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Abstract

In this paper, we examine the relationship between a recent new dis-
crete majorization type inequality and classical majorization type inequal-
ities. The multiplicative analogue of the studied new inequality is also
given, which is a wide generalization of Weyl’s inequality.As an applica-
tion, we give a parametric refinement of Popoviciu’s version of the Petrovié¢
inequality.
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1 Introduction

By N, we denote the set of positive integers.

Let C' C R be an interval with nonempty interior (the interior of C' is denoted
by C°). Let denote F¢ the set of all convex functions on C. Let denote F/, the
set of all increasing and convex functions on C.

The following result is a majorization type inequality which is contained in
Theorem 9 of [4].

Theorem 1 Let X := {1,...,m} for somem € Ny, let Y := {1,...,n} for
some n € Ny, and let C C R be an interval with nonempty interior. Assume
(pi)i~, and (qj);‘:1 are real sequences, and s = (s1,...,8m,) € C™ and t :=
(t1,...,tn) € C™. Let ug > ug > ... > u, be the different elements of s and t
in decreasing order (1 <o <m+n). Then

a) For every f € F, inequality
c

Zpif(si) < Z%’f(tj) (1)



holds if and only if

m

Zpi = Z q; (2)

and
{ieX|si>w} {i€Y|t; 2w}
<y Z pi — Z g |, l=1,...,0 (3)
{ieX|si>w} {JeYt;>w}

are satisfied.
(b) For every f € Feo inequality (1) holds if and only if (2) and

m n
Y pisi= Y4t (4)
i=1 j=1

and (3) are satisfied.

Remark 2 Note that (3) is always true for I =1 in both cases. If (2) and (4)
hold, then (3) is also true forl = o.

Paper [4] was mainly devoted to majorization type inequalities for integrals
with signed measures, in this paper we analyze the discrete version (1). It is
obvious that Theorem 1 contains Fuchs inequality, the Hardy-Littlewood-Pélya
or majorization inequality and the weighted version of it, but the precise rela-
tionship between Theorem 1 and these classical results are far from trivial, and
this topic was not thoroughly covered in paper [4]. It is worth investigating how
the aforementioned classical inequalities can be derived directly from Theorem
1, and this is the basic purpose of this paper. Furthermore, we obtain a pre-
cise formulation of the classical results mentioned above for both convex and
increasing convex functions. Theorem 1 also provides an opportunity for a new
characterisation of both weak majorization and majorization. The multiplica-
tive analogue of Theorem 1 is also given, which is a wide generalization of Weyl’s
inequality. As an application, we give a parametric refinement of Popoviciu’s
version of the Petrovi¢ inequality.

2 Preliminary results

The following result, interesting in itself, is needed to prove one of the main
results.

Lemma 3 Assume

Wy 2wy > 2 W1 2 W 20> 2 > 2> > 21 > 2 (5)



for some k € Ny. Then there are no real numbers r1,...,ry for which

riwy + rows + ...+ rp_qWr_1 +rpwi <0
r121 +Trows + ...+ T 1Wr_1 + rrwr <0

: (6)
rz1+ 71920+ ...+ 121 +rpwE <0
r1z1+ 71220+ .. Tp_12p-1 TRz <0

Proof. We argue by induction on k, the case K = 1 is obvious. Let k € N
such that the result holds for every pair of k-tuples (w1, ..., wy) and (z1,. .., 2x)
satisfying (5). Assume

Wy > Wy > .. 2 Whe1 2 W 2> We1 20> 212> 202> .00 2 251 2> 2% 2 2kl
and suppose that there exist real numbers rq,...,rg1 for which
TIwy + rowe + ...+ T 1WE—1 + TEWE + TE+1WE1 < 0

121 +ToWws + ... F TR 1Wh—1 + TEWE + T+1Wet1 < 0

121+ 7220+ .+ TE—12k—1 F TRWE + T WE+1 < 0
121 +To20 oo+ TE—12k—1 F TERE T Th41WE+1 < 0
121 +Toza o A TE—12k—1 F TERE T Thr1R2K4+1 < 0

If ri41 > 0, then rgiqwgy1 > 0, and hence (rq,...,7g) is a solution of (6),
giving a contradiction.
Assume 141 < 0. Then wy, > w41 and 2z > zgy1 imply that

TRWE + Tep1Wha1 = (Th + Thg1) Why  ThZk + Thp1 Zh1 = (Th + Tht1) 2,
and therefore (rq,...,7x—1,7% + Tk+1) is a solution of
riwy + rows + ...+ rp_1Wr—1 + (T‘k + rk—&-l) wg <0
r21 +rows + .o+ rp_1wp—1 + (Tk + Teg1) wi < 0
121 +reza+ ..+ rg_12k-1 + (Tk + re1) Wi <0
121 +Trozo + ...+ TE_12k—1 + (T’k + Tk'-i—l) z <0
which is also a contradiction.
The proof is complete.
3 Majorization type inequalities

We start by comparing the classical Fuchs inequality (see below) and inequality

1).



Theorem 4 (Fuchs inequality, see [1]) Let C C R be an interval with non-
empty interior. If (s1,...,8m) € C™, (t1,...,tm) € C™ and p1,...,pm are real
numbers such that

(a) 1> ...2 8 and ty > ... > t,,

k k

(b) Episig Epiti (k:l,...,m—l),
i=1 i=1

(c) leisz': leiti,

then foi’ievery f éiFo inequality
S pif (s0) <> pif (8) (7)
i=1 i=1

holds.

Clearly, Theorem 1 contains Fuchs inequality, but as the result below shows,
proving it directly is not trivial.

Lemma 5 Let X :={1,...,m} for somem € N;. Lets:= (s1,...,8,) € R™,
t = (t1,...,tm) € R™ such that s1 > ... > sy and t1 > ... > ty,. Let
uy > ug > ... > u, be the different elements of s and t in decreasing order
(1<o0<2m). Let p1,...,pm be real numbers. If

k k
Zpisi Szpztu kilv"'7m7 (8)
i=1 i=1

are satisfied, then

Z DiSi — Z Djtj

{ieX]si>u} {jexit;>u}
<y Z Pi — Z pj|l, {=1,...,0 (9)
{ieX]si>ui} {jeX|t;zw}

Proof. If [ = 1, then (9) has equality, and if [ = o, then (9) follows from the
fact that (8) is satisfied for k = m (see Remark 2).
Assume 1 < [ < o, and let

{1,....m}={i e X |s; >u}

and
{L,...,ne} ={j e X |t; >w}.

For n1 = na, (9) can be obtained from the fact that (8) is true for k = ny.
Assume ny > ny (if {i € X | s; > w;} is empty, let ny := 0, and in this case
the empty sum is defined to equal 0). Then (9) can be written in the form

n1 na ni no na
sz‘si — ijtj <y Zpi — ZP;‘ = -y Z Dy- (10)
i—1 j=1 i=1 =1

j=ni1+1



n2
- 2 pit
j=ni1+1
no

- 2 Djtj — Pny+15n,+1

ni no
sz'si - ijtj < J=n1+2 . (11)
i=1 j=1 :

ng
- 2 pjsj
j=ni+1

It can be seen from (10) and (11) that it is enough to show the next: at least
one of the expressions

% pj (t; —w)

Jj=n1+1

na
Yo ity —w) + pryy1 (Sny1 — wr)
j=ni1+2

% pj (sj —w)

Jj=n1+1

is nonnegative. But this follows from Lemma 3, since
tpgtl — U 2> oo 2, —w 20> 8,41 — U > .0 > Sy, — Uy

We can prove similarly if ny > no.
The proof is complete. m

Remark 6 Theorem 1 is much more general than Fusch inequality. On the
one hand, m = n and p; = ¢; (i=1,...,m) in the Fusch inequality, on the
other hand Fusch inequality gives only sufficient but not necessary conditions
for satisfying inequality (7). This last remark can be easily checked with the
following simple example: let

and

3
b1 = _17 b2 = 2a ps3 = _27 D4 = 3a b5 = _5

In this case
5 5 3
Zpisi = Zpiti =3
i=1 =1

and
3 3

p1s1 = —2> =3 =pit1 and ZPiSi =0>-3= Zpitu

=1 i=1



and hence the conditions of Fusch inequality are not satisfied. However,

f(3)= Zpif(m

N | =

gpiﬂsi) = FO) - 5f () <

for every convex function f: C — R for which 1, 2 and 3 belong to the interval
C.

Of course, conditions (9) are true.

The previous result and Theorem 1 give Fusch inequality for increasing and
convex functions.

Corollary 7 Let C C R be an interval with nonempty interior. If (s1,...,8m) €
C™, (t1,...,tm) € C™ and p1,...,pm are real numbers such that
(a) 1> ...2 8m and ty > ... > t,,

k k
(b) ;pisi < ;piti (E=1,...,m),

then for every f € F(, inequality (7) holds.

Next, we compare Theorem 1 with the majorization inequality.
Majorization is a binary relation (preorder) for finite sequences of real num-
bers, and the theory of majorization is a significant topic in mathematics (see

[5])-

Definition 8 Let s := (s1,...,8,) € R” and t := (t1,...,t,) € R™
(a) We say that s is weakly majorized by t, written s <, t, if

k k
ZS[i]SZt[i], k=1,...,m, (12)
=1 i=1

where sy > 8] = ... 2 S and tjy) >t > ... =ty are the entries of s and
t, respectively, in decreasing order.
(b) We say that s is majorized by t, written s < t, if (12) holds, and in

addition
m

Y s =Dt (13)
1=1 =1

The Hardy-Littlewood-Pélya or majorization inequality is the next:

Theorem 9 (see [3] and [6]) Let C C R be an interval with nonempty interior,
and let s :=(81,...,8m) € C™ and t := (t1,...,t,) € C™. Then

(a) Inequality N N
Zf(sz') < Zf(ti) (14)

holds for every f € Fo if and only if s < t.
(b) Inequality (14) holds for every f € F if s <y t.



Since the majorization inequality gives a necessary and sufficient condition
for satisfying inequality (14), which is a special case of inequality (1), condition
s < t must be equivalent to a suitable condition of Theorem 1. However, the
relation of conditions (2), (4) and (3) with condition s < t is not directly evident,
so we analyze this relation in the following statement.

The cardinality of a set A is denoted by |A|.

Lemma 10 Let X :={1,...,m} for somem € Ny. Lets := (s1,...,8y) € R™
and t := (t1,...,tm) € R™. Let u; > us > ... > u, be the different elements of
s and t in decreasing order (1 < o <2m). Then

(a) s < t if and only if

DD DR

{ieX|si>w} {ieX|t;>w}

<wy({ieX|si>wl—-{jeX|t;>w}), (=1,...,0. (15)
(b) s <t if and only if

and (15) are satisfied.

Proof. (a) It follows from Lemma 5 that s <,, t implies (15).
Conversely, suppose on the contrary that s > 1), and let [; be defined
such that w;, = [y}, and let

{1, o} ={ieX sy >wu}

and
{1,...,n2} = {j € X |ty zull}.
By (15),
ni
> i) — natpy < tpy (nn - n2),
i=1
and therefore N
Z S < naty,
i=1

which is a contradiction.
Let k € {1,...,m — 1} for which

k—1

k—1
DS <Yt (16)
i=1

i=1

If
k

k
D s>t
=1

i=1



would be satisfied, then s > ;) necessarily.
Let I be defined such that w;, := t), and let

{1,...,n3} := {iEX | S Zu12}

and
{1, onay={jeX |ty =w,}.
Then by (15) (the empty sum is defined to equal 0),

k—1 k—1
D s = >t — (na— (k= 1))ty <t (ng — na)
i=1 i=1
and hence (16) shows that
n3
Zs[i] <ty (ns—(k—1)),
i=k

which is also a contradiction.
(b) It is an immediate consequence of (a).
The proof is complete.

Remark 11 (a) By Theorem 5 (a) and Lemma 10 (a), condition s <, t in
Theorem 9 (b) is not only sufficient but also a necessary condition.

(b) There are different characterisations of the relation of magjorization (for
example, by doubly stochastic matrices, see [6]), the previous lemma gives a new
characterization of both weak majorization and majorization.

Finally, we turn to the relationship between the weighted version of Hardy-
Littlewood-Pélya inequality and Theorem 1. The weighted version of Hardy-
Littlewood-Pdélya inequality is the next:

Theorem 12 Let C C R be an interval with nonempty interior. If (s1,...,8m) €
C™, (t1,...,tym) € C™ and p1, ..., pm are nonnegative numbers such that
(a) s1>...> $m,

k k

(b) Episi S Epiti (k: 1,...,m—1),
i=1 i=1

(c) Y. pisi = ) piti,
i=1 i=1

then z'ne?]uality
m m

D pif (i) <Y pif (1) (17)
i=1 i=1
holds for every f € Fe.

Obviously, this result is also included in Theorem 1, but the direct proof of
it is much simpler than for the Fusch inequality.



Lemma 13 Let X :={1,...,m} for somem € Ny. Lets:= (s1,...,8m,) € R™
such that 1 > ... > Sm, and let t := (t1,...,tm) € R™. Let ug > ug > ... >
u, be the different elements of s and t in decreasing order (1 < o < 2m). Let
P1,---,Pm be nonnegative numbers. If

k k
Zpisi < Zpitia kila'-'7m7 (18)
i=1 i=1

are satisfied, then

Z pisi — Z Pjtj

{ieX|si>w} {jexXitizu}
<y Z ;i — Z pil, I=1,...,0. (19)
{ieX]si>ui} {jeX|t;zw}

Proof. Let [ € {1,...,0} be fixed, and let
{1,...,n1}::{i€X\si2ul}.

Since the numbers py, . . ., p,, are nonnegative, (19) obviously holds if {i € X |
is empty, so it can be supposed that n; > 1. Then (19) can be written in the

form
n1 ni
> pisi—w) <Y pi(ti —w)
=1 i=1
- > pj (tj —w) + > pj(t;—w).  (20)
{7e{l,-oma bt <wi} {ie{ni+1,....m}t; >w }

This is valid, since the members of the sums in (20) are nonnegative, and by

(18),
ni ni
Zpi (si —w) < Zpi (ti —w).
i=1 i=1

The proof is complete. m

Remark 14 The findings of Remark 6 also remain valid here. Again, we only
emphasize that the conditions of the Theorem 12 are only sufficient but not
necessary for the inequality (17) to hold for all f € Fe. This is illustrated only
a simple example: let s1 = to := 2, o = t1 := 1 and py = p2 := 1. Then
p1s1 = 2 > 1 = pity, and hence condition (b) in Theorem 12 is not satisfied.
Despite this, p1f (s1) + paf (s2) = f(2) + f(1) = pif (1) + paf (t2) for all
functions whose domain contains 1 and 2.

Just as in the case of Fusch inequality, the previous result and Theorem 1
give the weighted version of Hardy-Littlewood-Pdlya inequality for increasing
and convex functions.

si > w}



Corollary 15 Let C C R be an interval with nonempty interior. If (s1,...,8m) €
C™, (t1,...,tm) € C™ and p1,...,pm are nonnegative numbers such that
(a') S1 Z v Z Sm s

k k
(b) ;pisi < ;piti (k=1,...,m),
then for every f € Fl, inequality (17) holds.

Finally, we give a multiplicative version of the majorization type inequalities,
which has its origins in Weyl’s paper [11]. Theorem 1 can be reformulated in
this form, let’s give it first.

Theorem 16 Let X := {1,...,m} for some m € Ny, let Y := {1,...,n}
for some n € Ny, and let C C ]0,00[ be an interval with nonempty interior.
Assume (p;)i-, and (qj)?:1 are real sequences, and s := (81,...,8m) € C™ and
t = (t1,...,tn) € C™. Let uy > ugs > ... > u, be the different elements of s
and t in decreasing order (1 <o <m+n). If

m n m n
Zpi = qu and H s?i’i - H tff
i=1 j=1 i=1 =1

and .
K2
i > k- X qj
{ieX]s;i>ur} < {iex|s;>u;} {ievit;>u}

G =Y
IT &

{eY|t;Zu}
then for every f: C — R for which f oexp is convex inequality

m

> pif(si) < Z%‘f(tj) (21)

i=1

holds.

Proof. Let In(s) := (In(s1),...,In(s;n)) and In (t) := (In(¢1),...,In(¢,)).
Since the function In is strictly increasing, exactly In (uq) > In(ug) > ... >
In (u,) are the different elements of In (s) and In (t) in decreasing order and

{lieX|s;>2wup={ieX|In(s;) >n(w)}

and
{eY|tjzwt={j€Y [In(t;) =In(w)}.

Now Theorem 1 can be applied to In(s), In(t) and f o exp.

The proof is complete. m

For the sake of completeness, we also give the variant related to the Fusch
inequality, which is a special case of the previous one, but more similar to the
original form of Weyl.

10



Theorem 17 Let C C |0, c0[ be an interval with nonempty interior. If (s1,...,Sm) €

C™, (t1,...,tm) € C™ and p1,...,pm are real numbers such that
(a) 1> ...2 8pm and ty > ... > tp,,

k k
(b) Hlsfi < _Hltf" (k=1,...,m—1),
1= i=
m m
(c) 'Hl Sfl = 'Hl ﬁf’l ’
1= 1=
then for every f : C'— R for which f oexp is convex inequality

STpif (si) <D pif (k)
i=1 i=1
holds.

Proof. Fusch inequality can be applied to the n-tuples (In(s1),...,In(sm))
and (In(t1),...,In(¢y)) and to the function foexp. ®

Remark 18 (a) Theorem 16 is much more general than Weyl’s original in-
equality. Note that in Theorem 16, in general m # n and the weights (p;);-,
and (q;);_, are different.

(b) Crucially, inequality (21) is true for functions f : C — R for which
f oexp is conver, but it is not true in general if we only assume that f is
convex. For example, let

S1 = 2, SS9 = ]., S3 1= 1/2, tl = 3, tg = 1, tg = 1/3
and
p1=p2=p3:=1

and f : 0,00 — R, f(z) := (z —3)>. Then conditions (a), (b) and (c) in
Theorem 17 are satisfied and f is convez (f o exp is not convex), but

3 3

OEE T I

i=1

4 Application

The following inequality comes from Petrovi¢ [9)].

Theorem 19 Let C' C [0,00[ be an interval with nonempty interior and with
0€C. If (s1,.--,8m) € C™ such that

m
Z s; € C,
i=1

then for every f € Fo we have

m

Zf(si) <f (Z&) + (m—1) f(0).

i=1

11



The previous result has many generalizations, see for example papers [2], [7]
and [10].

For the sake of clarity and ease of calculation, the Popoviciu’s version is
considered below.

First, we give a simple proof of Popoviciu’s version using Theorem 1, illus-
trating its applicability.

Theorem 20 (see [10]) Let X :={1,...,m} for somem € Ny. Let C C [0, 00[

be an interval with nonempty interior and with 0 € C. If (s1,...,8n,) € C™
and pi,...,DPm are nonnegative numbers such that
m
= i < i Si 22
S 121%}5” 8; < 2]?181 e C, (22)
=

then for every f € Fo we have

Zpif<5i) <f (Zpisi) + (sz - 1) f(0). (23)

Proof. Let uy > us > ... > u, be the different elements of s1,...,S,, t1 :=

m

> pis; and ty := 0 in decreasing order (1 <o <m+2), and let ¢; := 1 and
i=1

m

g2 = Y pi — 1. By (22),
i=1
Uy = tl and Up = t2.
Since

m m
S pi=q+q and > pisi = qt + qota,
i=1 i=1

Theorem 1 and Remark 2 show that it is enough to prove that

Z pisi—ipisz'éuz Z pi—1|, 1=2,...,0-1. (24)

{i€X]si>u} i=1 {ieX|si>w}
This is obviously true if
>, m-120
{ieX]|s;>u}

Assume that

Y om<1 (25)

{teX|si>u}
and (24) is not satisfied that is

m
sz'Si < Z pi (8i —w) + .
i=1

{ieX|s;>ui}

12



Then by (25),

dopsi< Y, pi(S—w)+w<(S—w)+w =15,
i=1

{ieX|si>ur}

which contradicts to (22).
The proof is complete. =
Next, we give a refinement of inequality (23) in the form

Zpif (8¢) <rof (wi) +raf (we) < f (Zpﬁz) + (Zpi - 1) f(0). (26)

By Theorem 1, the system of linear equations
m
ity =) pi
i=1
m
Tiwy + rowy = Y pisi
i=1

must be satisfied, and therefore

m m m m
Zpisi_w2 sz‘ w1 Zpi—ZpiSi
r = =1 i=1 and ry = i=1 i=1 (27)
w1 — W2 w1 — W2

necessarily.

Theorem 21 Let X := {1,...,m} for some m € Ny, and let C := [0, 00][.
Assume s := (81,...,8m) € C™ and p1,...,pm are nonnegative numbers such
that

m
= mi i = i < i Si-
0<s 121Snm s; and S 1222(71 s < 21)251
=
m
Then for every 0 < we < s we can find a number ¢ > > p;s; (depending on
i=1
wa ) such that for any wi > ¢ and any f € Fo (26) is satisfied.

Proof. First we show that

rif (wi) +raf (w2) < f (Zpisz) + <ZP1 - 1) f(0) (28)
i=1

i=1
holds for all .
Z Pisi

=

m
> pi
=1

0<wy < < wh

13



and for all f € Fe.
Then either

m
O<wy <wy < Zpisi
i=1
or
m
0<wy < Zp,-s,' < wi.
i=1
In both cases, the fulfilment of condition (3) can be checked by elementary
calculation, so Theorem 1 can be applied.
Second, we study the inequality

> pif (si) < rif (w) + raf (w2) (29)
i=1

under the conditions
O0<wy<s and Zpisi < wj.

i=1

If sy = ... = sm, then (29) is a simple Jensen’s inequality, so we can suppose
that s < S.

Let ws be fixed, and let u; > us > ... > u, be the different elements of s
and w; and ws in decreasing order (3 < o < m + 2). Obviously,

W2 = Up, Ul = W1.

By Theorem 1 and Remark 2, inequality (29) holds if

Z Pisi — riwy < Z pi—ri], 1<I<o.
{ieX|si>w} {ieX|si>u}

This inequality is equivalent to

m m
Z PiSi — wa Z bi

Z pi (s —uy) < =L =L (wy—w), 1<l<o  (30)
{ieX|si>uw)} w1 = W2

It is obvious that for every 1 <l <o

Yoo opiGi—w)< Y pilsi—ws) (31)

{ieX|s;i>u;} {ieX|si>uo—1}

m

m m o S m _
(szsz — W2 sz) h < <;P181 — W2 ZP@) H (32)

i=1

14



Since {i € X | s =up—1} # 0 and p; (i =1,...,m) is positive,

> pilsi—wy) < S pilsi—w)t D pilsi—ws)
{ieX|si>uo—1} {ieX|si>uo—1} {ieX|si=uo—_1}
+ > pilsi—w) szsl wo sz (33)

{ieX|si=uo}
Inequalities (31) and (32) show that (30) is satisfied if

Z bi ( - w2 (szsz — W2 sz> (34)
{ieX|si>uo—1}

which is true for any sufficiently large wq, since (33) holds and qu’lji — 1 as
wy, — OQ.
The proof is complete.

Remark 22 (a) Since the function wy — 13’11_752 (w1 > wa) is increasing, the
constant ¢ associated with wq is given by

Yo pilsi—w) (szsz — wy Zm)

{ieX|si>uo—1}

(b) All I could find was paper [8], which deals with the refinement of the
Petrovic inequality. It is likely that there are other papers on this topic that
have escaped my attention, in any case there are not many such papers. In [8]
the refinement of the Petrovic inequality is obtained by applying a refinement
of the Jensen’s inequality, which is obtained by applying a refinement of the
Jensen inequality, and is not comparable to our result. We stress that (26) is a
parameter dependent refinement.

(c) It is not hard to think that if (26) holds, then ri and ro must be non-
negative. It is easily follows from Theorem 1 that inequality (28) also holds
if

pzsz
O<w2<w1< s

Z Di
i=1

HMS

and in this case ro 1s negative.
For example, let

4
§1:=3, so:=1, p1:=1, pp:=2, wy := 3 Wy 1= —.
Then r1 :=4 and 79 := —1, and inequality (28) is

i (3)-1(3) <701 +2r 0.

Acknowledgement 23 Research supported by the Hungarian National Research,
Development and Innovation Office grant no. K139346.
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