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I-PRIME SUBMODULES
ISMAEL AKRAY AND HALGURD S. HUSSEIN

ABSTRACT. We introduce a new generalization of prime submodules called
I-prime submodule for I a fixed ideal of a commutative ring R. We study
some of its properties and show that the intersection of I-prime submodules
is again I-prime. Finally, we proved that if F' is a flat module and P an
I-prime submodule of a module M then F ® P is I-prime submodule of
e M.

1. INTRODUCTION

Throughout this paper R will be a commutative ring with nonzero identity
and [ a fixed ideal of R and M a unitary left R-module. Prime ideals play a
central role in commutative ring theory. We recall that a prime ideal P of R
is a proper ideal with the property that for a,b € R, ab € P implies a € P or
b € P; or equivalently, for ideals A and B of R, AB C P implies A C P or
B C P. The concept of weakly prime ideals was introduced by Anderson and
Smith (2003), where a proper ideal P is called weakly prime if, for a,b € R
with 0 # ab € P, either a € P or b € P, [7]. Bhatwadekar and Sharma
[11] defined the notion of almost prime ideal, i.e., a proper ideal I with the
property that if a,b € R, ab € I — I?, then either a € I or b € I. Thus a
weakly prime ideal is almost prime and any proper idempotent ideal is also
almost prime. Moreover, an ideal I of R is almost prime if and only if /I? is a
weakly prime ideal of R/I*. We could restrict where a and/or b lies. A proper
ideal @ of R is said to be primary provided that for a,b € R,ab € () implies
that either a € Q or b € \/Q. We can generalize the concept of primary ideals
by restricting the set where ab lies. A proper ideal @ of R is weakly primary if
for a,b € R with 0 # ab € Q, either a € Q or b € \/Q. Weakly primary ideals
were first introduced and studied by Ebrahimi Atani and Farzalipour in 2005,
[12].
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An R-module M is called a multiplication module if every submodule N of
M has the form IM for some ideal I of R, see [3]. Note that, since I C (N :g
M) then N =1IM C (N :g M)M C N. So that N = (N :g M)M. Let N and
K be two submodules of a multiplication R-module M with N = 1M and
K = I, M for some ideals I; and I of R. The product of N and K denoted by
NK is defined by NK = [1I,M. Then by [4, Theorem 3.4], the product of N
and K is independent of presentations of N and K. An R-module M is called
faithful if it has zero annihilator. An R-module M is called a cancellation
module of R if, for all ideals I and J of R, IM = JM implies that I = J, see
[6, 5]. For example, every invertible ideal, free module and finitely generated
faithful multiplication module over a ring R is cancellation module of R. It is
clear that if N is a submodule of a nitely generated faithful multiplication (
and so cancellation ) R-module M, then we have (IN : M) = I(N : M) for
every ideal I of R.

The class of prime submodules of modules was introduced and studied in
1992 as a generalization of the class of prime ideals of rings. Then, many
generalizations of prime submodules were studied such as primary, classical
prime, weakly prime and classical primary submodules, see [8, 9, 10, 17] and
[3]. A proper ideal P of R is called ¢prime ideal if for all a,b € P — ¢(P)
implies either @ € P or b € P, where ¢ : 7(R) — 7(R) U {¢} is a function
defined on the set of ideals 7(R) of R (see [13] and [19]). Let M be a module
and 7(M) be the set of all submodules of M and let ¢ : 7(M) — 7(M)U{o}
be a function. A proper submodule P is called ¢prime if for all r € R,m € M
such that rm € P¢(P) implies r € (P : M) or m € P (see [16] and [20]). In
[1], the notion of I-prime ideal was introduced which can be considered as a
special case of ¢prime ideals by defining ¢(P) = I P.

In this article, we generalize [-prime ideals to submodules and we study
several properties of such generalization. We give some characterizations of
I-prime submodules. Finally we show that if /' is an R-module and P an [-
prime submodule of an R-module M, then under a particular condition, P® F’
will be an I-prime submodule of M ® F'.

2. MAIN RESULTS

A proper submodule P of an R-module M is called I-prime submodule of
M if rm € P—IP for all r € R and m € M implies that either m € P
orr € (P: M). It is clear that every prime and weakly prime submodule
is I-prime but the converse is not true in general as we see in the following
example.

FExample 2.1. Consider the ring of integers Z and the Z-module Z;5. Take
I = 47 as an ideal of Z and P = (4) be a submodule of Z;5 generated by
4. Then P is an I-prime submodule of Z;5 since P — I[P = (4) —4Z.(4) =
(4) — (4) = ¢. In other side, P is not prime even not weakly prime submodule
since 4 = 2.2 € P but not 2 € P nor 2.Z;5 C P.
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Note that the similar statements of our results from Theorem 2.2 to Corol-
lary 2.5 are present for ¢—prime submodules in [20] and [16] but here new
proofs are provided for I—prime submodules. We begin with the following
evident useful theorem.

Theorem 2.2. Let P be an I-Prime. Then P is prime if (P : M)P ¢ IP.

Proof. Let rm € P forr € R and m € M. If rm ¢ IP, then P is prime
submodule of M. If rm € I P, then we can assume that rP C I P, because for
otherwise there exists x € P such that rz ¢ IP so r(m+x) ¢ IP. As P is
I-prime, r(m + x) € P — IP implies that r € (P : M) or m 4+ x € P, that
isre(P:M)orme P. If (P: M)m ¢ IP, then there exists a € (P : M)
such that am ¢ IP, so (a+7r)m ¢ IP. Thus (a +r)m € P — I P which imply
that a+r € (P: M) orm € P, thatisr € (P : M) or m € P. Hence we may
take (P : M)m C IP. Since given (P : M)P ¢ IP, there exists a € (P : M)
and x € P such that ax ¢ IP. Therefore (r + a)(m + x) € P — I P and this
implies that r+a € (P: M)orm+x € P,thatisr€ (P: M)orme P. O

Corollary 2.3. Let P be an 0-prime submodule of M such that (P : M)P # 0.
Then P is a prime submodule of M.

Proof. Take I = 0 in the Theorem 2.2. O

Corollary 2.4. Let P be I-prime submodule of M and IP C (P : M)?P.
Then P is J-prime where J = N2, (P :g M)*.

Proof. In the case P is prime submodule, then there is nothing to prove. Now,
in the case P is not prime submodule, by Theorem 2.2 we have (P : M)P C IP
but given IP C (P : M)?P, so IP = (P : M)?P and inductionally, we have
IP = (P : M)*P for all positive integer k. Hence IP =N, (P : M)*P = JP
and therefore P is J-prime. U

Corollary 2.5. Let M be a multiplication R-module and P an I-prime sub-
module of M. If P is not prime, then P* C IP.

Proof. Since M is multiplication R-module, P = (P : M)M. By Theorem 2.2
and being P non prime submodule we include that (P : M)P C I P. Therefore
P2=(P:M)*M = (P: M)(P:M)M=(P:MPCIP. 0

Recall that if N is a proper submodule of a nonzero R-module M. Then
the M-radical of N, denoted by M — rad(N), is defined to be the intersection
of all prime submodules of M containing N. If M has no prime submodule
containing N, then we say M — rad(N) = M. It is shown in [15, Theorem
2.12] that if N is a proper submodule of a multiplication R-module M, then
M —rad(N) = +/(N :g M)M.

Corollary 2.6. Let M be a multiplication R-module and P an I-prime sub-
module of M. Then P C~IP orIP C P.
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Proof. If P is prime submodule, then vIP C v/P = P. Now if P is not prime
submodule, then by Corollary 2.5 P> C IP,so P C \/IP. O

The following two famous theorems are crucial in our investigation because
they give several charactrizations of I-prime submodules.

Theorem 2.7. Let M be R-module and P be a proper submodule of M. Then
the following are equivalent.

(1) P is I-prime submodule of M.
(2) Forr€e R—(P:M),(P:r)=PU({P:r).
(3) Forr€e R—(P:M),(P:r)=Por(P:r)={P:r).

Proof. (1) = (2) Let P be an [-prime. Taker € R—(P : M)andm € (P :p 7).
Sorm € P. If rm ¢ IP, then P I-prime gives m € P. If rm € IP, then
me (IP:r).

(2) = (3) If a submodule is a union of two submodules, it is equal to one of
them.

(3)= (1) Let rme P—IPforre Rand me M. If r ¢ (P: M), then by
hypothesis (P :r) = P or (P:r)= (IP :r). Since rm ¢ IP, m ¢ (IP :r).
But m € (P : r) which means that (P :r) % (IP:r). Hence (P :7) = P and
so m € P. Therefore P is I-prime submodule of M. O

Theorem 2.8. Let P be a proper submodule of an R-module M. Then P is
I-prime submodule in M if and only if P/IP is weakly prime in M/IP.

Proof. (=) Let P be I-prime in M. Let r € R and m € M with 0 # r(m +
IP) e P/IPin M/IP. Then rm € P — IP implies r € (P : M) or m € P,
hence r € (P: M) = (P/IP: M/IP)orm+ 1P € P/IP. So P/IP is weakly
prime submodule in M/IP.

(<) Suppose that P/IP is weakly prime in M/IP and take r € R,m € M
such that rm € P — IP. Then 0 # rm + [P = r(m + IP) € P/IP so
m+ IP € P/IP orr € (P/IP: M/IP) = (P : M). Therefore m € P or
r€ (P:M). Thus P is I-prime. O

Lemma 2.9. Let M be multiplication R-module, P an I-prime of M and
(P:M)C1I. Then \/(IP: M)P =1P.

Proof. Let r € \/(IP: M). If r € I, thenrP C IP. Forr ¢ I,ifr ¢ (P : M),
then (P:r)=Por (P:r)= (IP:r)by Theorem 2.7. If (P :7) = (IP : 1),
then rP Cr(P:r) Cr(IP:r)C IP. For the case (P : 1) = P, let n be the
smallest positive integer such that ™ € (IP: M).

Then as clearly as (P : r) = P, r(r*)M C P implies ¥*M C P, hence as
clearly n > 2 and IP C P, we conclude rM C P contradicting r ¢ (P : M).
The caser ¢ I, r ¢ (P : M) isimpossible as by assumtion, (P : M) C I. Hence
VUP:M)P C IP. For the reverse inclusion, since IP = (IP : M)M C

V(IP : M)M, the result follows O
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The next Theorem is an I-prime version of [3, Proposition 13]. First, we
need the following lemma from [2].

Lemma 2.10. Let P be a submodule of a faithful multiplication R-module M
and J a finitely generated faithful multiplication ideal of R. Then,

(1) P=(JP:J).

(2) If PC JM, then (KP :J)= K(P:J) for any ideal K of R.

Theorem 2.11. Let P be a submodule of a faithful multiplication R-module
M and J a finitely generated faithful multiplication ideal of R. Then P s
I-prime submodule of JM if and only if (P : J) is I-prime in M.

Proof. Suppose that P is I-prime in JM. Let r € R and m € M such that
rm € (P : J)—I(P : J). Then rJm C P — IP because, if rJm C IP
then by Lemma 2.10 rm € ([P : J) = I(P : J) which is a contradiction. If
r ¢ (P : JM) we may apply Theorem 2.7 (3) and weinfer (P :j5 7) = P,
m € P. Now, suppose r € (P : JM), so that rJM C P and then again
by Lemma 2.10 rM = r(JM : J) C (rJM : J) C (P : M) and so r €
(P :J): M). Therefore (P : J) is I—prime in M. Conversely, suppose
that (P : J) is I-prime in M. Let K be an ideal of R and N a submodule
of JM such that KN C P — IP. Then taking Lemma 2.10 in mind we have
K(N:J)C (KN :J)C(P:J). Moreover, if K(N : J) C I(P : J), then
KN =K(JN :J)=JK(N:J)CIJ(P:J)=IP a contradiction. Hence
K(N:J)C (P:J)—1I(P:J). By [20, Theorem 2.11] (P : J) I-prime in M
implies either K C (P : J): M) = (P : JM) or (N :J) C (P :J), which
implies that N = J(N : J) C J(P : J) = P. Hence P is I-prime submodule
in JM. U

Now we give other charactrizations of I-prime submodules which connect

between the [-primeness of a submodule P of an R-module M and the ideal
(P: M) of R.

Theorem 2.12. Let M be a finitely generated faithful multiplication module
and P be a proper subset of M. Then the following are equivalent:

(i) P is I-prime submodule in M.
(ii) (P : M) is I-prime ideal in R.
(iii) P = JM for some I-prime ideal J of R.

Proof. We may apply Theorem 2.7 and Lemma 2.10, hence we have P is I-
prime in M if and only if for any r € R — (P : M),

(*) (P:r)=Por (P:r)=(IP:r)...
(P : M) is I-prime in R if and only if for any r € R — (P : M),
(%) (P:M):ry=(P:M)or ((P:M):r)=(IP:M):r)...

(i) = (i) Let a,b € R with ab € (P : M) — I(P : M). If abM C IP, then
ab € (IP: M) =I(P: M) which is a contradiction. So abM & IP. Assuming
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a ¢ (P : M) by condition (*) we infer (P : M) = P. Thus a € (P : M) or
bM C P, thatisa € (P: M) orbe (P: M). Hence (P : M) is I-prime ideal
in R.

(ii) = (i) Let rm € P — IP. Assuming r ¢ (P : M). By condition (**) we
infer (P:M):r)=(P:M)and (Rm: M) C (P:M). Apply [4, Theorem
3.2] and the result obtained.

(ii) = (iii) Take J = (P : M) and as M is multiplication, then P = (P :
M)M = JM.

(iii) = (ii) Let P = JM, for some I-prime ideal J of R. Then as M is
multiplication module, we have P = (P : M)M. Hence (P : M)M = JM and
as M is cancelation module, (P : M) = J and so (P : M) is I-prime ideal in
R. O

Applying [4, Theorem 3.2] we see that in this particular case the ideal lattice
of R and the submodule lattice of M are isomorphic, this way we may prove
the analogue of the charactrization of [20, Theorem 2.11 (iv)].

Theorem 2.13. Let M be a finitely generated multiplication R-module and P
a proper submodule of M such that (P : M) = (IP: M). Then P is [-prime
submodule in M if and only if for any two submodules A and B of M with
A.B C P and A.B € IP implies either AC P or B C P.

Proof. Let P be an [-prime submodule of M and A, B be any two submod-
ules of M with AB C P, AB ¢ IP with A € Pand B € P. As M
is multiplication R-module, A = (A : M)M and B = (B : M)M and so
AB=(A:M)(B:M)M. Thus (A: M)Z (P: M) and (B: M) ¢ (P: M).
By Theorem 2.12 (P : M) is I-prime ideal in R and by [1, Theorem 2.12] we
have either (A : M)(B: M) € (P : M) or (A: M)(B: M) C I(P : M).
In the first case, we have AB = (A : M)(B: M)M ¢ (P : M)M = P and
in the second case, we have AB = (A : M)(B: M)M C I(P: M)M = IP
and both contradict our hypothesis. Hence either A C P or B C P. For the
converse, it is enough by Theoprem 2.12 to prove that (P : M) is I-prime ideal
in R. Let a,b € R such that ab€ (P : M) —I(P: M) with a ¢ (P : M) and
b (P:M). Take A = aM,B = bM. Then AB = abM C (P : M)M = P. If
AB = abM C IP then ab € (IP : M) = I(P : M) which is a contradiction.
Hence AB C P — IP and by the hypothesis we have either A = aM C P
or B =0M C P which means that a € (P : M) or b € (P : M). Therefore
(P : M) is I-prime ideal of R. O

Suppose M is a multiplication module and z,y € M. Then we can define
the product of x and y as vy = Rx.Ry = (Rx : M)(Ry : M)M. Thus we have
the following corollary.

Corollary 2.14. Let P be a proper submodule of finitely generated multiplica-
tion R-module such that I(P : M) = (IP: M). Then P is I-prime submodule
of M if and only if whenever x,y € M with xy € P — IP implies x € P or
yepr
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Let M and F be R-modules and » € R. Then it is clear that for any
submodule P of M, F® (P :r) C (F® P :r). In the following lemma we give
a condition under which the equality holds.

Lemma 2.15. Let r € R and P a submodule of M. Then for any flat R-
module F', we have F @ (P :r)=(F® P :r).

Proof. Consider the exact sequence 0 — (P : r) — M N % where

fr(m) = rm + P. As F is flat , the exactness of the sequence 0 — P —

M — M 5 0 implies to the exactness of the sequence 0 — F @ P —

P
M - : : : M ~ FeM
F®M — F® 5 — 0 which gives the isomorphism, F' ® & = =5
So the exactness of the sequence 0 — (P : 1) — M — % imply the
exactness of the sequence 0 — F® (P :r) — F M Slie % where

(1@ f)(n®m)=r(n@m)+F®P forn € F. Therefore F ® (P : r) =
ker(l1® f,) = (FQP :pgu ). O

The next two assersions are closely related to Theorem 2.18 in [18].

Theorem 2.16. Let P be I-prime submodule of an R-module M and F a flat
R-module with F@ P # F @ M. Then F® P is [-prime submodule of FF & M .

Proof. Suppose that P is I-prime and » € R — (P : M). Then by Theorem
27(P:r)=Por (P:r)=(IP:r). Now Lemma 2.15 gives us (F ® P :
rN=F®(P:r)=FPo (FP:r)=F(P:r)=Fx P :r)=
(F®IP:r)=(I(F®P):r)and consequently F' ® P is I-prime submodule
of F® M. O

An R-module F' is called faithfully flat if for any two R-modules A and
B, the sequence 0 — A — B is exact if and only if the sequence 0 —
F® A — F® B is exact. By using this definition we are thus led to the
following strengthening of the Theorem 2.16.

Proposition 2.17. Let F' be a faithfully flat R-module. Then a submodule P
of an R-module M 1is I-prime if and only if FF ® P is I-prime submodule of
F® M.

Proof. Suppose that P is I-prime submodule of an R-module M and F' a
faithfully flat R-module. If F® P = F'® M, then the exactness of the sequence
0 — F®P— F®M — 0 imply the exactness of 0 — P — M — 0
and hence P = M which is a contradiction. So F ® P # F ® M and by
Theorem 2.16 F'® P is an [-prime submodule of F'® M. Conversely, let F'® P
be an [-prime submodule of FF ® M. Hence F ® P # F @ M and so P # M.
Now for every r € R — (P : M) we have r € R— (F ® P : FF'® M) and so by
Lemma 2.15, FQ(P:1r)=(FQP:r)=F®Por FQ(P:r)=(FP :r)=
([(FRP):r)=(F®IP:r)=F®{P:r). Assume F® (P:r)=F® P.
Then 0 — F® (P :r) — F® P — 0 is an exact sequence and as F' is
faithfully flat, 0 — (P : r) — P — 0 is exact sequence and consequently
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(P :r) = P. The other case can be proved similarly. Thus by Theorem 2.7 P
is I-prime submodule of M. 0

It is known from Proposition 6.1 in [14] that J ® F' = JF for any ideal J of
R and flat R-module F'. Thus according to Theorem 2.16 and Corollary 2.17
we conclude the following.

Corollary 2.18. Let F' be a flat R-module and J an I-prime ideal of R with
JF # F. Then JF is an I-prime submodule of F'. In the case F is faithfully
flat, the converse is also true.

We know that every polynomial ring R[z] is flat over R and that R[z]®@ M =~
M]z]. Hence as an immediate consequence of the Theorem 2.16 we give the
following corollary.

Corollary 2.19. Let M be an R-module and x an indeterminate. If P is
I-prime submodule of M, then Plx] is I-prime submodule of M|z].
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