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We explore the link between the melting scenarios of two-dimensional systems of hard disks and
squares through replica-exchange Monte Carlo simulations of hard superdisks. The well-known
melting scenarios are observed in the disk and square limits, while we observe an unusual three-
step scenario for dual-shapes. We find that two mesophases mediate the melting: a hexatic phase
and another fluid phase with a D2 local symmetry, we call it rhombatic, where both bond and
particle orientational orders are quasi-long-range. Our results show that not only can the melting
process of liquid-crystal forming molecules be complicated, where elongated shapes stabilize several
mesophases, but also that of anisotropic quasispherical molecules.
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I. INTRODUCTION

Melting of two-dimensional (2D) systems with short-
range (SR) interactions is still a matter of debate. Ac-
cording to simulation and experimental studies, three
possible 2D melting scenarios have been observed so far.
In the continuous two-step melting, there is an inter-
mediate x-atic phase such as tetratic and hexatic [1–3].
This transition is described by the Kosterlitz–Thouless–
Halperin–Nelson–Young (KTHNY) theory [4–6], where
the unbinding of the topological defects is responsible
for the melting. The second type arises when defects
form strings, which leads to a grain-boundary induced
discontinuous melting [7, 8]. The third possibility is a
discontinuous x-atic mediated two-step melting, which
follows one or two first-order phase transitions [9–11].
The first scenario corresponds to the melting of hard
squares with four-fold symmetry (the intermediate phase
is tetratic) [12], the second one appears for hard pen-
tagons [13], and the third one arises in the system of
hard disks (the intermediate phase is hexatic) [14, 15].

To find a bridge between different melting scenarios,
it is useful to study the phase behavior of model poten-
tials, where the softness of the interaction or the shape
of the particle can be continuously varied. For instance,
a family of soft disk models can be constructed with re-
pulsive power-law functions, which shows a weakening of
the first-order isotropic–hexatic phase transition with the
softening of the interaction. The weakening process ends
by turning the discontinuous two-step melting into the
continuous two-step KTHNY scenario [16]. Also, adding
attractive interactions to the hard ones completely desta-
bilizes the hexatic phase and changes the nature of the
discontinuous two-step melting into a one-step transi-
tion [17]. Finally, all three melting scenarios are observed
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for hard regular polygons [7]. However, the particle shape
cannot be changed continuously in this family of models,
and so, polygons are not suitable to study the compe-
tition of conflicting x-atic phases. For this purpose, we
smoothly deform the disks into squares. For dual-shapes,
the system resolves this imposed conflict by producing a
complex melting process.

II. METHODS

We study the change between the discontinuous and
continuous two-step melting scenarios and the occurrence
of solid-to-solid transitions in a 2D system of hard su-
perdisks. A superdisk is defined by |2x/σ|q+|2y/σ|q ≤ 1,
where q is the deformation parameter and σ is the side
length of the circumscribing square. See Fig. S1 of the
Supplemental Material (SM) section placed at the end
of this text. We perform replica-exchange Monte Carlo
simulations [18–21] for 2 ≤ q ≤ 20, where q = 2 cor-
responds to the hard disk limit, and q = 20 practically
yields squares. We generally use Nr = 100 replicas and
N = 196 particles, and additionally, in the most inter-
esting cases, Nr = 40 and N = 6400. The details of the
Monte Carlo simulations and the algorithm employed to
avoid overlaps between superdisks are given at the SM.
Here we show that the system of hard superdisks can
melt in three continuous steps, where two x-atic phases,
namely rhombatic and hexatic, mediate between the solid
and isotropic liquid phases. This new scenario occurs for
dual-shapes, 5 . q . 7, which are halfway between the
disk and the square.

III. RESULTS

We present our results for q = 4 and 8 in Fig. 1, which
have some common features with the melting scenarios
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FIG. 1. Melting of hard superdisks with q = 4 (left panel) and q = 8 (right panel). a) Probability density functions, where
red and blue lines are employed to highlight the histograms close to the isotropic–hexatic and the plastic solid–rhombic solid
transitions, respectively. b) Dimensionless pressure, βPσ2, c) dimensionless isothermal compressibility, χ, and d) global order
parameters, Ψ6 (red line), Ψ4 (black line), and S4 (blue line), as a function of the packing fraction, η, for systems of N = 196
superdisks. The vertical dashed red and blue lines signal the development of hexatic and rhombic structures (QLR six-fold and
four-fold bond-orientational order), respectively, and the green line signals the development of QLR positional order. Panels
e) show the peaks of log(g − 1) and panels f) show log(g6) (left) and log(g4) (right) as a function of log(r/σ) for a system of
N = 6400 superdisks. The black dashed lines in panels f) have a slope of −1/4. The corresponding superdisk’s shapes are
shown as insets.

of the corresponding hard disk (q = 2) and square limits
(q →∞) [12, 14]. In Fig. 2 we show the results for q = 6
demonstrating the new three-step melting scenario. Also,
the case of q = 2.5 is depicted in Fig. S5. In all of these
figures, panels a) show the probability density functions
(PDFs), which are distorted from the Gaussian-shape
in the vicinity of a first-order transition. For instance,
this is the case of the isotropic–hexatic transition occur-
ring for low q values (see the q = 2.5 case in Fig. S5).
We have found that the distortion from the Gaussian-
shape of the PDFs weaken up to q ≈ 4. Indeed, panel
a) on the left-hand side of Fig. 1 still shows slight de-
viations from the Gaussian-shape for those PDFs close
to the isotropic-hexatic transition. For this reason, we
estimate this first-order transition to end slightly above
q = 4. This is consistent with the equations of state
shown in panels b), given that they have a plateau for
q . 4, and the pressure is a strictly monotonic function
of the density for q > 4. In panels c), we present the
dimensionless isothermal compressibility, χ = dρ/d(βP ).
The peak of χ survives for q > 4 and locates the contin-
uous isotropic–hexatic transition (see Fig. S6), which is
the general behavior of a continuous symmetry-breaking
transition. The maximum of χ determines not only the
location of the isotropic–hexatic transition, signaled by
the vertical red dashed lines crossing from panels a) to d)
of all these figures, but also the location of other contin-
uous transitions (the blue dashed lines). We show the q
dependence of the χ curves in Fig. S6, where one can see
maxima producing a Y-shaped pattern that is important
for the construction of the global phase diagram.

Panels d) of Figs. 1, 2, and S5, show the global
tetratic order parameter, S4 = 〈 1N |

∫
S4(r)dr|〉, and

the global n-fold bond-orientational order parameters,
Ψn = 〈 1N |

∫
ψn(r)dr|〉 with n = 4 and 6. Here, S4(r) =∑

j e
i4αjδ(r − rj) is the local particle orientational or-

der parameter, ψn(r) =
∑
j

1
n

∑n
k=1 e

inφjkδ(r − rj) is
the local bond-orientational order parameter, rj and αj
describe the position and orientation of particle j, and
φjk is the angle of the bond linking particle j and its
neighbor k. We can see the growth of these functions
at the transitions. To describe the phase behavior more
precisely, in panels e) we show the positional order of
the particles through the peaks of the radial distribu-
tion function, g(r). The height of the peaks keeps con-
stant with increasing distance only in the infinite pressure
limit and decays algebraically for a solid phase, which
is referred to as quasi-long-range (QLR) behavior. In
the case of a liquid, this function exhibits SR correla-
tions (exponential decay). Furthermore, in panels f), we
show the n-fold bond-orientational correlation function,
gn(r) = 〈ψ∗

n(r)ψn(0)〉, where n = 4 and 6. These func-
tions show a constant behavior at large distances in a
solid phase, decay algebraically in a bond-ordered x-atic
fluid, and decay exponentially in the isotropic phase. Fi-
nally, we show in Fig. 2 h) the correlation function of
the particle orientations, G4(r) = 〈S∗

4 (r)S4(0)〉. Accord-
ing to the KTHNY theory [4, 5], particle orientational
functions decaying faster than ∼ r−1/4 are SR. Due to
this reason, we include straight lines with this slope in
panels f) of Fig. 1 and in panels f), g), and h) of Fig. 2.
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FIG. 2. Melting of superdisk with q = 6. See the caption of Fig. 1 for the meaning of the a)-d) panels. We also include the
N = 6400 data as symbols in panels b)-d). Panels e)-h) show the different correlation functions defined in the text. The color
of the curves in panels e)-h) matches the color of the frames of the snapshots. Particles painted blue and white are oriented
parallel and forming an angle of π/4 with the snapshot director, respectively. Intermediate cases are painted with intermediate
tones.

The x-atic–solid continuous transitions, which are indi-
cated by vertical green dashed lines crossing from panels
a) to d), are obtained from the long-distance behavior of
g, g4, and g6. Note that N = 6400 particles may not
be enough to access the quasi-long-range behavior of the
system. This may lead to a slight underestimation of this
transition density.

In cases 4 . q . 5 and q & 7, the melting follows
the continuous two-step scenario (see Fig. 1). In the
first step, the QLR positional order is destroyed and
the long-range bond-orientational order becomes QLR.
At this point, the solid turns into an x-atic fluid phase.
In the second step, every global order parameter yields
low values, while all correlation functions become SR.
Here, the x-atic turns into an isotropic phase, which is
also signaled by a compressibility peak. The difference
between the 4 . q . 5 and q & 7 cases stems from
the symmetries of the solid phases, which are D6 and
D2 (Dn denotes the dihedral group), respectively. The
primitive unit cell of the later lattice is a rhombus, and
so we call it rhombic solid (see the SM). As the inter-
mediate mesophases locally inherit the properties of the
solid phases, there appears a rhombatic phase for q & 7
instead of the hexatic phase for 4 . q . 5. An important
difference between hexatic and rhombatic phases is that
the orientations of the particles show QLR order in the
latter case (S4 > 0 and G4 decays algebraically), while it
is disordered in the former case (S4 ≈ 0 and G4 decays
exponentially). Moreover, both the four-fold and the six-
fold bond-orientation show QLR order in the rhombatic
phase (g4 and g6 decay algebraically), while only the six-
fold bond-orientation exhibits QLR order in the hexatic
phase. Note that the rhombic and rhombatic phases yield
the square and tetratic phases in the q →∞ limit, respec-
tively. Therefore, the melting processes of hard squares

and for q = 8 are qualitatively the same, where the only
difference is the replacement of the D4 symmetry of the
square lattice with the D2 symmetry of the more general
rhombic structure. It is worth mentioning that the rhom-
batic phase is not observed in other families of rounded
squares, where the tetratic or the hexatic phases mediate
the melting [22, 23]. This may be because the superdisk
does not have parallel straight sides contrasting with the
other models.

We should emphasize the deviation of the 4 . q . 5
cases from the disk limit. The isotropic–hexatic transi-
tion is continuous for 4 . q . 5 and discontinuous for
hard disks [14]. This fact closely resembles the case of
soft disks [16]. Superdisks can get closer than the diag-
onal of the particle while being orientationally unfrozen,
which renders the particles to behave as soft disks. In-
deed, the continuous two-step melting scenario can also
be observed in the system of soft disks with V (r) ∼ r−n
potential for n < 6 [16]. Thus, increasing q effectively
changes the range of the contact distance between two
superdisks to transform the isotropic–hexatic transition
from discontinuous to continuous.

For q . 5, the symmetry of the solid phase can be
reduced with increasing density. It manifests with an ad-
ditional peak of χ and the growth of LR particle orienta-
tional order. This solid–solid transition is continuous and
occurs between a plastic (or rotator) solid with a hexag-
onal structure and the rhombic structure. Note that this
transition is confirmed experimentally in the monolayer
of colloidal rounded squares [24]. During this transition
the orientational entropy stabilizes the low-density plas-
tic phase, while the packing entropy prevails over the
orientational one in the high-density rhombic phase.

The stabilization of the hexatic and the rhombatic
mesophases between the isotropic fluid and the rhom-
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bic solid phases appears for shapes halfway between the
disk and the square (e.g. q = 6). Here, the rhombic crys-
tal melts into the rhombatic fluid, then the rhombatic
mesophase transforms into the hexatic fluid, and finally,
the hexatic fluid turns isotropic. Fig. 2 shows the details
of this continuous three-step scenario. Panels e)–h) con-
firm the expected behavior of the correlation functions
in the rhombic solid (black), rhombatic (red), hexatic
(blue), and isotropic (green) phases, respectively. Panel
d) proves that these behaviors are consistent with the val-
ues of the order parameters. Comparing this case with
the continuous two-step melting, it turns out that the ad-
ditional third step is the rhombatic–hexatic intermediate
transition, where G4 and g4 become SR simultaneously,
but the six-fold correlations remain QLR.

As found for the other cases, the symmetry-breaking
transitions are accompanied by χ peaks (isotropic–
hexatic and hexatic–rhombatic), while the rhombic–
rhombatic transition can be detected only from the anal-
ysis of the correlation functions. Fig. 2c) also shows
that the highest peak of χ corresponds to the hexatic–
rhombatic transition, where not only the local symmetry-
breaking occurs, but the topological defect structure
transforms from disclinations and dislocations into local-
ized point defects [7]. The snapshots of Fig. 2 highlight
the differences in the structures of these phases.

Dual-shape superdisks are not anisotropic enough to
induce a direct isotropic–rhombatic transition. Interest-
ingly, before the positional freezing, an additional tran-
sition happens between two different bond ordered flu-
ids. As the orientational forces (packing entropy) become
more and more dominant, they give rise to the growth
of the orientational order without the development of a
QLR positional order, yielding the rhombatic fluid. This
process is similar to the destabilization of the plastic solid
in favor of the rhombic solid but without the existence
of QLR positional order. At even higher densities, the
rhombic solid evolves from the rhombatic, analogously
to the tetratic-square solid transition for q → ∞. The
complete scenario is similar to the two-step melting pre-
dicted by the KTHNY theory, in the sense that all three
steps are continuous and that the topological defects me-
diate the transitions.

Fig. 3 gathers and summarizes the information from
all studied q values as a phase diagram. It is conve-
nient to start with the close-packing structures of the
hard superdisks. Two close-packing lattice arrangements
are conjectured as optimal q ≥ 2: Λ0 and Λ1 [25]. Both of
them are centered rectangular Bravais lattices, which can
also be described by rhombic primitive unit cells (see the
SM). Λ0 and Λ1 have different lattice parameters, and
give the optimal packings below and above q ≈ 2.572,
respectively. As our simulation results reproduce these
close-packing structures in the high-pressure limit (see
the SM), we call these phases rhombic solid 0 and 1 (RS0

and RS1). The lattice angle, θ, goes to π/3 when q → 2,
thus the close-packing structure is hexagonal in the disk
limit. Then, θ slowly varies with increasing q up to yield

FIG. 3. Phase diagram of superdisks in the packing fraction–
deformation parameter (η vs. q) plane. The meaning of the
labels is I: isotropic fluid, H: hexatic fluid, R: rhombatic fluid,
I–H: coexistence region, P: plastic solid (or hexagonal rota-
tor), and RS0 and RS1: rhombic solids. These latter phases
produce the Λ0 and Λ1 rhombic crystals [25] in the infinite
pressure limit. The colors of the phase boundaries correspond
to the colors of the vertical dashed lines in panels a)–d) of
Fig. 1, 2, and S5. The white, light red, and light blue back-
grounds denote the phases with full rotational, local D6, and
local D2 symmetries, respectively.

a discontinuity at q ≈ 2.572, when Λ1 replaces Λ0, and
then increases monotonically up to π/2 as q → ∞. Be-
tween the RS0 and the RS1, there is a transition indicated
by a dashed black line in Fig. 3 (for more details see the
SM).

The stability region of the solid depends weakly on q,
which is due to the fact that both the fluid-solid tran-
sition curve and the maximal packing fraction one have
a similar shape. That is, the curvatures of both curves
change from convex to concave with increasing q, and
the distance between them is more or less the same for
all q. However, the packing fraction window of the hex-
atic phase widens with increasing q for 4 . q . 5, while
the opposite occurs to the rhombatic phase with decreas-
ing q. Recall that the rhombatic phase inherits the local
structure of the RS1, and hence, it also smoothly trans-
forms into a tetratic phase with increasing q. The phase
diagram contains both the hexatic and the rhombatic
phases in a relatively narrow window, 5 . q . 7. Here,
the hexatic phase always occurs at lower densities than
the rhombatic fluid because the local symmetry of the
emerging phase is reduced with increasing density, as the
D2 is a subgroup of the D6. Note that in this q region
the system is capable of producing a local D6 symmetry
with a relatively large value of q, which does not occur
for q & 7. Indeed, the local D2 symmetry is favored with
increasing q and density, contrasting with the D6, which
appears at intermediate densities and for low q values.
The D2 region includes the RS0, RS1, and R, whereas
the D6 contains the H, the P, and partially the I-H co-
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     2.0          2.5           3.0           4.0           6.0          8.0          10.0         20.0
  1.0000    1.0718     1.1225     1.1892    1.2599     1.2968    1.3195     1.3660  
  0.7854    0.8452     0.8833     0.9270    0.9638     0.9785    0.9857     0.9962
                 3.3958     3.5768     3.8136    4.0583     4.1819    4.2560     4.4030
  

q             = 

A p /σ
 2     =  

d /σ         =  

⟨ Aexc⟩ /σ
 2
=    π

FIG. S1. The deformation parameter q dependence of the
superdisk’ shape, diagonal length, area, and excluded area.
The circumscribing square and the inscribing disk are shown
in red for comparison.

existence.

IV. CONCLUSIONS

We found that the transition between the discontinu-
ous and continuous melting scenarios is not smooth when
the symmetry of the particle is changed from circular
to fourfold. P transforms into I passing through H for
weak deformations (q . 5), while RS1 melts into R before
reaching I for square-like shapes (q & 7). With increas-
ing q, the first-order I–H transition weakens and becomes
KTHNY-type continuous for q & 4 as the system of freely
rotating superdisks behaves similarly to that of soft disks
[16]. The interplay between the H and the R mesophases
manifest in the region 5 . q . 7, which does not produce
a first-order transition but an additional R–H continuous
step entering in-between the two-step melting scenario.
This behavior is very different from that of the regular
polygons, where a single-step process links the contin-
uous and discontinuous melting scenarios with varying
the number of vertices [7]. In light of previous simu-
lations [7, 22, 23], we believe that the fourfold particle
shape without parallel sides is responsible for the forma-
tion of the rhombatic phase, which in turn leads to the
three-step melting processes. For liquid crystalline form-
ing molecules, where the elongated and flat shapes are re-
sponsible for the formation of more than one mesophases,
the melting process can have more than two steps. Our
results prove that the curvature of the particle can be as
important as the aspect ratio to induce a many-step melt-
ing process. We hope that these findings can be tested
experimentally in colloidal silica superball systems. This
type of system was already employed to access the solid-
solid transitions appearing for q < 4 [24, 26, 27]. Indeed,
monolayers of these particles confirmed the spontaneous
formation of Λ0 and Λ1-like lattices [28]. To test our
findings, the range of the deformation parameter should
be kept around six.
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FIG. S2. Scheme of two superdisks in contact. The (x, y) and
(x′, y′) reference frames lay on top of the centers of paricles 1
and 2, respectively. The axes of these frames coincide with the
principal axes of the corresponding paricles. ~σ12 is the vector
joining the centers of the particles, φ12 is the angle between
~σ12 and the x-axis, i.e, the bond orientation, ~ri is the vector
joining the center of particle i with the contact point, χi is
the angle between the vector defining the direction of particle
i and ~ri, and γ is the relative orientation of particle 2 respect
to particle 1.

(GP and VS), and Fundación Marcos Moshinsky (GO).

VI. SUPPLEMENTAL MATERIAL

In this supplemental section, we first give some details
on the superdisk shape, and then we introduce the con-
tact algorithm employed to effectively detect the distance
of the closest approach between two equal superdisks.
Following, we provide some details on the simulations and
present results obtained for very high pressure to yield
a twofold purpose. On the one hand, we can check the
correctness of our implementation. On the other hand,
we can confirm our algorithm leads to the conjectured
optimal structures given in [PRL, 100, 245504 (2008)].
Finally, we show details of the outcomes for cases with
q = 2.5, and our all simulation results for the isothermal
compressibility and the global order parameters.

A. Superdisk’s shape

As mentioned in the main text, superdisks are de-
fined by the set of (x, y) points fulfilling the expression,
|2x/σ|q + |2y/σ|q ≤ 1, σ being the side length of the
circumscribing square. The deformation parameter, q,
shapes the particle as shown in Fig. S1 from a disk,
q = 2, to a square, q →∞, passing through intermediate
forms. This figure depicts how the superdisk’s diagonal,

d = σ
√

21−2/q, its area, Ap = (σΓ(1 + 1/q))2/Γ(1 + 2/q),
and its average excluded area, 〈Aexc〉, monotonically in-
creases with q.
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B. Contact algorithm

We have implemented the effective superdisk–
superdisk distance of the closest approach based on the
calculation of the average excluded area explained else-

where [29]. Here we simplify the equations to deal with
superdisks instead of superellipses. For this purpose, we
define the vectors and distances shown in Fig. S2. We
also define the following functions, which can be evalu-
ated for a given γ and χ2

K2(χ2) = | cos(χ2)|2(q−1) + (σ/2)2q| sin(χ2)|2(q−1),

F (γ, χ2) = − cos(γ) cos(χ2)| cos(χ2)|q−2 + (σ/2)q sin(γ) sin(χ2)| sin(χ2)|q−2,

G(γ, χ2) = − sin(γ) cos(χ2)| cos(χ2)|q−2 − (σ/2)q cos(γ) sin(χ2)| sin(χ2)|q−2. (S1)

In turn, these quantities are employed to yield

a(γ, χ2) =

[
(σ/2)2q

(F (γ, χ2))2

K2(χ2)− (F (γ, χ2))2

] 1
q−1

(S2)

and

b(γ, χ2) =

[
(σ/2)−2q (G(γ, χ2))2

K2(χ2)− (G(γ, χ2))2

] 1
q−1

. (S3)

Then, we can get cos(χ1) and sin(χ1) from

cos(χ1) = sgn(F (γ, χ2))

√
a(γ, χ2)

1 + a(γ, χ2)
, (S4)

and

sin(χ1) = sgn(G(γ, χ2))

√
b(γ, χ2)

1 + b(γ, χ2)
. (S5)

Once knowing the cosines and sines of angles χk, with
k = 1 or 2, we can finally obtain

rk(χk) =

[(
| cos(χk)|
σ/2

)q
+

(
| sin(χk)|
σ/2

)q]− 1
q

. (S6)

Given that we are working on the reference frame set on
top of particle 1, we get

~σ12 = [r1 cos(χ1)− r2 cos(χ2 + γ)]~ex

+[r1 sin(χ1)− r2 sin(χ2 + γ)]~ey. (S7)

Therefore, via Eqs. (S4-S7) one can express σ12 = |~σ12|
and φ12 = arctan

(
σ12y

σ12x

)
as a function of γ and χ2. How-

ever, it should be noted that γ and φ12 are directly de-
fined by the position and orientation of both particles,
but not χ2. Thus, for given values of γ and φ12, one
needs to vary χ2 to get the desired value of φ12. This is
achieved by an iterative procedure until convergence.

Alternatively, one can also start an iterative procedure
with γ and χ1 to find the value of χ1 that corresponds
to φ12. For this purpose, we need expressions for cos(χ2)
and sin(χ2) as a function of χ1. We can easily get these
expressions by rotating an angle γ the second particle

respect to the first one (the first particle is rotated −γ
respect to the second) and by fixing the reference frame
on top of particle 2 instead of particle 1. We get

cos(χ2) = sgn(F (−γ, χ1))

√
c(−γ, χ1)

1 + c(−γ, χ1)
,

sin(χ2) = sgn(G(−γ, χ1))

√
b(−γ, χ1)

1 + b(−γ, χ1)
, (S8)

and finally,

~σ12 = [r1 cos(χ1 − γ)− r2 cos(χ2)]~ex′

+[r1 sin(χ1 − γ)− r2 sin(χ2)]~ey′ . (S9)

Thus, we can express σ12 = |~σ12| and φ12 = γ +

arctan
(
σ12y′

σ12x′

)
as a function of γ and χ1. Note that

when φ12(χ2, γ) strongly varies with χ2, φ12(χ1, γ) varies
smoothly with χ1. Thus, we are using both routes, which
is convenient to avoid numerical issues.

We tabulate σ12(φ12, γ) to avoid the iteration proce-
dure through the simulations. We are setting a step in-
crease for both angles of 0.005 rad and performing a lin-
ear interpolation of the tabulated values. Errors of σ12
are always lower than 0.1% for all q values here studied
(q = 20.0 produces the largest deviations due to the small
radius of curvature of the particle’s corners).

C. Simulation details

Replica-exchange Monte Carlo (REMC) simulations
are generally employed to enhance the sampling from
uneven free-energy landscapes [18, 19]. The technique
is based on the definition of an extended ensemble,

Qext =
∏Nr

i Qi, Qi being the partition function of en-
semble i. For athermal systems, those composed of hard
particles, we employ a pressure expansion of the isobaric

ensemble [20, 30]. Thus, Qext =
∏Nr

i Q(N,Pi, T ), where
N , T , and Pi are the number of particles, the temper-
ature, and the 2D-pressure, respectively. Here, all Nr
ensembles share the same N and T , but each one has
a different Pi. Also, we define Nr simulation cells each
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q=2.25 q=2.5

q=8.0q=2.75

FIG. S3. Snapshots obtained for βPσ2 = 10000 showing the
nearly close packing structures for different deformation pa-
rameters. We have drawn a sixfold star to highlight deviations
from the hexagonal arrangement. Also, we have depicted the
conventional unit cell of the centered rectangular lattice (in
yellow), the rhombic primitive unit cell (in green), and the
primitive unit cell defined by Jiao et al. [25] (in red).

one placed in a different ensemble. Each simulation cell
samples a given NPiT ensemble following a standard MC
procedure. This is carried out by implementing trials of
particle displacements, particle rotations, area-changes of
the simulation cell, and shape changes of the simulation
cell. However, the definition of Qext allows the inclusion
of swap trials. These are carried out between simulation
boxes placed at ensembles with Pi and Pi+1, with accep-
tance probability min{1, exp [β(Pi − Pi+1)(Ai −Ai+1)]}.
In this expression, β = 1/(kBT ), kB is the Boltzmann
constant, and Ai and Aj are the areas of replicas i and
j, respectively. We set a geometric progression with the
replica index for βPi, from βPmin to βPmax. The imple-
mentation of the simulations mainly works in the CPU,
each of its cores handling several replicas, and calling
the Graphics Processing Units (GPUs) for building the
neighbors lists (a CUDA-MPI implementation).

For the continuous lines shown in panels a) to d) of
Figs. 1 and 2 of the manuscript, and for Fig. S5 of this
SM, we have set Nr = 100, N = 196, βPminσ

2 = 5, and
βPmaxσ

2 = 50 for all studied q values except for q ≤ 3.0,
where we are setting Nr = 120 and βPmaxσ

2 = 200. To
obtain high-pressure configurations, we have compressed
the obtained structures by setting βPminσ

2 = 10 and
βPminσ

2 = 10000. To confirm the N = 196 outcomes
for q = 6.0, we have also carried out REMC simula-
tions with Nr = 40 and N = 6400 in the density region
0.722 < η < 0.825. Finally, we have also performed some
N = 6400 standard Monte Carlo simulations at interest-
ing densities for all studied q cases to access the quasi-
long-range (QLR) behavior of the correlation functions
defined in the manuscript.

We start all the simulations with N = 196 from loose
random configurations. We have found that starting from

FIG. S4. Lattice angle of the primitive rhombic unit cell,
θ, global bond-orientational order parameters, Ψ4, Ψ6, and
packing fraction η, as a function of q. Red and blue dashed
lines correspond to Λ0 and Λ1, respectively. The continuous
black line corresponds to the optimal structure. The black
symbols are the simulation outcomes for βPσ2 = 200. The
red symbols correspond to βPσ2 = 10000. Insets of each
panel zoom in the 2 ≤ q ≤ 2.8 region.

a tight square lattice reaches the same equilibrium state
a little bit faster. Thus, all simulations with N = 6400
particles are started from a square lattice. Once a steady-
state is achieved, we perform the several averages defined
in the manuscript.

D. Optimal packing structures

There are two conjectured optimal close-packed struc-
tures, denoted by Λ0 and Λ1 [25], which can maximize
the packing density for q ≥ 2. Λ0 maximizes the pack-
ing density for q . 2.572 and Λ1 does it for q & 2.572.
These structures were also experimentally observed with
depletion stabilized silica superballs [31] and hollow silica
cubes [32]. Both of them are centered rectangular Bra-
vais lattices that can be described by several different
unit cells. In Fig S3 we highlighted in the snapshots the
conventional unit cells, the primitive rhombic unit cells,
and the primitive unit cells defined in Ref [25], which
are parallelograms. The primitive lattice vectors of the
parallelograms are ~e1 = 2~ex and ~e2 = ~ex + (2q − 1)1/q~ey
in case of Λ0, whereas ~e1 = 2(1−1/q)~ex + 2(1−1/q)~ey and

~e2 = (2−1/q − 21/2s)~ex + (2−1/q + 21/2s)~ey in case of

Λ1. Here, s is the smallest positive root of |2−(1+1/q) −
2−1/2s|q+|2−(1+1/q)+2−1/2s|q = 1. The primitive lattice
vectors associated with the rhombic unit cells are ~a = ~e2
and ~b = ~e2 − ~e1 for both structures. The tilt angle of
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these rhombic unit cells is given by

θ = arccos(~a ·~b/|~a||~b|) . (S10)

In addition, the maximal packing fraction is

ηcp =
4

|~a||~b| sin θ

∫ 1

0

(1− xq)1/qdx, (S11)

which gives the boundary of the unreachable region of
the phase diagram indicated by the black line of Fig. 4
of the main text. This line corresponds to the infinite
pressure limit of the isobaric ensemble, where only the
optimal arrangements survive. Therefore, we expect to
have rhombic solid phases with structures very close to
Λ0 and Λ1 at high but finite pressures, which gives us
the possibility of checking our simulation results in the
high-pressure limit.

For this reason, in Fig S4 we compare the simulation
data for βPσ2 = 200 (indicated by black squares) and for
βPσ2 = 10000 (indicated by red circles) with the theo-
retical values of the perfect rhombatic lattices. Red and
blue dashed lines correspond to Λ0 and Λ1 structures,
respectively. We compare the lattice angle, θ, the global
bond-orientational order parameters, Ψ4 and Ψ6 (defined
in the main text), and the packing fraction, η. In general,
it is observed how the simulation results approach all the-
oretical quantities and that the agreement improves with
increasing pressure. This is particularly true for the pack-
ing fraction. Nonetheless, we observe a tendency for the
simulation data to depart the theoretical maximal pack-
ing fraction as the deformation parameter, q, increases,
pointing out that an even higher pressure is needed to
reach the close-packing limit in case of square-like par-
ticles. More importantly, all simulation results are close
and below the conjectured maximal packing limit, which
supports Λ0 and Λ1 as optimal arrangements.

A perfect rhombic lattice has Ψ6 = |1 + ei6θ − ei3θ|/3
and Ψ4 = |1 + ei4θ|/2. These expressions, substituting θ
from Eq.(S10), give the dashed curves of the Ψ4 and Ψ6

panels of Fig. S4. The agreement with the simulations
is good. However, in the limiting cases, there appears
some discrepancies explained below. For the theoretical
curves we have Ψ6 → 1 and Ψ4 → 1/2 in the disk limit
(q → 2, θ → π/3), and Ψ6 → 1/3 and Ψ4 → 1 in the
square limit (q → ∞, θ → π/2). These limits are not
necessarily valid at finite pressure when QLR positional
order replaces the long-range order of the perfect lattice.
Especially, Ψ4 can be quite different given that the four
nearest neighbors of a particle turn ill-defined in the disk
limit. Due to the small fluctuations of the particles’ posi-
tions and orientations, we get Ψ4 ≈ 0. A similar problem
appears with Ψ6 in the square limit.

For q < 2.75 the βPσ2 = 10000 data agree with the
Λ0 curves, whereas they are consistent with the Λ1 curves
for q ≥ 2.75 (see the panels corresponding to θ and Ψ4).
Similarly, the data obtained for not so high pressure agree
with the Λ0 curves for q < 2.5 and with the Λ1 curves for
q ≥ 2.5. Thus, there appears a difference between high

a)

c)

d)

e)

f)

b)

FIG. S5. a) Probability density functions (red and blue
lines are employed to highlight the histograms close to the
isotropic–hexatic and the plastic solid–rhombic solid transi-
tions, respectively), b) dimensionless pressure, βPσ2, c) di-
mensionless isothermal compressibility, χ, and d) global or-
der parameters, Ψ6 (red line), Ψ4 (black line), and S4 (blue
line), as a function of the packing fraction, η, for a system
of N = 196 superdisks with q = 2.5 (the superdisk’s shape
is shown as an inset). The biphasic region of the first-order
isotropic–hexatic transition is delimited by the vertical dashed
red lines. The vertical dashed blue and green lines signal the
development of orientational order and QLR positional order.
Panel e) shows the peaks of log(g − 1) and panel f) shows
log(g6) as a function of log(r/σ) for a system of N = 6400
superdisks. The black dashed line in panel f) depicts a slope
of −1/4.

and very high pressures for the q = 2.75 case (see the
inserts in all panels of Fig. S4) that suggests a transition
from Λ0-like structures to Λ1-ones. From the probabil-
ity density functions, we estimate this transition to be
around η = 0.908. This is why we are drawing a tilt
dashed line splitting the rhombic solid from the hexag-
onal solid in the phase diagram (Fig. 3) shown in the
manuscript.

E. Results for the q = 2.5 case

In this section of the SM, we show the outcomes from
REMC simulations for the system with q = 2.5. This case
is close to the disk limit and the melting of these parti-
cles corresponds to a different scenario, differing from the
cases presented in the main text. Namely, there appears
a discontinuous two-step melting with a first-order tran-
sition between the isotropic and the hexatic phases and a
continuous transition between the hexatic and the plas-
tic solid phase. The first-order transition can be clearly
read from panel a), which shows how the probability den-
sity functions distort from the Gaussian-shape and turn
bimodal from η ≈ 0.688 to η ≈ 0.716, signaling the co-
existence region between the isotropic and the hexatic
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a)

b) c) d)

FIG. S6. a) Dimensionless isothermal compressibility, χ ,
b) global six-fold bond-orientational order parameter, Ψ6, c)
global four-fold bond-orientational order parameter, Ψ4, and
d) global tetratic particle orientational order parameter, S4,
as a function of the packing fraction, η, for q = 2, 2.25, 2.5,
2.75, 3.0, 3.5, 4.0, 5.0, 6.0, 8.0, 10.0, and 20.0. Arrows indi-
cate the increasing direction of q. In panel a) curves are given
an offset of 0.02, and red and blue dotted lines are guides to
the eye passing through the compressibility peaks.

phases. Note that our low-boundary estimation of this
region is smaller than the generally accepted value. This
is due to size effects. Furthermore, in this region, we have
a plateau in the EOS, a large peak in χ, and a sudden
increase in Ψ6. We highlight this region with the vertical
red dashed lines crossing from panel a) to d). Also, panel
e) depicts the change from short-range to QLR behavior
of the g(r) and panel f) the change from short-range to
long-range of g6(r), passing through QLR correlations.
We estimate the establishment of long-range and QLR
for g6(r) and g(r), respectively, occurring at η ≈ 0.72.
We draw a vertical cyan dashed line at this density. All
these features are in common with the q = 2.0 case, thus
we recover the third scenario mentioned in the first para-
graph of the main text.

Differences between disks and superdisks with q = 2.5

appear above η ≈ 0.72. To begin with, given that parti-
cles with q > 2 break the circular symmetry, the hexag-
onal solid-phase turns into a plastic phase with hexag-
onal crystal structure, also called hexagonal solid rota-
tor phase. This phase has QLR positional order, but
particle-orientation correlations are short-ranged. The
particles orientational degrees of freedom frozen only at
very high pressures and high densities to yield an ori-
entationally ordered Λ0 rhombic solid phase (see the
snapshot in Fig. S4). We detect a smooth solid–solid
transition, where the Gaussian-shape of all PDFs is pre-
served, but their height (width) decreases (increases) a
little at it. This is accompanied by a small peak of χ
and a sudden increase in S4. A vertical dashed line is
placed across panels a)-d) of Fig. S5 to signal this transi-
tion. All these features resemble the behavior of rounded-
hard squares [22, 33], hard ellipses [34], and discorectan-
gles [35] with quasi-circular symmetry.

F. Dimensionless isothermal compressibility and
global order parameters

We present here the curves of the dimensionless
isothermal compressibility, χ = dρ/d(βP ) = N(〈ρ2〉−
〈ρ〉2)/〈ρ〉2, and the measured global order parameters as
obtained from the REMC as a function of the deforma-
tion parameter, q. The global order parameters are the
six- and four-fold bond-orientational and the tetratic par-
ticle orientational ones. The aim of doing this is two-fold.
First, we highlight that the REMC technique produces
very smooth curves for the isothermal compressibility,
which allows for the easy detection of the phase bound-
aries. This contrasts with the standard point-by-point
simulations. Second, we summarize all cases making
clear how we build the global phase diagram shown in
Fig. 3 of the main text.

The trends of the χ peaks with increasing q are de-
picted in Fig. S6 a). Note that the χ peak appearing
at low densities shifting to the right correlates with the
sudden increase of Ψ6, whereas the one appearing at high
densities correlates with the increase of S4 and Ψ4. Also,
it is observed that the S4-Ψ4 correlation expands all the q
interval (see Fig. S6 b) and c)), although the S4 steep in-
crease anticipates that for Ψ4. We add Y-shaped guides
to the eye as red and blue dashed lines in Fig. S6 a), sug-
gesting the vanishing of the isotropic-hexatic transition.
The right-hand side branch (blue) of the Y corresponds to
the building of orientational order, whereas the left-hand
side branch (red) signals the isotropic-hexatic transition.
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