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OPTIMIZATION PROBLEMS IN A SIMPLE MARKOV SERVICE SYSTEM

by Ahmed F. Mashhour

ABSTRACT

A service system M(M)1, (n + 1) which operates for a finite period of time, is considered.
The system is associated with a simple cost structure. The paper deals first with the problem
of finding the optimal service rate which minimizes the expected total costs. Then the optimal
arrival rate under the same criterion is investigated, Numerical results for both cases are given.
The optimal service rate for queuenig systems with infinite operation time is discussed.

INTRODUCTION

This paper is motivated by [1] in which the input of a similar service system is controlled
by using a rejection time policy. The present paper deals with the problem of controlling the
system by two different approaches. First controlling the system through the service facility
by choosing the optimal service rate. Then the system is controlled through the input by
choosing the arrival rate optimally.

Consider an M/M/1, (n + 1) queueing system which operates for a finite period of time
(0,7). The system starts at time ¢ = 0 with no customers. Customers arrive according to a
Poisson stream with mean arrival rate A. An arriving customer enters the system only when
the number of the present customers at his arrival is less than n + 1. The service times are
independent exponentially distributed random variables with mean 1/u. After the closing
time 7, no new arrivals are accepted and the present customers in the system, if there are
any, are to be served in an overtime, The system is associated with the following costs:

i- The cost (loss) per unit time when the server is idle during the period (0,7), is G-
ii- The runing cost per unit time when the server is busy during the period (0,7),

iis Cg.
iii- The overtime runing cost per unit time (occurs after the closing time 7)), is Co-

To avoide trivial cases, we consider only the cases when
G>G>¢G, or G >G> G.

In both cases Cl = CB, since a busy server procedure revenue (the system operates economi-
cally), while a free server representes loss for the system.

THE EXPECTED TOTAL IDLE PERIOD DURING (0,¢)

Let B, (#) denotes the expected total time the system spends, with no customers during
the interval (0,f), given that the system has started at the opening time with k customers,
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k=0l ..;n% 1l

If the system starts with k customers at the opening time ¢ = 0, then it may happen that
the first transition in the Markovian queue size process:

i- is due to an arrival during (x,x + dx) which accurs with probability
e Ok, i 0<k<n

ii- is due to a departure during (x,x + dx) which occurs with probability
pe P* dx if k=n+1 ‘and with probability
pe~ AT WE gy if  1<k<n

Integrating over all values of 0 < x < ¢, it follows taht ka(t), k=01,...,n+ 1 satis-
fies the system of integral equations

t —
[ By =[x+ B(t—x)le " dx,
0
By X t
(1) ¢ Bply=Xje RT9E B (t—0)ds+ pf e ® g _E=0de, 1<k
0 0
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If Bi(s)= [ e B(dr, k=0,...,n+ 1 denote the Laplace transform of B (1),
0

then the system (1) can be written in the form

[\ + 5)By(s) — MBJ(5) = Ns(A + ),

(2 4 (u+s) By, () — uBi(s) = O,

A+ pn+ $)BL(s) = NBp, () — B, _,(9)=0, 1<k<n,

The determinént of the coefficients of the system (2) has the form
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Denoting the right lower subdeterminant of order k in A, 4,(s) by Ap(s), then it can be
easily shown that

)‘An +1 (S)
SN + 5)A, 45 ()

(3)

By(s) =

In order to decompose B;(s) by partial fractions, we examine the roots its denumerator
Ppes(®) = s\ + 5) A, ,,(5).

It can be shown, as in [2], that P, ,,(s) = O has

a) one repeated root So = 0,
b) one root s = — A,
c) n + 1 distinicit negative roots SysSgs e s s Spyg-

It is easy to show that the necessary and sufficient condition that one of the roots
815895+« + 5 8,4, ‘coincides with the singleroot s= — A is

A, (—N) = 0.

By the virtue of the above discussion, if A, (—A) # 0, then

n+l

Pasa® = =526+ N [] =),

and
by 49 © "H b
@  Bl@=—2+—t 3 L,
£ & FHL- MY

where the coefficients are given by
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and
n+l
a0=—(c+l_=21'bi).
On inversion, we get
L g
(6) B,(t) = byt + ay + ce” M + 2 bl.ei .

By the same way, a similar expression can be obtained for B (1) when B X)) =

Now the expected total idle and busy period during the time of operation (0,7), is
BO(T) and T — BO(T) respectively.

THE EXPECTED TOTAL COSTS

It remains now to find the expected overtime caused by the customers present at the
closing time 7. Letp,(f), 0< k< n+ 1 be the probability that there are k customers at
time ¢, in the system. They satisfy a finite system of linear differential equations. The eigen-
values of that system are the roots of A, +(8) = 0, discussed in section 2. The corresponding
eigenvectors can be determined, as in Lemma 2 in [2], to get pi(¢) finally in the form

+
n+l P

(7) p =2 dod el k=01,...,n+1,
k i=0 i k+*1
where of) isthe (k + 1} componant of the eigenvector corresponding to the eigevalue

s;, and d;s are arbitrary constants to be determined from the initial condition of the system
(the number of customers in the system at ¢ = 0).

Now the objective function, given that the system has started with no customers, is given
by

n+l ;
®) CrW) = CBy(D) + Co(T = By(T) + C 5 1 pdD)

i=1
The numerical results concerning the optimal service rate u* for fixed values of A in the
case of finite waiting room with capacity n, can be summerized as follows:

8)C,=4, Cp=2,Cp=1,n=5 and T= 10,
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u* | 084 | 120 | 150 | 1.90

b) C, =2, C 3, Cg=1, n=35 and T = 10,

u* 1.70 2:.13 2.60 3.0

Concerning the optimal arrival rate X for fixed values of u in case of finite waiting room

with capacity n, we get

) C=12, G

T 0 3, Cg=1, n=5 and T=10,

L‘ 2.5 3.0 3.5 4.0
e 371 3.05 4.16 5.13

C,=2,C,=1, n=5 and T= 10,

=
N
Q
I
&

lp 0.84 1.20 1.50 1.90
.x 1.08 5.60 7.51 10.0

Tables 1 and 4 shows that for a queueing system M/M/1, (n+ 1) with fixed values of
C; Cys Cg,n and T, the optimal arrival rate A" corresponding to a fixed value u, does
not imply that u is the optimal service rate for the same system with A = X.

This is due to the fact that the dependence of the objective function (8) on A and pu is
not only throuhg the ratio Apu.

OPTIMAL SERVICE RATE FOR QUEUEING SYSTEM WITH T = «

Consider the system M/M/1, (n + 1) which operates for infinite period of time
(T = ). The arrival and service rates are A\ and u respectively. The system is associated
with the following costs:

i- r, 1is the revenue provided by a served customer.
ii- r, is the loss of the system caused by a lost customer (because of the fullness
of the waiting room).

iii- C ; is the cost (loss) per unit time when the server is idle.
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Denote by », (T) the number of the admitted (joining) customers during a time interval
(0,7), and by v, (7) the number of lost customers (beceaase of the fullness of the waiting
room) during (0,7).

The purpose of this section is to find the optimal service rate u* that maximizies the
average expected net revenue given by

©  CW= lim 5 Ey, (D)~ GBy(D),

where B,(T) is the expected total idle period during (0,7) given by equation (6).
Putting p = MNu, then the stationary probabilities p; that there are k customers in the
system are given, see [3], by

l=2n ok
(10) ] , k=01,...,n+1.
Pk 1 — p**2 l+p+...+ p""
Now we have that
o B
pes AP ow
and
(11 li Ztld
) Tlm“ T =Dy

From equations (10) and (11), the objective function given by (9) can be written in the form

B l+p+ ...+ p" 1
(12) C )= )"'11 nl G ntl
Fo+ iantp l+p+...p
}\’.pn+l+C
1 I
= N~ 6

1+p+...+p""
Taking the first derivative of (12) with respect to u and equating to zero, we get

n-1

n n
(13) M p™M k% (k+ )p* — (n + 1)p" k_z;pk] +C lg(;(k+ p* = 0.

The left hand side of the later equation is a polynomil of degree 2n in p, it can be written
in the form

2n
14 7 (= 2 ap,

I=

o

where
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ai=(i+1)CI, 0si<sn-1,
= (n+ 1)(C; — N\y), i=n,
=—Q2n+ 1 - My, n+ 1<i< 2n.

It is easly seen that the equation f2 (p) = 0 has only one positive root ; as follows:
n
Since f,,(0) =a, > 0 and f,,(~) <0, then f, (p) =0 has at least one positive root.

Applying Descartes’rule of sings, see [4], (which states that number of positive roots of a
polynomial is equal to the number of variations in sign in the sequence of coefficients of this
polynomial or is less by an even number), it follows that f, (p) = O has only one positive root
p, Itis clear that the number of variations in sign of the coefficients g«;s given by (14), does
not change whatever the relation between >\r1 and C].

Taking the second derivative of the objective function given by (12) with respect to pu,
we get

By virtue of the above discussion we conclude that the optimal service rate u* at which
the objective function C,(p) attains its maximum is unique and equal to Ap where p is
the unique positive root of (13).

However the upper bound of the positive root of (13) which is given in [4] by

as) 1+ " ac i,

may give a rough description of the behavior of the unique root p and concequently the
optimal value u* of the service rate, when the values of Ay, and C; changes. We discuss
in the following example the behavior of the optimal service rate u* for the simple case

n = 1, where an explicit formula for the unique positive root p exists.

Example: For waiting room capacity n = 1, we get
A (1+p)—C
1+ p+ p2

C,(w) =
and equation (13) gives
NP+ 200 — Cp+ €= 0.

The positive root p of the later equation is given by
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= -\ —C)+ VNV, —C)? = N,C
16 = 1 I 1 I Y a4 s
(16) p %, if &, 4c,
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-

if &, =C,.

From (16) it can be aesily shown that u* has the properities

d «
d. T
) ac, uw <0,
i.e. the optimal mean service time 1/u* increases as C, increases.
£ 4
dr,
i.e. the optimal mean service time 1/y° decreases as r, increases.

C.) di)\ #* > Os

b.) i >0,

i.e. the optimal mean service time 1/u* decreases as \ increases.

It is clear that the properties of the optimal mean service time 1/u* agrees with the properties
of the upper bound of p given by (15) when n = 1.

The numerical results obtained for the optimal service rate u* in the case of infinite
- operation time (7 = «) can be summerized as follows:

1.) For fixed C, =3, r, =2 and n=4

A 1 2 3 4
g 0.80| 2.04| 3.51] 5.15

2. For fixed \=2 and n= 5, the values of p are given in the following table

C.
Ty

1 1 2 3 4

228 | 1.88 | 1.68 | 1.55
2,15 | 228 | 2.04 | 1.88
3,08 | 255 | 2.28 | 2.11
3.28 | 275 | 247 | 2.28

A W -

It is clear from tables 1 and 2 that the properties a,b and c¢ for the case n= 1, are
still the same for larger values of the waiting room capacity (n =4 and n = 5). In table
2, u on the diagonal assume a fixed value (u* = 2.28) this is due to the fact that, when



— D8

rn=¢ then the optimal service rate u* depends only on A and n (see equation 13).
Remark: Let us consider'the objective function

A7) G = lim 7 [CByT) + r,Ev (D),

which represents the average expected cost rate. Now our purpose is to choose the optimal ser-

vice M which minimizes C2 (W).
It can be seen that

C, + 7\r2p"+l

» C,(p) =
ur . l1+p+ ...+ p"t

since

iy WD 7
T AT n+l’

Comparing C,(w) and C,(u), (given by equations 12 and 17), we can see that, if

Iy = Ty then the optimal service rate u* that maximizes C1 (i) as the same that minimizes
C,(w). On the other hand if r, # r,, then the optimal setvice rate p* that minimizes
C,(u) is unique and has the same properities a,b and ¢ (replacing 7, by r2) described in the
given example.
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Osszefoglalé

Optimalizélasi feladatok Markov tipusu kiszolgélési rendszerekben

Ahmed F. Mashhour

Markov tipusi M/M/1 kiszolgal6é rendszer érkezési intenzitasénak optimalis megvélaszta-
sit vizsgilja a jelen dolgozat. Feltételezzilik, hogy az lizemeltetési koltség (idGegységenként)
C, ha foglalt a kiszolgal6, C, ha szabad, s ha véges a mikddési id6 és tulora is fellép, akkor
a talorazas idGegységenkeénti dija C,. Az aldbbi esetek lehetnek érdekesek:

Ealre, & C30%6.

Véges és végtelen miikodési idére kiszdmitjuk a minimélis (végtelen id6 esetén az egységnyi
idére es@) lizemeltetési koltséget biztositd érkezés intenzitast. Az eredményeket szamitastechni-
kai szempontbdl is analizaljuk s szemléltet6 numerikus eredményeket kozliink.

Pe 3w0wMe

3amavy ONTHMHM3alMU B NPOCTeHmHUX CHCTeMax

OB CIIy XU BaHUA

Axmen . Mauwxxoyp

B paboTe uHcclenyeTcs OITHMalJIbHOEe ollpelnesieHHe HHTEeHCHBHOCTH
BXOIAWEr'o IIOTOKa NPpOCTermUX CUHCTEeMH (M/M/I) obcnyxuBaHuAa. IlycTe
CTOMMOCTE pPabOTH CHCTEeMH /B eOuHHLY BpemMeHu/ CB eciii OB6CIIyXHUBa—
OHNUX NpHbOp 3aHAT , CI ecnu cBob6omeH., Ecsiu BpeMsa QYHKIHMOHHpPOBaA—
HHUA CHCTEeMH KOHEeUYHO K BO3HHKaeT CBepxXypouHas pabora, Torma
CTOMMOCTEL CBEPXYPOUYHON paboTH 3a €OUHHIE BpeMeHH Co. HUuTepecHH

cremywmyue cJaydawu:

/

C.*FLC. . *2C., B €

> >
1 2C;>Cg B G 2Cyp >C

B

I[IpuBeneHH HJUINCTPATHBHHE HYyMepHUUYeCKHEe 3SK3eMIJISPH .
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