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Abstract

Two first-order logic theories are definitionally equivalent if and
only if there is a bijection between their model classes that preserves
isomorphisms and ultraproducts (Theorem 2). This is a variant of a
prior theorem of van Benthem and Pearce. In Example 2, uncountably
many pairs of definitionally inequivalent theories are given such that
their model categories are concretely isomorphic via bijections that
preserve ultraproducts in the model categories up to isomorphism.
Based on these results, we settle several conjectures of Barrett, Gly-
mour and Halvorson.

1 Introduction

Classical definitional equivalence. The subject of the present paper is
the notion of (classical) definitional equivalence of first-order logic theories.
There are various definitions of this notion scattered in the literature. Most
of these define the notion for theories with disjoint languages only. We use
the version defined in Lefever and Székely [23, Definition 11] which does
not require the languages to be disjoint. According to this definition, def-
initional equivalence of theories is the symmetric and transitive closure of
the relation “definitional extension”. This notion of definitional equivalence
is shown to be the same as the more prevailing ones for disjoint languages.
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For example, it coincides with inter-translatability (|23, Theorem 8]) and
“having a joint definitional extension” ([23, Theorem 4]). We believe that
making the vocabularies of theories disjoint is a superfluous administrative
task. Besides, making vocabularies disjoint masks important intuitive fea-
tures in many cases. This would be the case in the present paper, too, e.g.,
in Example 2 and Theorem 3.

Definitional equivalence is also defined by means of a bijection between
two model classes in Henkin, Monk, and Tarski [18, p.56]. According to this
definition, two theories are definitionally equivalent when there is a bijection
between their model classes such that connected models are definitionally
equivalent via the same definitions. This property is called “model merge-
ability” in [23, Definition 13| and is proved to coincide with definitional
equivalence as used in this paper ([23, Theorem 7]). One of the advantages
of model mergeability is that it is kind of language-free in so far that it is in-
sensitive to whether the signatures of the two theories overlap or not. Model
mergeability is a mix of semantic and syntactic features.

A purely semantic characterization of definitional equivalence is given in
de Bouvere [12], as follows. Two theories on disjoint languages are defini-
tionally equivalent if and only if there is a third theory on the union of their
languages such that both reduct-formation functions, from the model class of
the third theory to the model classes of the two theories respectively, are bi-
jections. For variants of this characterization, see Barrett [7, Corollary 2] and
Lutz [24, Claim 4]. This semantic characterization is in terms of the concrete
reduct-formation functions between model classes. Theorem 2 in the present
paper is a similar characterization for definitional equivalence: two theo-
ries are definitionally equivalent if and only if there is a bijection between
their model classes that preserves universes, isomorphisms and ultraprod-
ucts. This is a purely semantic characterization of definitional equivalence
similar to the one in [18] and different from the one in [12]. The difference
is that no third theory is used and arbitrary function is used in place of the
concrete reduct-formation one. The idea of using functions that preserve iso-
morphisms and ultraproducts already occurs in van Benthem and Pearce [11]
where relative interpretability between first-order theories is characterized in
place of definitional equivalence. For more on this, see Remark 5.

Philosophy of science. Definability theory is used quite extensively
in recent philosophy of science papers, see for example [9, 14, 16, 20, 29].
In philosophy of science, just as in mathematical logic, several notions of



equivalence are used for comparing theories. One is many-sorted definitional
equivalence ([4, 17, 25]) which is also called many-dimensional definitional
equivalence ([19, 28]) or Morita-equivalence ([8, 16]). Many-sorted defini-
tional equivalence allows one to re-define the universes of models in a theory,
therefore it is rather important. To distinguish definitional equivalence from
many-sorted one, we sometimes call it classical definitional equivalence. An-
other version of equivalence of theories is bi-interpretability (see [19, 28]).
Categorical equivalence of theories ([8, 29]) is perhaps the weakest among
the equivalences used for comparing theories.

It is shown in Barrett and Halvorson [8] that classical definitional equiv-
alence, many-sorted definitional equivalence and categorical equivalence of
theories are strictly weaker in this order.! Example 2 in this paper contains
pairs of theories on finite signatures that are categorically equivalent but not
many-sorted definitionally equivalent (nor bi-interpretable). With this, we
answer Barrett and Halvorson’s questions [8, Question 6.1] and [6, Question
1, p.77] concerning the importance of infinite signature in their counterex-
ample. In this context, it is natural to ask how much weaker categorical
equivalence is than many-sorted definitional equivalence. Theorem 2 and
especially its corollaries Theorem 4 and Corollary 3 in the present paper pro-
vide a property B of functors such that a functor establishing the categorical
equivalence satisfies 3 if and only if the theories are classically definitionally
equivalent. This property is that the functor is concrete and preserves ultra-
products. This is an answer to Barrett 7, the question below Corollary 2],
6, Question 2] and Weatherall [29, Note 23].

The investigations in the present paper are also relevant to the so-called
syntax-semantics debate in philosophy of science. The issue here is, roughly,
whether it is better to consider theories occurring in science as collections of
linguistical objects (e.g., sentences of a given language), or as collections of
structural objects of some kind. For a summary of the debate see Lutz [24]
and Hudetz [21]. In this context, the need for a semantic characterization of
definitional equivalence was raised in Halvorson [15]. Glymour [14] pointed
out that de Bouvere [12] contains such a characterization. Theorem 2 in
the present paper is another such semantic characterization. An advantage
of Theorem 2 is that it gives intuition about what properties of theories
are preserved by definitional equivalence. Namely, by Theorem 2, a prop-
erty of a theory is preserved when it can be expressed in terms of universes,

Tt is not clear to us how bi-interpretability fits into this sequence.



isomorphisms and ultraproducts of models. Glymour [14, p.296] conjectures
that each of the following four properties is preserved by classical definitional
equivalence: having a one-element model, the model class being closed un-
der substructures, the model class being closed under unions of chains, and
having an equational axiomatization. Of these, the first property is clearly
preserved by definitional equivalence because it is expressed by using the
universes of the models. We show, after Theorem 3, that neither one of the
remaining three properties is preserved by classical definitional equivalence.

Halvorson [15, section 7] proposes the programme to investigate what
structure a model class naturally has and Glymour [14, p.297] appreciates
this programme. This programme involves to endow the model class of a
theory in such a way that from this structure on the model class, the the-
ory can be recovered up to definitional equivalence. For propositional logic,
Stone-duality provides such a structure in form of the Stone-topology on the
model class. Stone duality has been generalized to first-order logic by several
authors, e.g., Makkai [27] and Awodey and Forssell [5]. Halvorson points
out the relevance of Stone duality for his programme and he mentions [27]
and [5]. Now, from the model-structures proposed in these two papers, the
first-order theory can be recovered only up to the weaker many-sorted defi-
nitional equivalence. Theorem 2 in the present paper suggests a structure on
the model classes, we call this concrete ultracategory, from which a theory
can be recovered up to classical definitional equivalence (and not only up
to many-sorted definitional equivalence). See Remark 7. We do not know
of any other structure proposed in the literature on the model classes from
which a theory can be recovered up to classical definitional equivalence.

Example 2 points to an interesting difference between structural and
language-based equivalences of theories. Namely, Example 2 contains pairs
of theories which are not equivalent with respect to any finitely-linguistic-
based equivalence (see the proof of Lemma 1), yet there is a bijection be-
tween their model classes that preserves isomorphisms and ultraproducts up
to isomorphism. If such a bijection preserves ultraproducts not only up to
isomorphism, then it establishes definitional equivalence according to The-
orem 2. This shows that preserving ultraproducts only up to isomorphism,
which structural properties usually do, is not enough for establishing classical
definitional equivalence.

On the approach taken in the present paper. It is known that de-
finability and automorphisms are intimately connected. Though it is not true



that a relation is definable in a model if and only if all automorphisms of the
model preserve the relation, something close is true: a relation is definable if
and only if all automorphisms of all ultrapowers preserve (the corresponding
ultrapower of) the relation (see [2, Lemma 6.7.5]). This theorem has proved
to be quite useful so far for establishing definability and non-definability of
relations.

This paper can be viewed as a search for a similar complete method for
establishing definitional equivalence and inequivalence of theories. Section
2 contains two examples. The warm-up Example 1 shows that having same
classes of automorphism groups does not entail definitional equivalence. It
also motivates the notion of spectrum of concrete automorphism groups. Ex-
ample 2 shows that having same spectrum of concrete automorphism groups
still does not entail definitional equivalence. It also shows the importance
of preserving ultraproducts. Section 3 contains a purely semantic charac-
terization of definitional equivalence (Theorem 2), which is also a complete
method for establishing definitional equivalence by using concrete automor-
phism groups and ultraproducts. We then show how to use this method
for establishing definitional inequivalence of two theories from Example 2
(Theorem 3). Finally, we make connections with related recent philosophy
of science papers.

If not stated otherwise, we use the notation of Chang and Keisler [13].

2 Testing with automorphism groups

We are in first-order logic. Two theories T; and T, are said to be definition-
ally equivalent when there are copies of these theories with disjoint languages
which have a joint definitional extension. A copy of a theory T is a theory T’
which is obtained from T by renaming some elements of the vocabulary. A
definitional extension of a theory is the theory where some defined relations
are added to the language. For discussion of this definition of definitional
equivalence of theories see the introduction and [23, Definitions 10, 19, The-
orem 4]. Two theories are said to be definitionally inequivalent when they
are not definitionally equivalent. When T is a theory, Mod(T) denotes the
class of its models, and when K is a class of similar models, Th(K) denotes
its theory, i.e., the set of formulas valid in it. When 90 is a model, Aut(97)
denotes its concrete automorphism group, i.e., the universe of Aut(91) is the
set of all automorphisms of M (i.e., permutations of the universe of 9t which



leave all relations of 9t unchanged as sets) and the sole operation of Aut(9t)
is the operation of composition.

Aut(T) = {Aut(9) : M € Mod(T)}.

We begin with two examples. The first example serves to show that
searching for automorphism groups occurring in one but not the other of
the theories is not a complete method for showing failure of definitional
equivalence.

Example 1.(definitionally inequivalent theories with same automorphism
groups) We present theories Ty and Ty such that Aut(T;) = Aut(T3) and
T, is not definitionally equivalent to T5. The two theories have the same
language, this language contains two binary relation symbols S, R. The first
theory, Ty, states that at most one of S and R can be non-empty. The second
theory, Ts, states in addition that when R is non-empty it is asymmetric:

Ty = {Vay=S(zy) v Vay-R(zy)}, T2 =T U{Vay(R(zy) = -R(yz))}.

The two theories have same automorphism groups because of the follow-
ing. Let G denote the class of automorphism groups of all models with
one binary relation, i.e., G = {Aut((M,S)) : S € M x M}. Clearly,
Aut(T;) = Aut(T,) = G because in any model of T or T, there is at most one
nonempty relation and the empty relation does not affect the automorphism
group, so Aut(T;) U Aut(Ty) € G. The other containment follows from the
fact that neither of the theories make any restriction on S.

To show that T; and T, are not definitionally equivalent, we will exhibit
a concrete group & that occurs as the automorphism group for finitely many
models altogether, but more models of T; than of Ty have & as their auto-
morphism group. Let the universe of & consist of one member, the identity
map on H = {0,1}. There are 12 binary relations on H altogether whose
automorphism group consists only of the identity on H, 2 of these are asym-
metric. Thus there are 24 models in Mod(T;) with automorphism group &,
because in each such model of T; either S is empty and R is one of the
12 binary relations or the other way round. However, only 14 models in
Mod(T;) has & as automorphism group because either R is empty and S is
one of the 12 above, or S is empty and R is one of the 2 antisymmetric re-
lations. This shows that there is no bijection between the models of T; and
T, which is such that corresponding models have the same automorphism
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group. Therefore, they are not model meargeable and so not definitionally
equivalent.

It may be interesting to have only infinite models for our theories. An
easy modification of T; and T, will do. Namely, we add both to T; and to
T, the infinitely many sentences that together state that their models are
infinite. We then have to modify &. The universe of the new & consists of
all permutations on H = {0, 1,2, ...}, the set of non-negative integers, that
leave 0 fixed. [J

The previous example suggests that multiplicity of concrete automor-
phism groups has to be taken into account when testing definitional equiva-
lence. We define the spectrum of concrete automorphism groups of a theory
T as a function that to each permutation group associates the number of
non-isomorphic models of T that have this group as concrete automorphism
group, i.e.,

AutSpec(T) := {(&,v(6,T)) : & is a permutation group }

where
(B, T) = {9 & Mod(T) : Aut(IM) = &}/ |.

Note that if two models have the same concrete automorphism group then
they must have the same universe.

Definitionally equivalent theories have same spectrum of concrete auto-
morphism groups. Therefore, for two theories to be definitional equivalent, it
is necessary that they have same spectrum of concrete automorphism groups.
The most natural way of ensuring this is to require a bijection between their
classes of models which preserves concrete automorphism groups as well as
isomorphisms. This leads to the notion of a category of models formed from
the models of a theory.

The most common way of forming a category from the models of a first-
order logic theory is to take the models of the theory as the objects of the
category and take the elementary embeddings? between these models as mor-
phisms of the category. Let Mod(T) denote this category of models of T.
Often, it is useful to investigate a category of models with fewer morphisms
taken into account. The model-iso-category Mod"*°(T) of a theory is defined
by having Mod(T) as its class of objects and having as morphisms only the
isomorphisms between models. The arguments in James Owen Weatherall

2For the definition of elementary embedding see [13, p.84].
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[29] point in the direction to deal with the category of models when only
isomorphisms are taken as arrows, and not all elementary embeddings. The
idea is that in many realistic cases, just as ones dealt with in [29], the sci-
entific theory is not defined by a first-order logic theory, yet one has a clear
sense of what models and isomorphisms between these models can be.
Model categories come with a natural forgetful functor to the category
Set of all sets. These functors assign the universe M to a model 91 and they
assign the “function content” to a morphism between two models. These
are so natural in model theory that they are called the forgetful functor. For
definitions see [1, Definition 5.1 (1)]. A functor F' between model categories is
called a concrete functor iff it commutes with these natural forgetful functors.
Thus a functor F' between model categories is a concrete one iff the universes
of connected models are the same and if connected morphisms are the same as
functions between the universes of models. Two model categories are called
concretely isomorphic iff there is a concrete isomophism between them.
Existence of concrete isomorphism between model-iso-categories is a nat-
ural generalization of having the same spectrum of concrete automorphism
groups. The next theorem says that, in fact, it is not a generalization.

Theorem 1 Two theories have same spectrum of concrete automorphism
groups if and only if their model-iso-categories are concretely isomorphic.

Proof. Let T; and T, be first-order theories and assume that AutSpec(T;) =
AutSpec(T;). We are going to define a concrete isomorphism b between their
model-iso-categories.

The identity element of a permutation group is always of the form {(a, a) :
a € A} for some A, let us call this A the base of the permutation group. Let
&3, $H be permutation groups, let h : A — B be a bijection between the bases
of & and ), and define h(g) = hogoh™! for all ¢ € G. Then it is easy to
see that h is an isomorphism between & and ), we say that it is the base-
isomorphism induced by h. A base-isomorphism between two permutation
groups &, § is an isomorphism betwen them that is induced by some h. We
will also use the fact that if A : 91 — DT is an isomorphism between the
structures 9, M, then h is a base-isomorphism between their automorphism
groups.

Let G be a class of representatives for the base-isomorphism classes of
permutation groups. That is, each permutation group has a base-isomorphic
copy in G and the elements of G are pairwise non-base-isomorphic. For



any permutation group & € G choose v(®, T;)-many non-isomorphic models
M(B,7) of Ty, for i < v(&,Ty), and similarly choose v(B,Ty) = v (&, T;)
non-isomorphic models 9V (&, i) of Ty, with concrete automorphism group
®. Then the models M(B, i) for & € G are pairwise non-isomorphic, i.e.,
M(B,i) = M(H, ) for some &, 9,7, 5 implies & = § and 7 = j. Similarly,
the models 9 (®, i) are pairwise non-isomorphic.

Let M € Mod(T;). There is a unique (B, 4) isomorphic to M, as
follows. Let $ be the concrete automorphism group of 9t and let & € G
be base-isomorphic to $) via the base-isomorphism h:$ — &. Then the
automorphism group of A(9M) is & € G, thus A(M) is isomorphic to M(B, 1)
for some 4, by our construction. Choose any isomorphism f mapping 9%(®, 7)
to 91 and let us define

b() = [( (8, 1)).

We show that b(90) is well-defined, i.e., it does not depend on which iso-
morphism f we choose. Let g be any other isomorphism between 9(®, 1)
and M, we show that f(OM'(B,7)) = g(MM'(&,4)). Indeed, g = f o « for
a = flog e Aut(M(B,7)) = &. But a € & = Aut(IM'(&,1)), so
GON(B,1)) = F(a(O(®,4))) = F(N(®,4)).

We define b on the morphisms. Let A : 91 — 91 be an isomorphism
between 9,91 € Mod(T;). We have seen that f : 9M(B,i) — M for
some f,&,i and so g : M(&,i) — N for ¢ = ho f. Thus, by definition,
b(M) = f(OM'(&,4)) and b(N) = g(M'(B,4)). Hence, h : b(M) — b(N) is an
isomorphism by go f~' = ho fo f~!. We define

b(h) = h.

We now show that b is an isomorphism between the model-iso-categories
of Ty and To. First we show that the function b : Mod(T;) — Mod(Ts)
defined this way is a bijection between Mod(T;) and Mod(T;). Indeed, let
MM’ € Mod(Ty) be any model. There is a unique 9 (&,4) isomorphic to
it, say via f : MM(B,4) — M. Let M = f(IM(&,4)), then M = (M),
by the definition of b. Thus, the range of b is Mod(Ty). To see that b
is one-to-one, let M, 9 € Mod(T;). Assume that b(9) = b(MN). By the
definition of b, there are M (B, 7), M($, j) and isomorphisms f : M(&, i) —
M, g : M(H,j) — N such that b(M) = F(M'(B,4)) and b(IM) = g(M'($, 7)).
By b(9M) = b(N) then M'(&,4) is isomorphic to M'($, j), therefore, (&) =
(9,7) and f(ON(&,7)) = g(M'(B,1)). Thus fLog € Aut(I'(&,4)) = &. So,
M = f(M(B,4)) = f((f/~ 0 9)(M(®,4))) = g(M(&,1)) = g(M(H, j)) = N.
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We turn to the proof for b being a bijection between the set of isomor-
phisms from 2 to 9 and the set of isomorphisms from b(9) to b(N), for
any 2, N € Mod(T,). To show surjectivity, let h : b(9) — b(MN). By the
definition of b(M1), we have that M = f(M(&,4)) and b(M) = f(IM'(&, 1)),
for some f,®,i. Thus, f: 9 (&,7) — b(M), and so ho f : M (&,4) — b(MN),
by h: b(OM) — b(N). Let N = f(A(M(B,7)). By the definition of b(N')
then b(MN') = (ho f)(IM'(&,4)) = b(N). Thus N’ = N because b is one-to-one
on Mod(Ty), i.e., M = (ho f)(IM(S,7)) = h(f(ON(SB,7))) = h(M). Thus,
h : 9 — N is an isomorphism and b(h) = h. By definition, it is clear that
b is one-to-one on the morphisms, and also that it preserves composition of
morphisms both directions. This finishes the proof for b being a category
theoretical isomorphism between the model-iso-categories of T and T,. It is
concrete, by its definition.

In the other direction, assume that b is a concrete isomorphism between
Mod*°(T;) and Mod*°(Ty). Then Aut(9) = Aut(b(IM)), and M = N
iff b(M) = b(M), for all M, N € Mod(T;). Therefore, AutSpec(T;) =
AutSpec(Ts). QED

The next example shows that having same spectrum of automorphism
groups still does not entail definitional equivalence. It is more refined than
the previous one. We will see that it shows, in a sense, a limit till we still can
get failure of definitional equivalence (compare Lemma 2 with Theorem 2). It
also serves as a counterexample to Barrett and Halvorson’s conjecture that,
among first-order logic theories with finite signatures, categorical equivalence
implies many-sorted (Morita) definitional equivalence. With this, we answer
in the negative [8, Question 6.1] as well as [6, Question 1, p.77].

Example 2.(uncountably many theories with same model category) We
present continuum many complete theories on a finite similarity type with
same automorphism spectrum such that no two of them are definitionally
equivalent. Moreover, their model categories are isomorphic via concrete
functors which preserve ultraproducts up to isomorphism, and further, no
two of the theories are even many-sorted definitionally (Morita) equivalent.
(The latter notion will be introduced later, below Lemma 2.)

We work in the similarity type which contains one constant symbol 0,
one unary function symbol suc, and one unary relation symbol R. Let n be a
natural number, then suc”(x) denotes the term where suc is n-times applied
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to z, i.e., suc’(z) = x and suc*V(z) = suc(suc™(z)). For each subset S of
the natural numbers w let

T(S) := {R(suc"(0)) : n € S} U {=R(suc™(0)) : n ¢ S} U Th({w, 0, suc))

where (w, 0, suc) denotes natural numbers w with zero as 0 and the successor
function as suc.

A set S of natural numbers is called irregular if all finite patterns occur in
it. In more detail, let n > 0 be a positive number and let P C {0,1,...,n—1}.
We say that the P, n-pattern occurs at z in S'if {m < n : suc™(z) € S} = P.
For example, S = {0,2,4,6, ...} is not irregular, because the pattern {0, 1}, 2
does not occur in it (i.e., z,suc(x) € S does not hold for any x € w).

There are continuum many irregular subsets of w. This can be seen
as follows. Construct an infinite sequence of 0,1,z by first laying the two
0, 1-sequences of length 1 after each other in alphabetical order, then mark
the next number by an x, then lay the four 0, 1-sequences of length 2 after
each other in alphabetical order and mark the next number by an x, etc.
This sequence will begin like (0,1, 2,0,0,0,1,1,0,1,1,2,0,0,0, ...). There are
infinitely many xs in this sequence and so there are continuum many ways
of replacing the xs with 0 or 1. Each of the continuum many 0, 1-sequences
that are obtained this way is a characteristic function of an irregular set.
This proves that there are at least continuum many irregular sets. There can
be at most continuum many irregular subsets of w since there are continuum
many subsets of w.

We are going to show that the model categories Mod(T(.S)) for irregular
sets S are isomorphic to each other in a strong constructive way, see Lemma
2.

We say that D1 is an induced subalgebra of 9t when the R-free part of I
is a subalgebra of the R-free part of 9t and the R-relation of 91 is that of 9t
restricted to the universe of M. For the definition of elementary submodel
see [13, p.84].

Lemma 1 Let S C w be irreqular. Then (i)-(i1) below hold.

(i) The elementary submodels of a model of T(S) are exactly its induced
subalgebras.

(i1) T(S) is a complete theory.
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Proof. Let N denote the set of natural numbers with 0 as constant 0 and
the successor function as unary distinguished function suc, and let Z denote
the set of integers with the successor function as unary distinguished function
suc. Note that Z does not have 0 in its language. Any model of Th({w, 0, suc))
is a disjoint union of one copy of N together with some copies of Z. When
k is negative, suc®(z) = y means suc*(y) = x, we say that suc®(z) exists
when such a y exists. In models of Th({w,0,suc)) such a y is unique when
it exists. When 91 is a model of Th({w,0,suc)), by a Z-part of M we mean
a subset of N of the form {suc"(a) : n € w} U {suc™(a) : n € w} for some
a € N. By a Z-model we mean Z together with a unary relation R and by
(N,S) we mean N expanded with S as the unary relation R. We are going
to prove the following statement (*).

In (*) as well as later on, we will use ultraproducts ([13, ch.4]). As in
[13], when U is an ultrafilter on the set I and (9; : ¢ € I) is an [-sequence
of similar models, [[,,(9; : ¢ € I), or sloppily just [[,, 9;, denotes the U-
ultraproduct of the models 9; and yy denotes the equivalence-class of y in
Hy9M;, for y € ;e M;. When each 9; = A for some A, we call [[, M; an
ultrapower of 2 and we denote it by II2l.

(*) Assume that 9t is a countable model of T(S) and U is a nonprincipal
ultrafilter on a countable set I. Then IO is isomorphic to a disjoint

union of a copy of (N, S) with continuum many copies of each possible
Z-model.

Indeed, (*) is true because each Z-model can be put together in the ultra-
power from its finite parts which are patterns occurring in 91, and in fact,
each such pattern occurs infinitely many times in 9. In more detail: Let
(Z, R) be any Z-model, we show that continuum many disjoint copies of it
occurs in the ultrapower of 9. We may assume that I = w because [ is
countable. For each n > 0 let R, := {m < 2n : m —n € R}. The pattern
R,,2n 4+ 1 occurs in S because S is irregular. In fact, each pattern occurs
in an irregular set infinitely many times because each finite pattern has in-
finitely many different extensions to other finite patterns and each of these
patterns occur in the irregular set. Let X,, be the set of s where R,,,2n + 1
occurs in S and let Y, :== {x +n : x € X, }. First we show that in IIy9
each element of II;Y, lies on a copy of (Z, R). Indeed, let z, € X, and
Yn = xp+nforalln €w. Lety:= (y, :n € w), and let k € Z be arbitrary.
We will show that suc(yy) exists and k € R iff R(suc*(yy)) in 9. By
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our definitions, for all n such that 2n > k we have that k € Riff k+n € R,
iff v, +k+n e Siffy,+k e S iff R(suc*(y,)) in M. Since U is nonprincipal
on I = w, this means that R(suc’(yy)) in Iy, We have seen that gy is in
a copy of (Z, R) for all y € I1,,¢,Y,,. Since each Y, is countably infinite, the
cardinality of II;Y,, is continuum (see, [13, Prop.4.3.9]). Since each copy of
(Z, R) is countable, this means that II;9% contains continuum many disjoint
copies of (Z, R), and we are done with proving (*).

Proof of (i): An elementary submodel of 9t has to be an induced subal-
gebra. Conversely, assume that 91 is an induced subalgebra of 9, we show
that it is an elementary submodel. We will use the testing method in [13,
Prop.3.1.2]. Thus, assume that ¢(Z,y) is a first-order logic formula in the
language of 91, assume that a is an appropriate sequence of elements of I,
and M = Jyp(a,y). We have to show the existence of @' € D such that
M = p(a,a’). We have IIyI = Jyp(d(a),y) since the diagonal (or natu-
ral) embedding d of a model into its ultrapower is an elementary one [13,
Cor.4.1.13]. Let b € IIy9N be such that Iy = p(d(a),b). Now, IIyN is an
induced subalgebra of 1IN, by I being an induced subalgebra of . There
are infinitely many Z-parts in [I;9T that do not contain any element of d(a)
and that are isomorphic to the Z-part of IO containing b, by (*). Take an
automorphism of Iy that interchanges the Z-part of b with any of such
a Z-part of IIyI1 and leaves anything else fixed. There is such an automor-
phism by the choice of the Z-part of Iy and since 9t € ModT(.S). Let ¢ be
the image of b under such an automorphism, then Iy = ¢(d(a), c), since
the automorphism leaves the elements of d(a) fixed. Then M = ¢(a,d’) for
some a’ € DN by the fundamental theorem of ultraproducts [13, Thm.4.1.9(ii)]
since ¢ € 191, We have shown that 91 is an elementary submodel of 9.

Proof of (ii): Assume that 9,91 € ModT(S), we have to show that I is
elementarily equivalent to 991. We may assume that 9t and )1 are countable,
by the downward Lowenheim-Skolem-Tarski theorem (13, Cor.2.1.4]). Now,
M and N are elementarily equivalent by (*), since they have isomorphic
ultrapowers. The proof of Lemma 1 is complete.

By using Lemma 1, we now specify a functor F' between the model
categories of T(S) and T(Z), for any irregular sets S and Z. Let 9 =
(M,0,suc, R) € Mod(T(S)). We define

F(OM) := (M, 0,suc, (R\ {suc®(0) : k € S}) U {suc®(0) : k € Z}).
That is, F(9) is defined to be 9t except that R on the N-part of 91 is
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changed to be the R of the N-part of a T(Z) model. For an elementary
embedding f : 9t — 91 between M, N € Mod(T(.5)) let us define

F(f) =T

Lemma 2 Let S and Z be irreqular sets and let F' be the function defined
above.

(i) F is a concrete isomorphism between Mod(T(S)) and Mod(T(Z)).

(ii) F preserves ultraproducts of models up to isomorphism, i.e., F takes
an ultraproduct of models of T(S) to a model isomorphic to the corre-
sponding ultraproduct of the F-images of the models.

Proof. F' is a functor, since (f is an elementary embedding of 9t into
N if and only if it is an elementary embedding of F(9M) into F(N)), by
Lemma 1 and the construction of F'. Thus F is a concrete isomorphism by
its construction.

To show that F' preserves ultraproducts up to isomorphism, let U be an
ultrafilter on a set I and let M; € Mod(T(S)) for all ¢ € I. We will define an
isomorphism j between F'(IIy9;) and Iy F(9;). Let 91; denote the N-part
of M, for each i € I. Then each N; is isomorphic to (N, {suc*(0) : k € S})
by 9MM; € ModT(S). Let y := (y; : i € I) € T;e; M;. We define

Jyuv) =y it {tel:y ¢ N;i} €U

To define 7 on the rest, assume first that U is not wt-complete. Then by a
straightforward modification of the proof of (*) we get that both II;M; and
Iy F(M;) consist of one N-model together with continuum many copies of
all possible Z-models. If U is wt-complete, then both Iy, and Iy F(9T;)
consist of one N-model only by [13, Prop.4.2.4]. In both cases there is an
isomorphism between F'(IIyM;) and Iy F(N;). We define

j be any isomorphism between F(II;0;) and Iy F(D1;)

and be identity on the rest. It is not difficult to check that j : F(IIy9;) —
[Ty F(9;) is an isomorphism. This finishes the proof of Lemma 2.

We have seen that, for any two irregular sets S and Z, the model cate-
gories of T(S) and T(Z) are rather close to each other in a constructive way.
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We now turn to definability issues between T(S) and T(Z). In logic, there
are two weaker versions of definitional equivalence between theories in use.
One is called many-dimensional (28, 17]) or many-sorted ([25, 4]) definitional
equivalence, and it is also called Morita equivalence of theories ([8, 16]). The
other is called bi-interpretability between theories ([19, 28]). Both notions
are weaker than definitional equivalence between first-order logic theories in
the sense that when T; and T, are definitionally equivalent then they are
also many-dimensionally equivalent and bi-interpretable. For a comparison
of these notions see Barrett and Halvorson [8]. We will rely on the deifinitions
in the mentioned references, we do not recall them.

Corollary 1

(1) All the theories T(S) with S irreqular have same spectrum of automor-
phism groups.

(ii) There is an uncountable set S of irrregular sets such that no T(S) and
T(Z) for distinct S,Z € S are definitionally equivalent, many-sorted
definitionally equivalent or bi-interpretable.

Proof. (i) follows from Lemmas 1 and 2. Each of definitional equivalence,
many-sorted definitional equivalence and bi-interpretability of two theories
can be specified by the use of finitely many formulas on the language of the
theories, see the references given for their definitions. Therefore, a con-
crete theory can be definitionally equivalent to at most countably many
theories on a given other similarity type. This implies that of the con-
tinuum many theories T(S) on the same language, there are continuum
many pairwise non-equivalent theories (neither many-sorted equivalent nor
bi-interpretable). This finishes the proof of Corollary 1. With this, presen-
tation of Example 2 is finished. [

The essence of Example 2 above is that the model categories of T(.S) for
irregular sets S are almost the same because the R on the N-parts do not
play a role in this category. However, the R on the N-part can code more
“Information” than available (syntactical) translations between theories and
therefore many such theories have to be definitionally inequivalent.

Remark 3.(F does not preserve ultraproducts) The functor F' constructed
above Lemma 2 does not preserve ultraproducts, it preserves ultraproducts
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only up to isomorphism. This follows from Theorem 2 in the next section and
Corollary 1(ii). We now want to provide a concrete example that shows that
F" does not preserve ultraproducts. Recall the continuum many irregular sets
constructed above Lemma 1. Let Sy and S; be the irregular sets we obtain
by filling all the xs with 0 and and by filling all the xs with 1, respectively.
Then Sy C S; and S; \ S is infinite. Let M; := (w, 0,suc, R;) where R; =
{suc®(0) : k € S;} for i = 0,1. Consider the functor F' between T(Sy) and
T(S1). Then F(My) = Ny by definition of F. Let X C w be an infinite
set which is disjoint from Sy but is contained in S7, let U be a nonprincipal
ultrafilter on I = w such that X € U and let y = (suc®(0) : k¥ € w). Then
R(yy) does not hold in F(IIy9) while R(yy) holds in IIy F(Ny) showing
that the two structures are not the same (though, isomorphic). We will see
in the next section that in fact T(Sp) is not definitionally equivalent to T(.S;)
because there is no concrete isomorphism between their model categories that
would preserve ultraproducts, see Theorem 3. [J

Remark 4.(more striking example) We can modify the above example to
give a more striking counterexample to the conjecture in [8] which at the
same time is analogous to the example in the proof of [8, Theorem 5.7]. The
similarity type of Ty and T, will be as in Example 2. The first theory, T,
states only that 0 is not in relation R:

T = {-R(0)}.
For defining T, take any irregular set S such that 0 € S, and then T, is
To={R(0) = ¢ : peT(9}.

That is, the models of T, are those of T, together with all the models of
T(S). Now, T; is finitely axiomatized while it is easy to see that T, cannot
be axiomatized finitely (e.g., by showing that the complement of Mod(Ts)
is not closed under ultraproducts). Since intertranslatability is an essence
of definitional equivalence both for the classical and the many-sorted ver-
sions, as e.g., Halvorson [16] argues, being finitely axiomatized is preserved,
for theories of finite similarity types, by the weaker many-sorted (Morita)
definitional equivalence also. So, T; and T, are not Morita definitionally
equivalent. However, their model categories are equivalent, in fact isomor-
phic, as in [8, Theroem 5.7].: a model category consists of isolated islands
of Mod(Th(9)) for the models M of the theory (because if there is a mor-
phism between 2 and D1 then 91 and DN are elementarily equivalent since
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this morphism is an elementary embedding of 9t into 91). Now, by Lemma 1,
the extra island of Mod(T3) is isomorphic to any one of the continuum many
islands Mod(T(Z)) of Mod(T;) where Z is an irregular set with 0 ¢ Z. O

3 Testing with automorphism groups and ul-
traproducts

We are ready to turn to the positive results of this paper. Lemma 2 sug-
gests that, besides automorphism groups, ultraproducts have to be taken into
account in testing definitional equivalence. Indeed, Theorem 2 below gives
such a characterization making our search for a complete testing method
successful.

The following theorem is a semantic characterization of definitional equiv-
alence. It is a slight modification of the Theorem in [11] which is a semantic
characterization of restricted interpretations between theories. For a closely
related theorem see also Kochen [22, Theorem 12.1].

Theorem 2 Two theories T, and Ty are definitionally equivalent if and only
if there is a bijection b between their model classes that satisfies the following
two conditions.

(1) An isomorphism between different models of Ty is an isomorphism be-
tween their b-images and vice versa. In particular, the universes of M
and b(ON) are the same.

(ii) Ultraproducts are preserved by b in the sense that b([ [, %) = [, b(9;)
for all ultrafilters U and models 9; in Mod(T1).

Proof. The proof follows that of [11, Theorem]. Let assume first that the
languages of T; and T, are disjoint. Assume that we have a bijection b
satisfying (i)-(ii). We define a class K of models in the similarity type as
the union of the similarity types of T; and T, and we will show that the
first-order logic theory of K is a joint definitional extension for both T; and
T,. For a model 9 € Mod(T;) let

M = (M, b(9M))

17



denote the model whose universe is the joint universe of 9t and b(9N), the
relation and function symbols of the language of T, are interpreted as in 9N,
and the relation and function symbols of the language of T, are interpreted
as in b(9M). Let

K = {(D,b(M)) : M € Mod(T,)}.

We will show that K is axiomatizable, i.e., K = ModThK. We use [13,
Cor.6.1.16(i)] which states that a class is elementary if and only if it is closed
under taking ultraproducts and isomorphic images, and the complement is
closed under ultrapowers. Now, K is closed under ultraproducts and iso-
morphisms by conditions (ii) and (i), since Mod(T;) is elementary. Assume
that 20 = (9, M) is such that an ultrapower II;2A is in K. We have to show
that 2 € K. Now, [Ip2 = (IIy90, I1yM), and then [Iy2A € K means that
Iyt = b(I1y9N). By condition (ii) we have b(IIy9) = Iyb(9). Thus we
have Iy = Iy b(M). This implies N = b(IM) since any structure B can be
recovered from II;B. We have seen that K is an elementary class, let

T = Th(K).

Now, we show that T is a definitional extension of T;. When the language
of Ty has only one non-logical symbol, this follows immediately from Beth’s
definability theorem (see [13, Thm.2.2.22]), since for each 9 € Mod(T;)
there is at most one relation satisfying T, namely that of b(90t). However, a
generalized version of Beth’s theorem is well-known as folklore: if the R-free
reduct of each model of T can be extended to at most one model of T, then T
explicitly defines each member of R by a formula on the language of the R-
free reducts.? The proof that T is a definitional extension of T is completely
analogous. Thus, T; and T, are definitionally equivalent theories.

Assume now that the languages of T; and T, are not disjoint. Rename
the symbols in the language of T, so that the new symbols be distinct from
any one used in T; and T, call the new theory T,. Now, there is a natural
bijection b; : Mod(Ty) — Mod(T,) satisfying conditions (i)-(ii), and by o b :
Mod(T;) — Mod(T,) also satisfies (i)-(ii). These bijections are between
models of theories of disjoint languages. Apply the previous case to b; and
by o b, and use that definitional equivalence is a transitive relation by [23].
QED

3We give a short proof of this in the Appendix.
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Remark 5.(relationship of Theorem 2 with the van Benthem and Pearce
result) The theorem in [11], call it BP-theorem for van Benthem and Pearce
theorem, seems to be neither stronger nor weaker than Theorem 2 above. It
is not weaker because the kind of interpretation it deals with is restricted
interpretation which is in between classical and Morita-interpretation. It is
not stronger because it deals with interpretation and not with equivalence. In
more detail, assume that there is a bijection between Mod(T;) and Mod(T>)
satisfying (i),(ii) of Theorem 2. By applying the BP-theorem, we get that
there are two restricted interpretations, one from T; to To and the other from
T, to T1. However, we know that mutual interpretability even with strong
properties does not imply definitional equivalence, see e.g., [3]. Although the
BP-theorem does not seem to imply Theorem 2, the proof of Theorem 2 here
is just a slight modification of the proof of the BP-theorem in [11, p.296].
OJ

Remark 6.(automorphism groups and elementary embeddings in Theorem
2) The word “different” can be omitted from condition (i) of Theorem 2 and
the theorem remains true. This is true because condition (i) implies that
the automorphism groups are preserved by b in the sense that Aut(9) =
Aut(b(O)) for all M € Mod(T;). Indeed, if a € Aut(9N), then let f: M —
M’ be any isomorphism where 9 is different from 9, there is always such
an f. Then both f and «a o f are isomorphisms between b(90%) and b(90')
by condition (ii), thus @« = ao f o f~! is an automorphism of b(9). In a
sense, this corollary about the automorphism groups is the essential part of
condition (i).

Also, Theorem 2 remains true if in (i) we require to preserve all elementary
embeddings in place of all isomorphisms. The reason is that elementary
embeddings are preserved by definitional equivalence. [

The proof of the following theorem intends to illustrate the use of Theo-
rem 2 for proving definitional inequivalence. Recall the definitions of Sy and
Sy from Remark 3.

Theorem 3 T(Sy) and T(Sy) are not definitionally equivalent.
Proof. Let b : Mod(Sy) — Mod(S;) be any bijection that preserves isomor-

phisms between distinct models. (We note that there is such a function b,
see Lemma 2(i).) It preserves automorphism groups also, see Remark 3. We
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will show that b cannot preserve all ultrapowers. By Theorem 2, this will
prove that T(Sp) and T(S7) are not definitionally equivalent.

Let 9 = (w, 0,suc, Sp) € Mod(T(Sp)). Let b(IM) = (w, 0, F, R) and let U
be any nonprincipal ultrafilter on w. First we show that b(IIy9T) # I1;b(9N)
if b(9M) contains any copy of a Z-model. Indeed, assume that F*(n) exists
for all k € Z for some n € w. Let (Z, P) be the Z-model that is isomorphic to
the induced subalgebra of b(90t) with universe {F*(n) : k € Z}. By (*) in the
proof of Lemma 1, IT;;b(9M) contains infinitely many copies of this Z-model.
Therefore, the image of the Z-model in b(91) under the diagonal embedding
can be interchanged with a distinct copy of this Z-model in II;b(9). On the
other hand, all automorphisms of II;91 leave the diagonal embedding of 90t
unchanged. Thus b(ITy9N) cannot be Iyb(9N) since the two have different
automorphism groups. Therefore, we assume in the rest

(1) w={F"(0) : n € w} and thus R = {F™(0) : n € Si}.

Next we show that b(ITy9N) # Hyb(M) if F(y) ¢ {suck(y) : k € Z} for
some y € Ilyw. Indeed, assume the latter. Choose an automorphism of
[Ty that interchanges the copy of the Z-model containing y with another
copy that does not contain either y or F(y) and is identity on the rest.
There is such an automorphism by (*) in the proof of Lemma 1. Now,

this is not an automorphism of II;b(9M) since F' is one-to-one in b(IM) (by
b(M) € Mod(T(S1))). Therefore, we assume in the rest

(2) F(y) € {suck(y) : k € Z} for all y € Iyw.

Now, (2) implies that there is a bound on “how far F' can jump”, i.e., there
is Ny € w such that for all n € w we have

(2a) F(n) = n+ k implies |k| < Np.

Indeed, let J := {k € Z : F(n) = n + k for some n € w} and assume that J
is infinite. Let f : w — J be a bijection, there is such a bijection because J is
countably infinite. For all j € J let n; € w be such that F(n;) =n; + j and
let y; := ngq for all i € w. Let y := (y; : i € w). Then F(yy) ¢ {suc*(yy) :
k € Z} because U is nonprincipal. This contradicts (2), and thus J is finite
which implies the existence of the bound /Nj.

Next we show that b(IIy9N) # IIyb(9M) if F does not agree with suc on
copies of Z-models in IO all elements of which are in R or no elements of
which are in R. Indeed, assume R(suc”(y)) in I[Iy901 for all m € Z. There is
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k € Z such that F(y) = suc(y), by (2). There is an automorphism « in ITy90
that “shifts with 1 step in Y := {suc™(y) : m € Z}”, i.e., a(z) = suc(z) for
all z € Y, because R(2) for all z € Y. Now, if F(2) # suc®(z) for some z € Y,
then « is not an automorphism in IT;;b(9M). So, assume that F(2) = suck(z2)
for all z € Y. Now, if k ¢ {1, —1}, then Y # {F™(y) : m € Z} = {suc™*(y) :
m € Z}. However, there is an automorphism S of IIyb(9) that “shifts
{F™(y) : m € Z} with one step” and leaves all the other elements fixed.
This 3 is not an automorphism of II;y9N. We show now that F(z) = suc™!(2)
for all z € Y cannot happen. Indeed, assume that F(z) = suc™!(z) for all
z € Y. Then there is an “Nj-long descending F-chain in b(90)”, i.e., there
is n € w such that F(k) =k —1 for all n — Ny < k < n in b(9M). Then
F' has to stay below n since then on, by (2a) and F' being one-to-one, i.e.,
F¥(n) < n for all k € w. This again contradicts F' being one-to-one. The
same argument works if =R(suc™(y)) in IIy9 for all m € Z. By the above,
we assume in the rest

(3) F(2) = suc(z) for all z € Y := {suc*(y) : k € Z} if y € lHyw is such that
either R(z) in IIy9 for all z € Y or =R(z) in IIy9N for all z € Y.

Now, (3) has implications on behavior of F' on long R-chains or —R-chains in
M, as follows. Let us say that (y+k:k<n)=(y,y+1L,y+2,....,y+n—1)
is an n-long R-chain in 9 beginning with y if R(y + &) in 9 for all k£ < n.
The definition of a =R-chain is analogous. First we show the existence of a
bound N such that for all R-chains longer than 2N, F' agrees with suc on
the chain, except for N-long chains at the beginning and at the end of the
chain, and the same holds for —R-chains.

(3a) There is N > Ny such that for all R-chains longer than 2N and begin-
ning with y we have F(suc®(y)) = suc*™(y) forall y+ N < k < y+n—N
and the same holds for —R-chains, too.

Indeed, assume that there is no such bound. Then n is not such a bound
for any n € w, i.e., there is an m-long R-chain with beginning y such that
m > 2n and F(suc®(y)) # suc®*1(y) for some y + n < k <y +m —n. For
each n € w let y, := suc*(y) for such a chain and let z = (y, : n € w).
Then in the ultrapower II;9 we have F(z) # suc(z) while R(suc®(z)) for all
k € Z. This contradicts (3). The proof for the —R-chains is analogous. This
completes the proof of (3a).
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From now on we assume that N is as in (3a). Next we prove that if there
is an n > 3N-long R-chain ending with y — 1 and there is an n > 3N-long
—R-chain starting with y+ 1, then the behavior of F' is rather close to that of
suc in these chains. Namely, F*(0) = k in the interval [y —n + N,y +n — N]
except in [y — N,y + NJ], and F enumerates the elements of [y — N,y + N].

(3b) Assume that n > 3N and there is an n-long R-chain in 9t ending
with ¥ — 1 and there is an n-long —R-chain starting with y + 1. Then
Fk(o)=kforaly—n+ N<k<y—Nandy+ N <k<y+n-—N.
Further, {F*(0):y— N<k<y+N}={k:y— N<k<y+ N}

Indeed, assume that n and y are as in (3b). There is an n > 2N-long R-chain
beginning with y — n, so by (3a) we have F(y —n+k) =y —n+k+1 for
ally —nm+N<k<y—N. Letv:=y—n+ N. Then

(a) Flv+k)=v+k+1foral k<n-—2N.

Then F(w) ¢ {k:v <k <v+mn—2N} for all w < v since F' is one-to-one
by b(9) = T(Sy). By n —2N > N > N; and (2a) then F(w) < v for all
w < v and hence F' enumerates [0, v], i.e.,

(b) (FFo) 1k < v} ={k:k <}

There is m € w such that v = F™(0), by (1). As before, by (2a) and (a) we
have that m < v and then m = v by (b). Thus, F¥(0o) = v and by (a) we
have F¥(0) = k for all v < k < y — N. The rest of (3a) can be obtained
similarly.

We are ready to show b(IIy9N) # Iy b(9N), finishing the proof of Theorem
3. Let X be the infinite set where Sy and S; differ. Then X is disjoint from
So and X C S, by definition. Let x,, denote the nth member of X according
the natural ordering of w. Then —R(z,) in 9 by z, ¢ Sy and the definition
of Rin M. Also, R(z,, — k — 1) and =R(z,, + k) for all & < n, because the
0, 1-sequences between two xs are laid by alphabetical order, thus before the
nth x € X there are n many 1s and after it there are n + 1 many 0s. Let
x = (z, : n € w). Then xy is contained in Iy in a copy of the Z-model
(Z,{k : k < 0}), i.e., all members of the Z-model below z;; are in R, and no
member after zy, including xy is in R.

How does the set C' := {suc®(zy) : k € Z} look like in IT;;b(9)? Note that
we cannot assume F' = suc and o = 0 in b(9). Thus, for example, we cannot
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infer R(z,,) in b(M) from z, € S;. However, we can use our assumptions
(1)-(3) and their implications. Especially, we can use (3b). Let n > 3N,
where N is the bound in (3b). We have seen in the previous paragraph
that, in 9, the assumptions hold for y = x,. By (1), the definition of S,
and (3b) then R(F*(0)) for x, —n+ N < k < x, — N and —=R(F¥(0)) for
Tn+ N <k <uz,+n— N, in b(®M). Also, by (3b) we get that F' agrees
with suc “below” suc™(zy) and “above” suc¥(zy), in Hyb(9M). Further,
F enumerates the interval I := [suc™" (zy),suc” (zr/)]. However, there is a
difference between Iyt and I1;;b(90) concerning I. Namely, in IT; 9T exactly
N elements of I are in R because —=R(z,,) in 9. At the same time, due to
the definition of Sy, by (1) we get R(F*(0)) for all w € X. Hence, exactly
N + 1 elements are in R in the corresponding intervals in b(901), so exactly
N + 1 elements of I are in R, in II;b(90).

For all n € w let y, € w be similar to x, in that =R(y,), there is an
n-long R-chain ending with y,, — 1, there is an n-long —R-chain starting with
yn + 1, and such that neither g, nor any element of these chains belong
to X. There are such y,s by the construction of Sy, S;. Let y := (y, :
n € w). Then there is an automorphism in Iyt that interchanges xy
with yy. We will show that there is no automorphism in II;b(9) that
interchanges suc™" (zy7) and suc™ (yy). Indeed, such an automorphism has
to be a bijection between the intervals I and J because it can be seen that
F enumerates J := [suc " (yy), suc” (yy)] in Hyb(OM) and F agrees with suc
outside J. We have seen that there are N 4 1 elements of I that are in R in
[Iyb(9). It can be seen just the same way that there are only N elements
of J because =R(yy) in yb(M). Therefore, no bijection between I and .J
can preserve R. The proof of Theorem 3 is complete. QED

We close the paper with some implications of the results for questions
raised in the wider literature.

Glymour [14] raises an interesting question about definitional equivalence.
The common understanding is that definitionally equivalent theories have
essentially the same content and we would think that all important proper-
ties are shared by them. Theorem 2 implies that a property of a theory is
preserved by definitional equivalence when it can be expressed in terms of
universes, isomorphisms and ultraproducts of its models. Therefore, having
a one-element model, having only finite models, being categorical in a power
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or being complete are preserved by classical definitional equivalence (since
two models are elementarily equivalent if and only if they have isomorphic
ultrapowers). Glymour [14, p.296] conjectures that also the model class be-
ing closed under substructures, the model class being closed under unions
of chains, and having an equational axiomatization are preserved. We now
show that neither one of these three properties is preserved by definitional
equivalence.

Indeed, let T; be the empty theory on the language with one constant
symbol ¢. Let Ty be the definitional extension of Ty with Vx(R(z) <«
[Fyz(y # z) ANz = ¢|]. Then Mod(T;) is closed under taking substructures
but Mod(T3) is not. The counterexample to preservation of unions of chains
is similar in spirit. Let T; be the empty theory on the language whith a
binary relation symbol <. Let T, be the definitional extension of T; with
defining R to be the set of <-minimal elements when there is a <-maximal
element and R is the empty set when there is no <-maximal element (i.e.,
Ve[R(z) <» (FyVz(z < y) AVz(z < x))]). Clearly, T, is closed under taking
unions of chains. However, T, is not closed under taking unions of chains,
as the following models show. For each natural number n let 90, have the
set of natural numbers smaller than n as universe, let < be the “smaller”
relation and let only 0 be in relation R. Then each 91, is a model of Ty but
their union is not a model of Ts since it does not have a maximal element
yet R is nonempty in it. For showing that having an equational axioma-
tization is not preserved by definitional equivalence, one could take groups
as counterexamples, this is mentioned in [18, p.56]. Indeed, let T; be the
class of semigroups in which inverses exist and let Ty be its extension with
the inverse operation and the zero element as constant. Then T; does not
have a universal axiomatization because its model class is not closed under
subalgebras, while T, is an equational class.

It is known that definitionally equivalent theories have isomorphic Linden-
baum-Tarski formula-algebras, they only differ from each other in what de-
finable properties they take to be as basic ones. The proofs above show that
this latter choice can influence the existence of axiom systems of given forms.
For example, being substructure is not preserved by definitional expansion
because in this notion the basic relations are treated differently from the rest,
namely being a substructure is formulated in terms of basic relations only.
Similarly for homomorphism, union, etc. However, being an elementary sub-
structure is preserved by definitional expansion because in the definition of
elementary substructure all definable relations are treated alike (and indeed,
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this notion can be characterized by means of isomorphisms and ultraprod-
ucts as follows: 91 is an elementary substructure of 91 if and only if N C M
and there is an ultrafilter U such that II;91 is isomorphic to IIy9 via an
isomorphism that is identity on the diagonal image of N in IIyN).

The following corollary of Theorem 2 states that an associated structure
to be defined below, namely the concrete ultracategory of a theory, is an
invariant characteristic to definitional equivalence of first-order logic theories.

By a concrete ultracategory, we mean a triple (C, F, p) where (C, F') is a
concrete category?, and the additional structure p is a system of infinitary
functions (py : U an ultrafilter) on Ob(C') such that if U is an ultrafilter
on the set I then F(py(m;)icr) = HyF(m;) for all m : I — Ob(C). A
functor between two ultracategories (C, F,p) and (C', F',p') is a concrete
functor between (C, F) and (C’, F”) that preserves all the functions py. Two
concrete ultracategories are isomorphic if there is a functor between them
that is a category theoretical isomorphism.

Let T be a theory. Its concrete ultracategory is (C, F,p) where (C, F) is
Mod*°(T) with the natural forgetful functor, and for all ultrafilters U on
I and all systems (9;);c; we have py((9;)ic;) = HyPN;. Notice that an
isomorphism between the ultracategories of two theories preserves only the
universes of the models (through the forgetful functors) and the behaviour
of isomorphisms and ultraproducts as functions on Mod"*°(T).

Theorem 4 Two first-order logic theories are definitionally equivalent if and
only if their concrete ultracategories are isomorphic.

Proof. This is just a reformulation of Theorem 2. QED

We note that one can define the concrete ultracategory of a theory to
contain all elementary embeddings in place of all isomorphisms only, as is
usual. Theorem 4 is true with this modified definition, too. The reason is
that elementary embeddings are preserved by definitional equivalence.

Remark 7.(connection with Stone duality) Halvorson [15, section 7] pro-
poses the programme to investigate what structure a model class naturally
has. This program involves to endow the model class of a theory in such a

4For the notions of a concrete category and a concrete functor see [1, Chap.5].
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way that from this structure on the model class, the theory can be recovered
up to definitional equivalence. Theorem 4 above offers an answer, namely
concrete ultracategory of a theory. In category theoretical logic, Makkai
27, Theorem 4.1] offers the notion of (abstract) ultracategory and Awodey
and Forssell [5] offer the notion of topological groupoid in place of our con-
crete ultracategory. These three structures are quite similar to each other,
so there seems to be a convergence here in finding a natural structure on
the model classes. Unlike our concrete ultracategory, Makkai’s ultracategory
and Awodey and Forssell’s topological groupoids characterize first-order the-
ories only up to many-sorted definitional equivalence, which is weaker than
classical definitional equivalence. Halvorson [15] points out the connection
of his programme with generalizing Stone duality from propositional logic to
predicate logic. We believe that a full-fledged Stone duality can be based on
Theorem 4 above. See also [26, 27, 17] and [8, p.576]. O

Definability theory is used quite extensively in recent philosophy of science
papers to investigate what symmetries tell about theories and how to compare
“structure”, see, for example, [7, 10, 16, 20]. When one theory is an expansion
of the other, there is a natural functor between their model categories. This
is the “reduct-formation” functor denoted by II in [7, above Example 9]. It
is shown in [7] that the question investigated in the present paper gets rather
nice answers in this special case. We now show how one of the attractive
theorems in [7] follows from Theorem 2. In fact, Theorem 2 in the present
paper is a generalization of [7, Corollary 2| to the general case concerning
two arbitrary theories.

Corollary 2 (Corollary 2 in [7]) Let T be an expansion of T. Then T is
definitionally equivalent to T if and only if the reduct-formation functor 11 is
an equivalence between their model iso-categories.

Proof. The reduct-formation functor II is a concrete functor and it always
preserves isomorphisms and ultraproducts “forwards”, i.e., from T+ to T. It
is a bijection up to isomorphism if and only if it is a bijection because the
range of II is always closed under isomorphisms. Thus if I is a category theo-
retical equivalence then each model of T has a unique expansion in Mod(T™),
therefore Il preserves isomorphisms and ultraproducts also backwards. Thus
if IT is a category theoretical equivalence then it satisfies (i) and (ii) in The-
orem 2, hence T and T are definitionally equivalent. The other direction is
easy. QED
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Categorical equivalence of theories is investigated in [8] as a weaker form
of definitional equivalence. Two theories are defined to be categorically equiv-
alent iff there is a categorical equivalence between their model categories.
It is shown in [8] that categorical equivalence, many-dimensional (Morita)
equivalence and definitional equivalence are strictly stronger in this order.
The question naturally arises about how “large” the gaps between them are,
under what additional properties these are the same.

According to Corollary 2, the reduct-formation functor II bridges the gap
between definitional equivalence and categorical equivalence between a the-
ory and its expansion. It is asked in [7, below Corollary 2] what special
property P of II allows it to fill the gap between categorical and definitional
equivalence of theories. Theorem 2 gives an answer to this question. The
answer it offers is that this special property B of II is that it is a concrete
functor which preserves ultraproducts in both directions when it is an equiv-
alence.

Question 2 in [6] asks for an additional property B of functors such that
two theories are definitionally equivalent iff there is a category theoretical
equivalence between their model categories which has property 3. This ques-
tion is also mentioned in [29, Note 23|, where it is written: “It is not known
how much weaker categorical isomorphism is than definitional equivalence,
or Morita equivalence, which is a weakening of definitional equivalence that
allows one to define new sorts.” Now, Corollary 3 below says, roughly, that
categorical equivalence is just as much weaker than definitional equivalence
as it misses how ultraproducts behave and what the universes of models as
well as the set theoretical contents of morphisms are. In other words, two
theories are definitionally equivalent if and only if there is an equivalence be-
tween their model categories which is a concrete isomorphism and preserves
ultraproducts. We note that [20, Theorem 3| gives an answer to the above
questions that is different in spirit from our Corollary 3.

Corollary 3 Two theories T1 and Ty are definitionally equivalent if and only
iof there is a concrete ultraproduct-preserving functor F that is an equivalence

between Mod(T1) and Mod(Ts).

Ultraproducts are intimately connected to first-order logic. It would be
interesting to see whether analogous theorems hold for other languages where
ultraproducts can be omitted or replaced with some other additional struc-
ture. Laurenz Hudetz [20, 21] contain interesting generalizations and results
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in the direction of broadening definability theory in order to be more appli-
cable in philosophy of science. These results may be used perhaps to get an
analogue of Theorem 2 in which ultraproducts do not occur.

A Appendix

The following generalized version of Beth’s theorem is well-known as folklore.
Both [11] and [27] use this generalized version of Beth’s theorem without
proof. Since Theorem 2 relies heavily on this folklore theorem, here we give
a short proof for it. For simplicity, we assume that we have only relation
symbols.

Theorem 5 Assume that T is a theory on the language ¥ U R and the X-
reduct of each model of T has at most one extension to a model of T. Then
each element of R is explicitly definable in T by a X-formula.

Proof. Let T’ denote the theory T where each relation symbol R € R is
replaced by a new relation symbol R’ not occurring in the language of T (and
having the same arity). Then TUT' | VZ[R(Z) +> R/(z)] for all R € R, since
the R-free reduct of each model of T has at most one expansion to a model
of T. Let R € R be arbitrary. By the compactness theorem, there is a finite
subset Ty of T such that To U T, | VZ[R(Z) ++ R'(z)]. Therefore, R has
to occur in Ty, since otherwise both the empty set and the biggest relation
of the same rank as R can be chosen in a model to satisfy Ty. Since Ty is
finite, it contains only finitely many elements from R, let the set of these
elements be Ry := {Ry,..., R,}, and we may assume R; is R. By the usual
Beth’s theorem, there is a formula ¢g on the language SU{ Ry, ..., R, } which
defines R in Ty. Now, let Ty be the theory we obtain from T, by replacing
R in it everywhere with ¢r. Then T; follows from Ty, only Rs, ..., R, occur
in Ty and T, UT] | VZ[R2(Z) <+ Ry(z)]. By the usual Beth’s theorem, there
is a formula @g; on the language ¥ U {Rs, ..., R,} which defines Ry in T;.
And so on. At the end we get T,,_; on the language ¥ U{R,} and a formula
©rn on the language ¥ which defines R, in T,_1. Let ¢, be vgr,, let ¢, 1
be the formula we get from g, 1 by replacing R,, in it by 1, etc. Then 94
is in the language > which defines R in To C T. QED
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