thing of this way is
in verifying systems and proving the correctness of translating

from one to another.

This section is devoted to the application of the above concept
in the verification of synthesized systems. We shall take the

method presented in [4].

Let

S = SIXSZX...XSn 5

By [4], our task is construct an assertion system for S.

Assume that ASl’ASZ""’

Sl’SZ""’Sn respectively, Asi=(vi'Ei'Mi)’ 1i=1,2, c..;. We

ASn are assertion systems for

construct AS for S as follows:

AS = (V,E,M),
where
vV = lev2x...xvn,
B = {((vl,vz,...,vn),t,(vi,vé,...,vé))|
0 tEEi, (Vi’t,vi)eEi' 3 t¢Ei, Vi=V£},
M = MlxMZX"'X Mn: VlXV2><...><Vn —€>2D,
M(vl,vz,...,vn)= Ml(vl)xMz(vz)X...an(vn)9

é:DlxDZX...an .

= 101 =

Preposition 2: If AS, are correct assertion systems for Sy
complete for Vi',i= 1,2,...,n than AS is a correct assection

LoV Loxis anie XV
n

system for S and complete for V'=Vl 5

Proof: Denote
Xt = {y]Pxex, x & v} for any X<D.
We have
7 ’ ’
V((vl,vz,...,vn),t,(vl,v ,...,vn))E:E
M(VysVyreneesV))= My (VXM (Vo) .o oxM (Vv)F @
by Mi(vi) F @ Wi=1,2;v.30.
If t¢z. then v/=v., and M. (v,)= M, (v!). Since that
- s R 3 ¥ s |
M((v,,v v.)) 59 = (Q,0! Q')
i e LR i B e

where Qi = Qi if tezi and Qi = Mi(vi) in the otherwise. It

means that AS is correct for S.

To show that AS is.complete for V'=VixVéX...xVé , we should note

that ¥ v'eV’', ¥%,96D tel, 4f x = y, X€M(v') then X5 e Yy in
Si when tezi and Xi=Y5 when t¢zi. Furthermore ¥i=1,2,...,n,
xiEMi(Vi)' Since ¥i=1,2,...,0, ASi is complete for Vi, there
exist vievi, (Vi’t’vi)EEi for tezi. Hence, putting

- e P : = : -
v=8,,8,,...,8 , 8;=v] if t¢r, and 6,=v, if te€I., we
have (v’,t,V)EE.

= 102 =

5. CONCLUSION

We have shown certain connections between trace languages and
projective products. Mathematically, they are different from
each to other, but both are intr- iuced to for the purpose of
studying the behaviour of concurrent computation systems,

especially in representing their concurrency.
The approachpresented in this paper can be used in studying

concrete systems (such as distributed systems, multiprocessor

systems) and the concurrency measure of synthesized systems.

6. REFERENCES

|1| E.Knuth: Petri-nets and regular trace languages. April,
1978, The University of Newcastle upon Tyne, Computing

Laboratory.

|2| E.Knuth, Gy.Gydry, L.Rdényai: A study of the projection
operation. Application and theory of Petri-nets.

Springer-Verlag, 1982.Vol.52.

|3| Takumi Kasai and R.E.Miller: Homomorphisms between models
of parallel computation. J. of Comp. and Syst.Sciences, 25,
(1982).

|4| Horst Miiller: Inductive assertions for analysing

reachability sets (in 2).

|5| C.André: Behaviour of a place-transition net on a subset of

transitions (in 2).

|6| Ryszard Janicki: Nets, sequential components and
concurrency relations. Theoret.Computer Science 29, (1984)
87-121.

171

18]

= 103 =

Peter H.Starke: Multiprocessor systems and their
concurrency. J. of Information Processing and Cybernetics
- EIK - 20, (1984), 4.

A.Mazurkiewicz: Concurrent program schemes and their
interpretations. DAIMI PB-78, Aarhus Univ. Press, 1977.

=104. =

Megyjegyzések a nyomnyelvekrdl, projekcids és szintetizalt

szamitasi rendszerekrdl

DANG VAN HUNG

Osszefoglald

A szerzd definidlja a parhuzamos szorzat fogalmat és ramutat
bizonyos Osszefiiggésekre a nyom-nyelvek és a projektiv-szorza-
tok kdzobtt. Megmutatja, hogyan lehet ezeket felhasznalni a
szintetizalt szamitasi rendszerek elemzéséhez. A biztonsagos
Petri-hdaldk és noym-nyelvek egymashoz vald viszonyat is meg-

vizsgalja.

3aMeuyaHHda O dA3HKax-cienmax, INIPOEeKIHUOHHHX M CHHTEeTH3UPOBAHHEIX

BHUYHCJIHTEJIbHRIX CHCTEeMaX

JJaHr Bar XyHT
PeswMe

BédnHTCH IIOHATHE IIapaJlJIeJIBHOT'O IIPpOOYKTAa H IIOKAa3HBaeTCsa CBA3b

MeXnOy sA3HKaMH-CJIelaMHM U [IPOEeKTUBHEMH NpOoOyKTaMH. [loKka3wBaeTCcs
Kak MOT'YT HCIIOJIb30OBATbCHA 3TH IIOHATHA IJIA 4aHalJIn3a CHHTEeTH3HUPO-—
BaHHEIX BHYHCJIMTEJIbBHEHX CHCTeM. PaccMaTpuUBaeTCsa TaKXe CBA3b

MexIny 6e30racHBEMH ceTaMU [leTpH U sA3HKaAMH-CJIeaMH.

	Dang Van Hung: Notes on trace languages, projection and synthesized computation systems��
	Oldalszámok������������������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������

