ON THE c-SEPARABLE AND DOMINANT SETS OF VARIABLES FOR THE FUNCTIONS

S. SHTRAKOV

2700 Blagoevgrad School of Education of Blagoevgrad Bulgaria

In this paper we investigate some properties of the c-separable and dominant sets which are introduced immediately. We use some notations and terminology from [1,2,3].

Let f be a function, R_f - the set of all essential variables for f and S_f - the set of all separable sets of f.

Definition 1. A set M, $M \subseteq R_f$ is called c-separable for f with respect to $N = \{x_{i_1}, x_{i_2}, \ldots, x_{i_s}\} \subseteq R_f$, if for every s-values $c_{i_1}, c_{i_2}, \ldots, c_{i_s}$ of the variables in N, the subfunction of f which is obtained with these values, depends on all variables of M i.e. $M \subseteq R_f(x_{i_1} = c_{i_1}, x_{i_2} = c_{i_2}, \ldots, x_{i_s} = c_{i_s})$

When M is a c-separable set for f with respect to $R_f \setminus M$, it is called c-separable for f. The set of all c-separable sets for f with respect to N will be denoted by $S_{f,N}^*$ and $S_{f}^* = \{K \mid K \in S_{f,R_c \setminus K}^*\}$.

Definition 2. A set $M = \{x_{i_1}, x_{i_2}, \ldots, x_{i_m}\} \subseteq R_f$, is called dominant set over the set N, $N \subseteq R_f$ for f, if there exist m - values $c_{i_1}, c_{i_2}, \ldots, c_{i_m}$ of the variables in M such that

$$N \cap R_f(x_{i_1} = c_{i_1}, x_{i_2} = c_{i_2}, \dots, x_{i_m} = c_{i_m}) = \emptyset$$

and M is a minimal set with respect to this property.

When this equation is true and M is a dominant set over N, it is said that M dominates over N with the values $c_{i_1}, c_{i_2}, \ldots, c_{i_m}$.

The set of all dominant sets over N will be denoted by $L_{N,f}$ and $D_{N,f} = \{x_{\alpha} \in R_f | (\exists M) \ x_{\alpha} \in M \land M \in L_{N,f} \}.$

The proofs of the next lemmas follow immediately from the Definitions 1 and 2,

Lemma 1. If $M_i \in S_f^*$, $i \in I$, then $\bigcup_{i \in I} M_i \in S_f^*$.

Lemma 2. If $M \in S_{f,N}^*$ then for every N_I , $N_I \subseteq N$ the set M belongs to S_f , N_I^*

Lemma 3. If $M \in S_{f,N}^{*}$ then for every $M_1, M_1 \subseteq M$ the set M_1 belongs to $S_{f,N}^*$

Lemma 4. Let $M \subseteq R_f$ and $N = \{x_{j_1}, x_{j_2}, \dots, x_{j_s}\}$ R_f . If there exist the values $c_{j_1}, c_{j_2}, \ldots, c_{j_g}$ such that

$$M \cap R_f(x_{j_1} = c_{j_1}, x_{j_2} = c_{j_2}, \dots, x_{j_s} = c_{j_s}) = \emptyset$$

then there is a subset N_1 of N such that $N_1 \in L_{M,f}$.

Theorem 5. If $M \in L_{N,f}$, $N \in L_{p,f}$ and $M \cap N = \emptyset$ then there exists M_1 such that $M_1 \subseteq M$ and $M_1 \in L_{p,f}$,

Proof. We can suppose without loss of generality that $M = \{x_1, x_2, \dots, x_m\}$ and $N = \{x_{i_1}, x_{i_2}, \dots, x_{i_s}\}$,

Let c_1, c_2, \ldots, c_m and $c_{i_1}, c_{i_2}, \ldots, c_{i_s}$ be some values which M dominates over N and N dominates over P. If

$$f_{1} = f(x_{1} = c_{1}, x_{2} = c_{2}, ..., x_{m} = c_{m})$$

then for every s-values α_{i_1} , α_{i_2} , ..., α_{i_s} of the variables in N we obtain

$$f_1 = f_1(x_{i_1} = \alpha_{i_1}, x_{i_2} = \alpha_{i_2}, \dots, x_{i_s} = \alpha_{i_s}).$$

Hence

$$f_1 = f_1(x_{i_1} = c_{i_1}, x_{i_2} = c_{i_2}, \dots, x_{i_s} = c_{i_s})$$

and by $M \cap N = \emptyset$ it follows

 $f_1 = f(x_1 = c_1, x_2 = c_2, \dots, x_m = c_m, x_i = c_{i_1}, x_i = c_{i_2}, \dots, x_i = c_{i_s})$ and $P \cap Rf_1 = \emptyset$. By Lemma 4 it follows that there is M_1 such that $M_1 \subseteq M$ and $M_1 \in L_p$, f.

The condition $M \cap N = \emptyset$ is essential which may be seen from the following example. Let

$$f = x_1^o \ x_3 + x_2 x_4 x_5 + x_1 x_4 x_5 \pmod{3}$$
 where
$$x_1^o = \begin{cases} 1 \text{ if } x_1 = 0 \\ 0 \text{ if } x_1 \neq 0 \end{cases}$$

If $M=\{x_1,x_2\}$, $N=\{x_1,x_4\}$ and $P=\{x_3,x_5\}$ then $M\in L_{N,f}$ $N\in L_{p,f}$ but there isn't any set M_1 such that $M_1\subseteq M$ and $M_1\in L_{p,f}$.

Lemma 6. For every x_{α} , $x_{\alpha} \in R_f$, the set $\{x_{\alpha}\}$ belongs to $L_{\{x_{\alpha}\}}$, f.

Proof. For every value c_α of the variable x_α it holds true $\{x_\alpha\}$ \cap R_f $(x_\alpha=c_\alpha)=\emptyset$.

But $\{x_{\alpha}\}$ hasn't any nonempty proper subset and by Theorem 5 it follows $\{x_{\alpha}\}\in L_{\{x_{\alpha}'\}}$, f

Theorem 7. If $x_{\alpha} \in R_f$ and $x_{\beta} \in D\{x_{\alpha}\}$, f then $\{x_{\alpha}, x_{\beta}\} \in S_f$.

Proof. We can suppose without loss of generality that

$$M = \{x_{\beta}, x_{3}, x_{4}, \dots, x_{m}\} \in L_{\{x_{\alpha}\}, f}$$

If $x_{\alpha} = x_{\beta}$ then the theorem is trivial. Now, let $x_{\alpha} \neq x_{\beta}$. If we suppose that $x_{\alpha} \in M$ then by Lemma 6 it follows $M \not\in L_{\{x_{\alpha}\},f}$. It is a contradiction. Hence $x_{\alpha} \not\in M$.

Let c_{β} , c_{3} , c_{4} ,..., c_{m} , c_{m+1} ,..., c_{n} be n-1-values of the variables in $R_{f} \setminus \{x_{\alpha}\}$, $|R_{f}| = n$, such that $x_{\alpha} \in Rf_{1}$ and $x_{\alpha} \notin Rf_{2}$, where

$$f_1 = f(x_3 = c_3, x_4 = c_4, ..., x_m = c_m, x_{m+1} = c_{m+1}, ..., x_n = c_n)$$
 and

$$f_2 = f(x_{\beta} = c_{\beta}, x_3 = c_3, x_4 = c_4, \dots, x_m = c_m).$$

This choice of c_{β} , c_{3} , c_{4} ,..., c_{m} , c_{m+1} ,..., c_{n} is possible because $x_{\alpha} \in R_{f}$ and $M \in L_{\{x_{\alpha}\},f}$. On the supposition that $\{x_{\alpha}, x_{\beta}\} \not\in S_{f}$ we obtain $f_{1} = f_{1}(x_{\beta} = c_{\beta}')$ for every c_{β}' . In particular when $c_{\beta}' = c_{\beta}$ it follows $x_{\alpha} \in Rf_{1}(x_{\beta} = c_{\beta})$ i.e. $x_{\alpha} \in Rf_{2}$. This a contradiction. The theorem is proved.

Corollary, If $x_{\alpha} \in D_{\{x_{\beta}\},f}$ or $x_{\beta} \in D_{\{x_{\alpha}\},f}$ then $\{x_{\alpha}, x_{\beta}\} \in S_f$.

Theorem 8. If $M \in L_{N,f}$ and there is a value c_{α} of the variable x_{α} such that $M \not= R_f(x_{\alpha} = c_{\alpha})$ then $x_{\alpha} \in D_{N,f}$.

Proof. Let $M=\{x_1,x_2,\ldots,x_m\}$. If $x_\alpha\in M$ then the theorem is trivial. Now, let $x_\alpha\not\in M$ and c_α be a value of the variable x_α such that $M\cap Rf_1\neq M$, where $f_1=f(x_\alpha=c_\alpha)$. We can suppose without loss of generality that $x_1\not\in Rf_1$. Let c_1,c_2,\ldots,c_m be m values of the variables in M such that

$$N \cap Rf(x_1 = c_1, x_2 = c_2, ..., x_m = c_m) = \emptyset$$

Then for every m - values e_1 , e_2 , ..., e_m of the variables x_1, x_2, \ldots, x_m it holds true

$$N \cap Rf(x_2 = c_2', x_3 = c_3', ..., x_m = c_m') \neq \emptyset$$
 and $f_1 = f_1(x_1 = c_1')$.

This equation implies

$$N \cap R_f (x_{\dot{\alpha}} = c_{\alpha}, x_2 = c_2, \dots, x_m = c_m) = \emptyset$$

By Lemma 4 there is a subset M_1 of M' such that $M_1 \in L_{N,f}$ where $M' = \{x_{\alpha}, x_2, x_3, \dots, x_m\}$.

Now, if $x_{\alpha} \notin M_{1}$ then $M \notin L_{N,f}$. This is a contradiction.

Hence $x_{\alpha} \in M_{7}$. The theorem is proved.

Corollary. For every essential variable of the function f, $\{x_{\alpha}\}\in S_f^*$ if and only if $D_{\{x_{\alpha}\},f}=\{x_{\alpha}\}$.

Theorem 9. For every N, $N \leq R_f$ the set $D_{N,f}$ is a c-separable set for f.

Proof. If $N=\emptyset$ then obviously $D_{N,f}\in S_f^*$. Now, let $N\neq\emptyset$ and we can suppose without loss of generality that $R_f=\{x_1,\ x_2,\ldots,x_n\}$ and $D_{N,f}=\{x_1,\ x_2,\ldots,x_p\},\ p\leq n.$ Moreover, we suppose that there are n-p - values $c_{p+1},\ c_{p+2},\ldots,c_n$ of the variables in $R_f\setminus D_{N,f}$ such that $D_{N,f}\not\subseteq Rf_1$, where

$$f_1 = f(x_{p+1} = c_{p+1}, x_{p+2} = c_{p+2}, \dots, x_n = c_n).$$

Again, we can suppose without loss of generality that $x_{\rm p} \not\in {\it Rf}_{\it 1}$ and

$$M = \{x_p, x_{i_2}, x_{i_3}, \dots, x_{i_m}\} \in L_{N, f}.$$

Then for every m-1 - values c_i , c_i , ..., c_i of the variables in $M \setminus \{x_p\}$ it holds true

$$N \cap R_f(x_{i_2} = c_{i_2}, x_{i_3} = c_{i_3}, ..., x_{i_m} = c_{i_m}) \neq \emptyset.$$

Now, we suppose that there are the values c_i' , c_i' , ..., c_i' , c_{p+1}' , ..., c_n' such that $N \cap Rf_2 = \emptyset$ where

$$f_2 = f(x_{i_2} = c'_{i_2}, x_{i_3} = c'_{i_3}, \dots, x_{i_m} = c'_{i_m}, x_{p+1} = c'_{p+1}, \dots, x_{p+2} = c'_{p+2}, \dots, x_n = c'_n).$$

By Lemma 4 there is a subset M_1 of M' such that $M_1 \in L_{N,f}$, where $M' = \{x_{i_2}, x_{i_3}, \dots, x_{i_m}, x_{p+1}, \dots, x_n\}$. By $M \in L_{N,f}$ we obtain $M_1 \not \equiv D_{N,f}$ which is a contradiction. Consequently, for every m+n-p-1 -values α_{i_2} , α_{i_3} , α_{i_m} , α_{p+1} , α_{p+2} , α_n

of the variables in $(R_f|D_{N,f}) \cup (M|\{x_p\})$ it holds true

$$N \cap R_f(x_{i_2} = \alpha_{i_2}, x_{i_3} = \alpha_{i_3}, \dots, x_{i_m} = \alpha_{i_m}, x_{p+1} = \alpha_{p+1}, x_{p+2} = \alpha_{p+2}, \dots, x_n = \alpha_n) \neq \emptyset.$$

But $f_1 = f_1(x_p = \alpha_p)$ for every α_p and there exist m-values $c_p'', c_{i_2}'', c_{i_3}'', \ldots, c_{i_m}''$ of the variables in M such that

$$N \cap Rf(x_p = c_p'', x_i = c_{i_2}'', x_i = c_{i_3}'', \dots, x_{i_m} = c_{i_m}'') = \emptyset$$
 and

$$N \cap Rf(x_p = e_p'', x_{i_2} = e_{i_2}'', \dots, x_{i_m} = e_{i_m}'', x_{p+1} = e_{p+1}, \dots, x_n = e_n) = \emptyset$$

This is a contradiction. The theorem is proved.

The author is indebted to K.N. Cimev for his kind encouragement and advice.

REFERENCES

- [1] K.N. Cimev, On some properties of functions. Collog. Math. Soc. J. Bolyai, 28, Szeged, 1979.
- [2] K.N. Cimev, Separable sets of arguments of functions.
 Blagoevgrad, 1983. (in Bulgarian).
- [3] K.N. Cimev, Functions and graphs. Blagoevgrad, 1983. (in Bulgarian).

A függvények változóinak c-szeparábilis és domináns halmazairól.

S. SHTRAKOV

Összefoglaló

A szerző bevezeti a c-szeparábilis és domináns halmazok fogalmát és néhány ezen fogalmakat jellemző tételt bizonyit be.

Об с-сепарабельных и доминантных множествах переменных для Функций

С. Штраков

Резюме

Автор дает определение с-сепарабельных и доминантных множеств и доказывает несколько теорем, которые характеризуют эти множества.