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Abstract

In this paper, we examine the relationship between a recent new dis-
crete majorization type inequality and classical majorization type inequal-
ities. The multiplicative analogue of the studied new inequality is also
given, which is a wide generalization of Weyl�s inequality.As an applica-
tion, we give a parametric re�nement of Popoviciu�s version of the Petrovíc
inequality.
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1 Introduction

By N+ we denote the set of positive integers.
Let C � R be an interval with nonempty interior (the interior of C is denoted

by C�). Let denote FC the set of all convex functions on C. Let denote F iC the
set of all increasing and convex functions on C.
The following result is a majorization type inequality which is contained in

Theorem 9 of [4].

Theorem 1 Let X := f1; : : : ;mg for some m 2 N+, let Y := f1; : : : ; ng for
some n 2 N+, and let C � R be an interval with nonempty interior. Assume
(pi)

m
i=1 and (qj)

n
j=1 are real sequences, and s := (s1; : : : ; sm) 2 Cm and t :=

(t1; : : : ; tn) 2 Cn. Let u1 > u2 > : : : > uo be the di¤erent elements of s and t
in decreasing order (1 � o � m+ n). Then
(a) For every f 2 F iC inequality

mX
i=1

pif (si) �
nX
j=1

qjf (tj) (1)
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holds if and only if
mX
i=1

pi =
nX
j=1

qj (2)

and X
fi2Xjsi�ulg

pisi �
X

fj2Y jtj�ulg

qjtj

� ul

0@ X
fi2Xjsi�ulg

pi �
X

fj2Y jtj�ulg

qj

1A ; l = 1; : : : ; o (3)

are satis�ed.
(b) For every f 2 FC inequality (1) holds if and only if (2) and

mX
i=1

pisi =
nX
j=1

qjtj (4)

and (3) are satis�ed.

Remark 2 Note that (3) is always true for l = 1 in both cases. If (2) and (4)
hold, then (3) is also true for l = o.

Paper [4] was mainly devoted to majorization type inequalities for integrals
with signed measures, in this paper we analyze the discrete version (1). It is
obvious that Theorem 1 contains Fuchs inequality, the Hardy-Littlewood-Pólya
or majorization inequality and the weighted version of it, but the precise rela-
tionship between Theorem 1 and these classical results are far from trivial, and
this topic was not thoroughly covered in paper [4]. It is worth investigating how
the aforementioned classical inequalities can be derived directly from Theorem
1, and this is the basic purpose of this paper. Furthermore, we obtain a pre-
cise formulation of the classical results mentioned above for both convex and
increasing convex functions. Theorem 1 also provides an opportunity for a new
characterisation of both weak majorization and majorization. The multiplica-
tive analogue of Theorem 1 is also given, which is a wide generalization of Weyl�s
inequality. As an application, we give a parametric re�nement of Popoviciu�s
version of the Petrovíc inequality.

2 Preliminary results

The following result, interesting in itself, is needed to prove one of the main
results.

Lemma 3 Assume

w1 � w2 � : : : � wk�1 � wk � 0 > z1 � z2 � : : : � zk�1 � zk (5)
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for some k 2 N+. Then there are no real numbers r1; : : : ; rk for which

r1w1 + r2w2 + : : :+ rk�1wk�1 + rkwk < 0
r1z1 + r2w2 + : : :+ rk�1wk�1 + rkwk < 0
...
r1z1 + r2z2 + : : :+ rk�1zk�1 + rkwk < 0
r1z1 + r2z2 + : : :+ rk�1zk�1 + rkzk < 0

9>>>>>=>>>>>;
: (6)

Proof. We argue by induction on k, the case k = 1 is obvious. Let k 2 N+
such that the result holds for every pair of k-tuples (w1; : : : ; wk) and (z1; : : : ; zk)
satisfying (5). Assume

w1 � w2 � : : : � wk�1 � wk � wk+1 � 0 > z1 � z2 � : : : � zk�1 � zk � zk+1;

and suppose that there exist real numbers r1; : : : ; rk+1 for which

r1w1 + r2w2 + : : :+ rk�1wk�1 + rkwk + rk+1wk+1 < 0
r1z1 + r2w2 + : : :+ rk�1wk�1 + rkwk + rk+1wk+1 < 0
...
r1z1 + r2z2 + : : :+ rk�1zk�1 + rkwk + rk+1wk+1 < 0
r1z1 + r2z2 + : : :+ rk�1zk�1 + rkzk + rk+1wk+1 < 0
r1z1 + r2z2 + : : :+ rk�1zk�1 + rkzk + rk+1zk+1 < 0

9>>>>>>>=>>>>>>>;
:

If rk+1 � 0, then rk+1wk+1 � 0, and hence (r1; : : : ; rk) is a solution of (6),
giving a contradiction.
Assume rk+1 < 0. Then wk � wk+1 and zk � zk+1 imply that

rkwk + rk+1wk+1 � (rk + rk+1)wk; rkzk + rk+1zk+1 � (rk + rk+1) zk;

and therefore (r1; : : : ; rk�1; rk + rk+1) is a solution of

r1w1 + r2w2 + : : :+ rk�1wk�1 + (rk + rk+1)wk < 0
r1z1 + r2w2 + : : :+ rk�1wk�1 + (rk + rk+1)wk < 0
...
r1z1 + r2z2 + : : :+ rk�1zk�1 + (rk + rk+1)wk < 0
r1z1 + r2z2 + : : :+ rk�1zk�1 + (rk + rk+1) zk < 0

9>>>>>=>>>>>;
;

which is also a contradiction.
The proof is complete.

3 Majorization type inequalities

We start by comparing the classical Fuchs inequality (see below) and inequality
(1).
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Theorem 4 (Fuchs inequality, see [1]) Let C � R be an interval with non-
empty interior. If (s1; : : : ; sm) 2 Cm, (t1; : : : ; tm) 2 Cm and p1; : : : ; pm are real
numbers such that
(a) s1 � : : : � sm and t1 � : : : � tm,

(b)
kP
i=1

pisi �
kP
i=1

piti (k = 1; : : : ;m� 1),

(c)
mP
i=1

pisi =
mP
i=1

piti,

then for every f 2 FC inequality
mX
i=1

pif (si) �
mX
i=1

pif (ti) (7)

holds.

Clearly, Theorem 1 contains Fuchs inequality, but as the result below shows,
proving it directly is not trivial.

Lemma 5 Let X := f1; : : : ;mg for some m 2 N+. Let s := (s1; : : : ; sm) 2 Rm,
t := (t1; : : : ; tm) 2 Rm such that s1 � : : : � sm and t1 � : : : � tm. Let
u1 > u2 > : : : > uo be the di¤erent elements of s and t in decreasing order
(1 � o � 2m). Let p1; : : : ; pm be real numbers. If

kX
i=1

pisi �
kX
i=1

piti; k = 1; : : : ;m; (8)

are satis�ed, then X
fi2Xjsi�ulg

pisi �
X

fj2Xjtj�ulg

pjtj

� ul

0@ X
fi2Xjsi�ulg

pi �
X

fj2Xjtj�ulg

pj

1A ; l = 1; : : : ; o: (9)

Proof. If l = 1, then (9) has equality, and if l = o, then (9) follows from the
fact that (8) is satis�ed for k = m (see Remark 2).
Assume 1 < l < o, and let

f1; : : : ; n1g := fi 2 X j si � ulg

and
f1; : : : ; n2g := fj 2 X j tj � ulg :

For n1 = n2, (9) can be obtained from the fact that (8) is true for k = n1.
Assume n2 > n1 (if fi 2 X j si � ulg is empty, let n1 := 0, and in this case

the empty sum is de�ned to equal 0). Then (9) can be written in the form

n1X
i=1

pisi �
n2X
j=1

pjtj � ul

0@ n1X
i=1

pi �
n2X
j=1

pj

1A = �ul
n2X

j=n1+1

pj : (10)
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By (8),

n1X
i=1

pisi �
n2X
j=1

pjtj �

8>>>>>>>>><>>>>>>>>>:

�
n2P

j=n1+1

pjtj

�
n2P

j=n1+2

pjtj � pn1+1sn1+1
...

�
n2P

j=n1+1

pjsj

: (11)

It can be seen from (10) and (11) that it is enough to show the next: at least
one of the expressions

n2P
j=n1+1

pj (tj � ul)
n2P

j=n1+2

pj (tj � ul) + pn1+1 (sn1+1 � ul)

...
n2P

j=n1+1

pj (sj � ul)

is nonnegative. But this follows from Lemma 3, since

tn1+1 � ul � : : : � tn2 � ul � 0 > sn1+1 � ul � : : : � sn2 � ul:

We can prove similarly if n1 > n2.
The proof is complete.

Remark 6 Theorem 1 is much more general than Fusch inequality. On the
one hand, m = n and pi = qi (i = 1; : : : ;m) in the Fusch inequality, on the
other hand Fusch inequality gives only su¢ cient but not necessary conditions
for satisfying inequality (7). This last remark can be easily checked with the
following simple example: let

s1 = s2 := 2; s3 = s4 = s5 := 1; t1 = t2 = t3 = t4 = t5 := 3

and
p1 := �1; p2 := 2; p3 := �2; p4 := 3; p5 := �

3

2
:

In this case
5X
i=1

pisi =
5X
i=1

piti =
3

2

and

p1s1 = �2 > �3 = p1t1 and
3X
i=1

pisi = 0 > �3 =
3X
i=1

piti;
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and hence the conditions of Fusch inequality are not satis�ed. However,

5X
i=1

pif (si) = f (2)�
1

2
f (1) � 1

2
f (3) =

5X
i=1

pif (ti)

for every convex function f : C ! R for which 1, 2 and 3 belong to the interval
C.
Of course, conditions (9) are true.

The previous result and Theorem 1 give Fusch inequality for increasing and
convex functions.

Corollary 7 Let C � R be an interval with nonempty interior. If (s1; : : : ; sm) 2
Cm, (t1; : : : ; tm) 2 Cm and p1; : : : ; pm are real numbers such that
(a) s1 � : : : � sm and t1 � : : : � tm,

(b)
kP
i=1

pisi �
kP
i=1

piti (k = 1; : : : ;m),

then for every f 2 F iC inequality (7) holds.

Next, we compare Theorem 1 with the majorization inequality.
Majorization is a binary relation (preorder) for �nite sequences of real num-

bers, and the theory of majorization is a signi�cant topic in mathematics (see
[5]).

De�nition 8 Let s := (s1; : : : ; sn) 2 Rn and t := (t1; : : : ; tn) 2 Rn.
(a) We say that s is weakly majorized by t, written s �w t, if

kX
i=1

s[i] �
kX
i=1

t[i]; k = 1; : : : ;m; (12)

where s[1] � s[2] � : : : � s[m] and t[1] � t[2] � : : : � t[m] are the entries of s and
t, respectively, in decreasing order.
(b) We say that s is majorized by t, written s � t, if (12) holds, and in

addition
mX
i=1

s[i] =
mX
i=1

t[i]: (13)

The Hardy-Littlewood-Pólya or majorization inequality is the next:

Theorem 9 (see [3] and [6]) Let C � R be an interval with nonempty interior,
and let s := (s1; : : : ; sm) 2 Cm and t := (t1; : : : ; tm) 2 Cm. Then
(a) Inequality

mX
i=1

f (si) �
mX
i=1

f (ti) (14)

holds for every f 2 FC if and only if s � t.
(b) Inequality (14) holds for every f 2 F iC if s �w t.
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Since the majorization inequality gives a necessary and su¢ cient condition
for satisfying inequality (14), which is a special case of inequality (1), condition
s � t must be equivalent to a suitable condition of Theorem 1. However, the
relation of conditions (2), (4) and (3) with condition s � t is not directly evident,
so we analyze this relation in the following statement.
The cardinality of a set A is denoted by jAj.

Lemma 10 Let X := f1; : : : ;mg for some m 2 N+. Let s := (s1; : : : ; sm) 2 Rm
and t := (t1; : : : ; tm) 2 Rm. Let u1 > u2 > : : : > uo be the di¤erent elements of
s and t in decreasing order (1 � o � 2m). Then
(a) s �w t if and only if X

fi2Xjsi�ulg

si �
X

fj2Xjtj�ulg

tj

� ul (jfi 2 X j si � ulgj � jfj 2 X j tj � ulgj) ; l = 1; : : : ; o: (15)

(b) s � t if and only if
mX
i=1

si =
mX
i=1

ti

and (15) are satis�ed.

Proof. (a) It follows from Lemma 5 that s �w t implies (15).
Conversely, suppose on the contrary that s[1] > t[1], and let l1 be de�ned

such that ul1 = t[1], and let

f1; : : : ; n1g :=
�
i 2 X j s[i] � ul1

	
and

f1; : : : ; n2g :=
�
j 2 X j t[j] = ul1

	
:

By (15),
n1X
i=1

s[i] � n2t[1] � t[1] (n1 � n2) ;

and therefore
n1X
i=1

s[i] � n1t[1];

which is a contradiction.
Let k 2 f1; : : : ;m� 1g for which

k�1X
i=1

s[i] �
k�1X
i=1

t[i]: (16)

If
kX
i=1

s[i] >
kX
i=1

t[i]
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would be satis�ed, then s[k] > t[k] necessarily.
Let l2 be de�ned such that ul2 := t[k], and let

f1; : : : ; n3g :=
�
i 2 X j s[i] � ul2

	
and

f1; : : : ; n4g :=
�
j 2 X j t[j] = ul2

	
:

Then by (15) (the empty sum is de�ned to equal 0),

k�1X
i=1

s[i] �
k�1X
i=1

t[i] � (n4 � (k � 1)) t[k] � t[k] (n3 � n4) ;

and hence (16) shows that

n3X
i=k

s[i] � t[k] (n3 � (k � 1)) ;

which is also a contradiction.
(b) It is an immediate consequence of (a).
The proof is complete.

Remark 11 (a) By Theorem 5 (a) and Lemma 10 (a), condition s �w t in
Theorem 9 (b) is not only su¢ cient but also a necessary condition.
(b) There are di¤erent characterisations of the relation of majorization (for

example, by doubly stochastic matrices, see [6]), the previous lemma gives a new
characterization of both weak majorization and majorization.

Finally, we turn to the relationship between the weighted version of Hardy-
Littlewood-Pólya inequality and Theorem 1. The weighted version of Hardy-
Littlewood-Pólya inequality is the next:

Theorem 12 Let C � R be an interval with nonempty interior. If (s1; : : : ; sm) 2
Cm, (t1; : : : ; tm) 2 Cm and p1; : : : ; pm are nonnegative numbers such that
(a) s1 � : : : � sm,

(b)
kP
i=1

pisi �
kP
i=1

piti (k = 1; : : : ;m� 1),

(c)
mP
i=1

pisi =
mP
i=1

piti,

then inequality
mX
i=1

pif (si) �
mX
i=1

pif (ti) (17)

holds for every f 2 FC .

Obviously, this result is also included in Theorem 1, but the direct proof of
it is much simpler than for the Fusch inequality.
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Lemma 13 Let X := f1; : : : ;mg for some m 2 N+. Let s := (s1; : : : ; sm) 2 Rm
such that s1 � : : : � sm, and let t := (t1; : : : ; tm) 2 Rm. Let u1 > u2 > : : : >
uo be the di¤erent elements of s and t in decreasing order (1 � o � 2m). Let
p1; : : : ; pm be nonnegative numbers. If

kX
i=1

pisi �
kX
i=1

piti; k = 1; : : : ;m; (18)

are satis�ed, then X
fi2Xjsi�ulg

pisi �
X

fj2Xjtj�ulg

pjtj

� ul

0@ X
fi2Xjsi�ulg

pi �
X

fj2Xjtj�ulg

pj

1A ; l = 1; : : : ; o: (19)

Proof. Let l 2 f1; : : : ; og be �xed, and let

f1; : : : ; n1g := fi 2 X j si � ulg :

Since the numbers p1; : : : ; pm are nonnegative, (19) obviously holds if fi 2 X j si � ulg
is empty, so it can be supposed that n1 � 1. Then (19) can be written in the
form

n1X
i=1

pi (si � ul) �
n1X
i=1

pi (ti � ul)

�
X

fj2f1;:::;n1gjtj<ulg

pj (tj � ul) +
X

fj2fn1+1;:::;mgjtj�ulg

pj (tj � ul) : (20)

This is valid, since the members of the sums in (20) are nonnegative, and by
(18),

n1X
i=1

pi (si � ul) �
n1X
i=1

pi (ti � ul) :

The proof is complete.

Remark 14 The �ndings of Remark 6 also remain valid here. Again, we only
emphasize that the conditions of the Theorem 12 are only su¢ cient but not
necessary for the inequality (17) to hold for all f 2 FC . This is illustrated only
a simple example: let s1 = t2 := 2, s2 = t1 := 1 and p1 = p2 := 1. Then
p1s1 = 2 > 1 = p1t1, and hence condition (b) in Theorem 12 is not satis�ed.
Despite this, p1f (s1) + p2f (s2) = f (2) + f (1) = p1f (t1) + p2f (t2) for all
functions whose domain contains 1 and 2.

Just as in the case of Fusch inequality, the previous result and Theorem 1
give the weighted version of Hardy-Littlewood-Pólya inequality for increasing
and convex functions.
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Corollary 15 Let C � R be an interval with nonempty interior. If (s1; : : : ; sm) 2
Cm, (t1; : : : ; tm) 2 Cm and p1; : : : ; pm are nonnegative numbers such that
(a) s1 � : : : � sm,

(b)
kP
i=1

pisi �
kP
i=1

piti (k = 1; : : : ;m),

then for every f 2 F iC inequality (17) holds.

Finally, we give a multiplicative version of the majorization type inequalities,
which has its origins in Weyl�s paper [11]. Theorem 1 can be reformulated in
this form, let�s give it �rst.

Theorem 16 Let X := f1; : : : ;mg for some m 2 N+, let Y := f1; : : : ; ng
for some n 2 N+, and let C � ]0;1[ be an interval with nonempty interior.
Assume (pi)

m
i=1 and (qj)

n
j=1 are real sequences, and s := (s1; : : : ; sm) 2 Cm and

t := (t1; : : : ; tn) 2 Cn. Let u1 > u2 > : : : > uo be the di¤erent elements of s
and t in decreasing order (1 � o � m+ n). If

mX
i=1

pi =
nX
j=1

qj and
mY
i=1

spii =
nY
j=1

t
pj
j

and Q
fi2Xjsi�ulg

spiiQ
fj2Y jtj�ulg

t
qj
j

� u

P
fi2Xjsi�ulg

pi�
P

fj2Y jtj�ulg
qj

l ; l = 1; : : : ; o;

then for every f : C ! R for which f � exp is convex inequality
mX
i=1

pif (si) �
nX
i=1

qjf (tj) (21)

holds.

Proof. Let ln (s) := (ln (s1) ; : : : ; ln (sm)) and ln (t) := (ln (t1) ; : : : ; ln (tn)).
Since the function ln is strictly increasing, exactly ln (u1) > ln (u2) > : : : >

ln (uo) are the di¤erent elements of ln (s) and ln (t) in decreasing order and

fi 2 X j si � ulg = fi 2 X j ln (si) � ln (ul)g

and
fj 2 Y j tj � ulg = fj 2 Y j ln (tj) � ln (ul)g :

Now Theorem 1 can be applied to ln (s), ln (t) and f � exp.
The proof is complete.
For the sake of completeness, we also give the variant related to the Fusch

inequality, which is a special case of the previous one, but more similar to the
original form of Weyl.
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Theorem 17 Let C � ]0;1[ be an interval with nonempty interior. If (s1; : : : ; sm) 2
Cm, (t1; : : : ; tm) 2 Cm and p1; : : : ; pm are real numbers such that
(a) s1 � : : : � sm and t1 � : : : � tm,

(b)
kQ
i=1

spii �
kQ
i=1

tpii (k = 1; : : : ;m� 1),

(c)
mQ
i=1

spii =
mQ
i=1

tpii ,

then for every f : C ! R for which f � exp is convex inequality
mX
i=1

pif (si) �
mX
i=1

pif (ti)

holds.

Proof. Fusch inequality can be applied to the n-tuples (ln (s1) ; : : : ; ln (sm))
and (ln (t1) ; : : : ; ln (tm)) and to the function f � exp.

Remark 18 (a) Theorem 16 is much more general than Weyl�s original in-
equality. Note that in Theorem 16, in general m 6= n and the weights (pi)

m
i=1

and (qj)
n
j=1 are di¤erent.

(b) Crucially, inequality (21) is true for functions f : C ! R for which
f � exp is convex, but it is not true in general if we only assume that f is
convex. For example, let

s1 := 2; s2 := 1; s3 := 1=2; t1 := 3; t2 := 1; t3 := 1=3

and
p1 = p2 = p3 := 1

and f : ]0;1[ ! R, f (x) := (x� 3)2. Then conditions (a), (b) and (c) in
Theorem 17 are satis�ed and f is convex (f � exp is not convex), but

3X
i=1

f (si) =
45

4
>
100

9
=

3X
i=1

f (ti) :

4 Application

The following inequality comes from Petrovíc [9].

Theorem 19 Let C � [0;1[ be an interval with nonempty interior and with
0 2 C. If (s1; : : : ; sm) 2 Cm such that

mX
i=1

si 2 C;

then for every f 2 FC we have
mX
i=1

f (si) � f
 

mX
i=1

si

!
+ (m� 1) f (0) :

11



The previous result has many generalizations, see for example papers [2], [7]
and [10].
For the sake of clarity and ease of calculation, the Popoviciu�s version is

considered below.
First, we give a simple proof of Popoviciu�s version using Theorem 1, illus-

trating its applicability.

Theorem 20 (see [10]) Let X := f1; : : : ;mg for some m 2 N+. Let C � [0;1[
be an interval with nonempty interior and with 0 2 C. If (s1; : : : ; sm) 2 Cm
and p1; : : : ; pm are nonnegative numbers such that

S := max
1�i�m

si �
mX
i=1

pisi 2 C; (22)

then for every f 2 FC we have
mX
i=1

pif (si) � f
 

mX
i=1

pisi

!
+

 
mX
i=1

pi � 1
!
f (0) : (23)

Proof. Let u1 > u2 > : : : > uo be the di¤erent elements of s1; : : : ; sm; t1 :=
mP
i=1

pisi and t2 := 0 in decreasing order (1 � o � m+ 2), and let q1 := 1 and

q2 :=
mP
i=1

pi � 1. By (22),

u1 = t1 and uo = t2:

Since
mX
i=1

pi = q1 + q2 and
mX
i=1

pisi = q1t1 + q2t2;

Theorem 1 and Remark 2 show that it is enough to prove that

X
fi2Xjsi�ulg

pisi �
mX
i=1

pisi � ul

0@ X
fi2Xjsi�ulg

pi � 1

1A ; l = 2; : : : ; o� 1: (24)

This is obviously true if X
fi2Xjsi�ulg

pi � 1 � 0:

Assume that X
fi2Xjsi�ulg

pi < 1 (25)

and (24) is not satis�ed that is

mX
i=1

pisi <
X

fi2Xjsi�ulg

pi (si � ul) + ul:
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Then by (25),

mX
i=1

pisi <
X

fi2Xjsi�ulg

pi (S � ul) + ul � (S � ul) + ul = S;

which contradicts to (22).
The proof is complete.
Next, we give a re�nement of inequality (23) in the form

mX
i=1

pif (si) � r1f (w1) + r2f (w2) � f
 

mX
i=1

pisi

!
+

 
mX
i=1

pi � 1
!
f (0) : (26)

By Theorem 1, the system of linear equations

r1 + r2 =
mP
i=1

pi

r1w1 + r2w2 =
mP
i=1

pisi

9>>=>>;
must be satis�ed, and therefore

r1 =

mP
i=1

pisi � w2
mP
i=1

pi

w1 � w2
and r2 =

w1
mP
i=1

pi �
mP
i=1

pisi

w1 � w2
(27)

necessarily.

Theorem 21 Let X := f1; : : : ;mg for some m 2 N+, and let C := [0;1[.
Assume s := (s1; : : : ; sm) 2 Cm and p1; : : : ; pm are nonnegative numbers such
that

0 < s := min
1�i�m

si and S := max
1�i�m

si �
mX
i=1

pisi:

Then for every 0 < w2 � s we can �nd a number c �
mP
i=1

pisi (depending on

w2) such that for any w1 � c and any f 2 FC (26) is satis�ed.

Proof. First we show that

r1f (w1) + r2f (w2) � f
 

mX
i=1

pisi

!
+

 
mX
i=1

pi � 1
!
f (0) (28)

holds for all

0 < w2 �

mP
i=1

pisi

mP
i=1

pi

< w1

13



and for all f 2 FC .
Then either

0 < w2 < w1 �
mX
i=1

pisi

or

0 < w2 �
mX
i=1

pisi < w1:

In both cases, the ful�lment of condition (3) can be checked by elementary
calculation, so Theorem 1 can be applied.
Second, we study the inequality

mX
i=1

pif (si) � r1f (w1) + r2f (w2) (29)

under the conditions

0 < w2 � s and
mX
i=1

pisi < w1:

If s1 = : : : = sm, then (29) is a simple Jensen�s inequality, so we can suppose
that s < S.
Let w2 be �xed, and let u1 > u2 > : : : > uo be the di¤erent elements of s

and w1 and w2 in decreasing order (3 � o � m+ 2). Obviously,

w2 = uo; u1 = w1:

By Theorem 1 and Remark 2, inequality (29) holds if

X
fi2Xjsi�ulg

pisi � r1w1 � ul

0@ X
fi2Xjsi�ulg

pi � r1

1A ; 1 < l < o:

This inequality is equivalent to

X
fi2Xjsi>ulg

pi (si � ul) �

mP
i=1

pisi � w2
mP
i=1

pi

w1 � w2
(w1 � ul) ; 1 < l < o: (30)

It is obvious that for every 1 < l < oX
fi2Xjsi>ulg

pi (si � ul) �
X

fi2Xjsi>uo�1g

pi (si � w2) (31)

and 
mX
i=1

pisi � w2
mX
i=1

pi

!
w1 � S
w1 � w2

�
 

mX
i=1

pisi � w2
mX
i=1

pi

!
w1 � ul
w1 � w2

: (32)

14



Since fi 2 X j si = uo�1g 6= ; and pi (i = 1; : : : ;m) is positive,X
fi2Xjsi>uo�1g

pi (si � w2) <
mX

fi2Xjsi>uo�1g

pi (si � w2)+
mX

fi2Xjsi=uo�1g

pi (si � w2)

+
mX

fi2Xjsi=uog

pi (si � w2) =
mX
i=1

pisi � w2
mX
i=1

pi: (33)

Inequalities (31) and (32) show that (30) is satis�ed ifX
fi2Xjsi>uo�1g

pi (si � w2) �
 

mX
i=1

pisi � w2
mX
i=1

pi

!
w1 � S
w1 � w2

; (34)

which is true for any su¢ ciently large w1, since (33) holds and w1�S
w1�w2 ! 1 as

w1 !1.
The proof is complete.

Remark 22 (a) Since the function w1 ! w1�S
w1�w2 (w1 > w2) is increasing, the

constant c associated with w2 is given byX
fi2Xjsi>uo�1g

pi (si � w2) =
 

mX
i=1

pisi � w2
mX
i=1

pi

!
c� S
c� w2

:

(b) All I could �nd was paper [8], which deals with the re�nement of the
Petrovic inequality. It is likely that there are other papers on this topic that
have escaped my attention, in any case there are not many such papers. In [8]
the re�nement of the Petrovic inequality is obtained by applying a re�nement
of the Jensen�s inequality, which is obtained by applying a re�nement of the
Jensen inequality, and is not comparable to our result. We stress that (26) is a
parameter dependent re�nement.
(c) It is not hard to think that if (26) holds, then r1 and r2 must be non-

negative. It is easily follows from Theorem 1 that inequality (28) also holds
if

0 < w2 < w1 <

mP
i=1

pisi

mP
i=1

pi

;

and in this case r2 is negative.
For example, let

s1 := 3; s2 := 1; p1 := 1; p2 := 2; w1 :=
4

3
; w2 :=

1

3
:

Then r1 := 4 and r2 := �1, and inequality (28) is

4f

�
4

3

�
� f

�
1

3

�
� f (5) + 2f (0) :
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