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ON LOCALLY DUALLY FLAT SPECIAL FINSLER
(a, 3)-METRICS

BANKTESHWAR TIWARI AND GHANASHYAM KR. PRAJAPATI

ABSTRACT. In this paper, we characterize locally dually flat (a, §)-metrics

m+1
F= %, (m # 0,—1), with isotropic S-curvature and scalar flag cur-
vature and show that these metrics reduce to locally Minkowskian metrics.

1. INTRODUCTION

The notion of dually flat metrics was first introduced by S.-I. Amari and
H. Nagaoka [2] when they studied the information geometry on Riemannian
spaces. Later on, Z. Shen extends the notion of dually flatness to Finsler
metrics [10]. A geodesic curve ¢ = ¢(t) of a Finsler metric F' = F(x,y) on
a smooth manifold M is given by & (t) + 2G" (c(t), ¢(t)) = 0, where the local
functions G = G*(xz,y) are called the spray coefficients given by

(1) G' = 30 I Lo — [F)

A Finsler metric F' = F(x,y) on a manifold is locally dually flat if at every
point there is a coordinate system (z') in which the spray coefficients are in

the following form
. 1 ..
Gz — _§gszyj’
where H = H(z,y) is a C™ scalar function on T'M, satisfying H(z, \y) =
NH(z,y) for all A > 0. Such a coordinate system is called an adapted coor-
dinate system. In [10], it is proved that a Finsler metric F = F(z,y) on an
open subset U C R" is locally dually flat if and only if it satisfies the following

PDE
® [F] ¥ —2[F7], =0
In this case, H is given by H = —¢ [F?] ., y™.
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It is known that a Riemannian metric F' = /a;;(x)y'y’ is locally dually
flat if and only if in an adapted coordinate system, a;;(z) = %(m), where
Y = (x) is a C* function [2, 1]. The first example of non-Riemannian dually

flat metrics is Funk metric, given in [10] as follows
Wyl = (2PlyP = (=.9)*) | (z,9)
2 + 2"
(1 —z[?) (1 = [zf?)

Above metric is defined on the unit ball B” C R™. Also it is locally projectively
flat with constant flag curvature K = —}L. More general, we have the following

(3) F(r,y) =

Example 1. [5] Let U C R" be a strongly convex domain, namely, there is a
Minkowski norm ¢(y) on R" such that

U:={yeR"|o(y) <1}.
Define © = O(x,y) > 0,y # 0 by

r+§ € 0U,
y € T,U = R"™. It is easy to show that O is a Finsler metric satisfying
(4) Our = OO k.

Using equation (4), it is easy to verify that © = O(z,y) satisfies equation (2).
Thus it is locally dually flat on U. © is called Funk metric on U. It is easy
to see that Funk metric is of constant flag curvature K = —}1. Also, O is of
constant S-curvature, S = 2:O. In particular, when U = B"(1), the Funk
metric is just the metric in the form of equation (3).

In fact, every locally dually flat and projectively flat metric on an open
subset in R™ must be either a Minkowski metric or a Funk metric satisfying
(4) after normalization.

A Finsler metric F is called projectively flat if F' is projectively equivalent
to a Minkowski/Euclidean metric. In this case, all geodesics of F' are straight
lines, namely, we can characterize geodesics of F as o(t) := f(t)a + b for some
constant vectors a,b € R”.

In [6], it is shown that a Finsler metric ' on a manifold M is projectively
flat if and only if F' satisfies the following

kayzyk - Fxl =0.

In this case,

G' = P(z,y)y,

k
with P = FIZI“;/ . We call P the projective factor of F'.

Lemma 1. [4] Let F' = F(z,y) be a Finsler metric on an open set U C R™.
Then F' is locally dually flat and projectively flat on U if and only if Fa =
CFFy, where C is a constant.
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For a Finsler metric F, the Riemann curvature R, = R} -2, o2 @ da* is defined
by

i 00Gi i G G oG oG
R 261’“ OxI DzF + 267 dyidyF Byl dyF

The Ricci curvature is the trace of the Riemann curvature, Ric := R. The flag
curvature in Finsler geometry is a natural extension of the sectional curvature
in Riemannian geometry, which is first introduced by L. Berwald. Riemannian
metrics of constant sectional curvature were classified by E. Cartan a long
time ago. There are only three local Riemannian metrics of constant sectional
curvature, up to a scaling. However, the local metric structure of a Finsler
metric with constant flag curvature is much more complicated. For a flag
{P,y} in T,M, where P C T,M is a tangent plane containing y, the flag
curvature K (x,y, P) is defined by

K(LL’ y,P) . gy(Ry(u)au) 7
95y, ¥)gy(u, ) = gy(y, w)gy(y, w)
where u € P such that P = span{y,u}. A Finsler metric F is said to be
of scalar flag curvature if K(x,y, P) = K(x,y) is independent of P containing
y € T, M. F is said to be of isotropic scalar flag curvature if K (z,y, P) = K(x)
and of constant flag curvature if K(x,y, P) = constant.
The S-curvature S = S(z,y) in Finsler geometry is introduced by Shen [11]
as a non-Riemannian quantity, defined as

St y) = (o (0), 6]

where 7 = 7(z,y) is a scalar function on 7, M\{0}, called distortion of F' and
o = o(t) be the geodesic with ¢(0) = z and ¢(0) = y.
A Finsler metric F' is called of isotropic S-curvature if

S=(n+1)cF

for some scalar function ¢ = ¢(z) on M. One of the fundamental problems
in Riemann-Finsler geometry is to study and characterize Finsler metrics of
scalar flag curvature with isotropic S-curvature.

In [14], the author studied Finsler metrics in the form F = o + €8 + k%Q
with non-zero constants € and k and found that there is no locally dually flat
Finsler metric in this form with constant flag (even of scalar flag curvature)
or isotropic S-curvature unless it is Minkowskian. Sevaral geometer [12, 9, §]
also have studied different class of (a, §)-metrics and found that these class of
locally dually flat Finsler («, 8)-metric with isotropic S-curvature and constant
flag curvature again reduces to Minkowskian. These facts inspire us to study
more general Finsler («, 8)-metrics F = mﬂf#, with isotropic S-curvature
and flag curvature.

This class of (a, §)-metrics F' = % contains Randers metric F = a4+
for m = 0; Riemannian metric F' = « for m = —1; Matsumoto metric F' =
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(a_ajﬁ_); if we replace 8 by —f and take m = —2; and Square metric I’ = (“26)2

for m = 1.
More precisely we have the following theorems.

Theorem 1. Let F' = (aJrf# (m # 0,—1) be the (c, B)-metric on a manifold
M and F is locally dually flat metric with isotropic S-curvature.
(i) If T[s(k2 — k35®) (09" — 59" — 50¢") — (¢ + ¢¢") + k19(¢ — 5¢')] = 0
then F is locally projectively flat in adapted coordinate system with
= C1phy.
(i) If s(ky — k3s®) (9@ — s¢/* — 5¢@") — (¢'* + ¢¢") + k1 p(p — s¢') # 0, then
F is locally projectively flat in adapted coordinate system with G* = 0.

Theorem 2. Let F = (O"Lf—)nm“ (m # 0,—1) be a non-Riemannian («, f3)-
metric on a manifold M. Then F is locally dually flat with isotropic S-
curvature S = (n + 1)cF and scalar flag curvature if and only if it is locally
Minkowskian.

2. PRELIMINARIES

Let M be an n-dimensional C*°-manifold. T, M denotes the tangent space
of M at x and the tangent bundle T'M is the disjoint union of tangent spaces
TM = U,en TeM. We denote the elements of T'M by (z,y) where y € T, M.
Let TM, = TM \ {0}.

A Finsler metric on M is a function F' : TM — [0, 00) with the following
properties:

(i) Fis C* on T'M,,
(ii) F is positively 1-homogeneous, and

1 0%F?
2 9yioyi >’

(iii) the Hessian of %2, with elements g;;(x,y) =
on T'M.
The pair (M, F) is then called a Finsler space.

Let a = y/a;;(x)y'y’ be a Riemannian metric, 8 = b;y* be a 1-form and
let ' = ap(s), s = g, where ¢ = ¢(s) is a positive C* function defined in
a neighbourhood of the origin s = 0. It is well known that F = a¢(s) is a
Finsler metric for any o and 8 with b = ||5]|a < bo if and only if ¢(s) > 0

B(s) — s/ (s) + (b* — s?) ¢" (s) > 0 (|s| < b < by).
Let G denote the spray coefficients of a given by

(5) i = Zl { xk ly 2]11} )

where (a) = (a;;)"!. In view of equations (1) and (5), we have
(6) G'=G,+ Ry + Q'

where

(7) R =a'0{-2Qasy + o},

is positive definite



ON LOCALLY DUALLY FLAT SPECIAL FINSLER («, 8)-METRICS 25

(8) Q' = aQsh + V{—2Qasq + reo}b',
I 0
20((¢ — s¢') + (b2 — s%)¢")’
- 1 gb//
2(¢— s¢) + (b — s2)¢")

Consider the following notations [11]

1 . , . 1
i ih i
rij = 5 by +bjak, =Ty, = b, sij = 5 iy = bjii}
sh = a’hshj, sj = s}, b = a"by, b = bib,,

where b;,; is the covariant derivative of b; with respect to Levi-Civita connection
of a.

In [13], Q. Xia have studied a class of locally dually flat («, 5)-metrics and
obtained the following results.

Theorem 3. [13] Let F' = ad(s),s = g be an («, 5)-metric on n-dimensional
manifold M where o = \/a;;(x)y'y? and B = by # 0. Suppose that F is not
Riemannian and ¢'(0) # 0. Then F is locally dually flat on M if and only if
a, B and ¢ = ¢(s) satisfy

1
(9) Sip = g(ﬁel — 0by),
2 29 N 2 2
Too = 505"‘ [T+§<b T—elb )]a + 5(3]{72 —2—3k3b )Tﬁ s
1 1 1
Gl = 5[29 + (3ky — 2)78]y’ + 5(91 — 7b")a® + §k3752bl,

T[s(ks — ks®) (9" — 56 — 508") — (¢ + ¢¢") + k16(¢ — 5¢')] = 0,
where T := 7(x) is a scalar function, 0 := 0;(x)y’ is a 1-form on M, 0' := a'™0,,
and ky :=11(0), ko := 1227(8)), ks = WBQ”(O)H’(O) — 6I1'(0)% — Q(0)|TT"(0)],

— ¢ . 9P +e9”
Q= ¢*S¢>”H T pld—sd)”

Corollary 1. Let F' = a¢(s),s = g be an (a, B)-metric on n-dimensional
manifold M with the same assumptions as in above Theorem 3. If ¢ satisfies

s(ky — ks®) (99 — 59 — 56¢") — (¢ + $¢") + kap(¢ — 5¢') # 0,
then F s locally dually flat on M if and only if o and 5 satisfy

1
S0 — g(ﬁel — le),
2 N\ .2
Too = 5[95 — (6ib")a7],

G = %[Zle + 6'a?).
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In [3], Cheng-Shen have studied the class of («, §)-metrics of non-Randers
type ¢ # t1/1 + tas? +ts3s with isotropic S-curvature and obtained the follow-
ing.

Theorem 4. [3] Let F = a¢(s), s = g be a non-Riemannian («, B)-metric
on a manifold and b = ||5;||a. Suppose that ¢ # t1\/1+ tas? + tss for any

constant t; > 0,ty and t3. Then F is of isotropic S-curvature S = (n + 1)cF,
if and only if one of the following holds.

(i) B satisfies
Tij = e{bzaij - bibj}, Sj = 0,
where € = €(x) is a scalar function and ¢ = c(x) satisfies

PA?

where k is a constant. In this case S = (n+ 1)cF with ¢ = ke.
(i) B satisfies

Tij = O,Sj =0.

In this case, S = 0, regardless of choices of a particular ¢.

3. LOCALLY DUALLY FLATNESS AND ISOTROPIC S-CURVATURE

For the Finsler metric F' = (O‘Jf# (m # 0,—1), we obtain

¢=(1+s)"",
¢ =(m+1)(1+s)",
¢ =m(m+1)(14s)™ 1,

Qbm — m(m2 _ 1)<1 + S)m_2,
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2m? +3m +1
(14 s)(=1+sm)’
B om? +m? +4m3s — 2m + 6sm? — 1 + 2sm

H/
(14 8)2(—1+ sm)? ’
I —2(1 + 2m + 65*m* + 9s*m® + 3s*m? + 6sm* + 2m* — 3sm)
B (1+5)3(=1+sm)?
—2(m?® — 6sm? + 3m3s)
(1+5)3(=1+sm)> '
" — 6(—1 + 8sm> — 2m + 2m’ + 6s*m?* — 12s?m? — 6s*m? + 4sm?)
B (14 s)4(—=1+ sm)*
n 6(125*m® + 8mSs® + 12m*s® + m?* + 4s3m? + 4sm + 8sm?)
(14 8)* (=14 sm)* 7
m+ 1
@= 1+ sm’
O = (m+1)m
(=1 +sm)?’
" (m + 1)m?
— o T
(=14 sm)?

ki =2m* +3m+1,
ky =2m?* —m —1,
ks = —m(4m® —4m? —m +1).
By using above values in Theorem (3), we have the following two lemmas.
Lemma 2. If s (k2 — k3s?) (¢¢' — s¢ — s¢¢") — (¢ + ¢¢") + k(¢ — 5¢') = 0,

then F' is locally dually flat on M if and only if o, 8 and ¢ = ¢(s) satisfy the
following equations

1
Sio = 5(591 — 0by),
2 29 N2, L 2\ 2
(11) Too = 505 + [T + §<b T — Glb )]Oé + 5(3]{32 -2 - 3k3b )7’6 s
1
3
Tls(ks — k3s®) (09 — 56 — 56¢") — (¢ + ¢¢") + krp(¢ — s¢')] = 0,
where k1 =2m? +3m + 1,ky =2m*> —m — 1, ks = —m(4dm?® —4m? —m +1).

Lemma 3. If s (ky — k3s?) (p¢ — s¢™ — s¢¢") — (¢ + ¢¢") + k1 (¢ — s¢') # 0,
then I s locally dually flat on M if and only if o and 5 satisfy

1
510 = 5(591 —0by),

1 1
(12) Gfx = [29 + (3k1 - Q)Tﬁ]yl + g(el - Tbl)@2 + §k‘3752517
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2 N2
roo = g[eﬁ — (6:0") 7],
1
Gl = 5126 + 0a?]
_ (a+p)mt!

Further the given Finsler metrics F’
sition.

, we have the following propo-

Proposition 1. Let F' = (atp)m ™! (m # 0,—1) be the («a, f)-metric on a

manifold M. Then F' is of isot(;’opic S-curvature S = (n + 1)cF if and only if
B satisfies

’I"Z‘jZO, Sj:O‘

Proof. Let ¢ = ¢(s) be a positive C* function defined on (—by, by). For a
number b € [0, by), let

(13) P = —(Q —sQ){nA +1+sQ} — (b* —sH(1+s5Q)Q",
where
Ai=1+3sQ+ (* —s3)Q

and
¢
Q=5
Now equation (13) can be written as

(14) ¢ =—(Q—sQ)(n+ 1A+ (b - s){(Q—sQ)Q - (1+sQ)Q"}.

We suppose that the case (i) of Theorem (4) holds. For the metric F' =
(at+p)™

—w—, we have
1+ s —ms—2ms? — s*m? + m?? + mb*

A= 2
(ms —1)

It follows that (ms—1)>A is a polynomial in s of degree 2. On the other
hand, we have

H(1+ s —ms — 2ms? — s2m? + m?b* + mb?)?

15 A? =
(15) ¢ (ms — 1)4

Substituting equation (15) into equation (10), we get
(16)
(b* — 5?)(ms — 1)*® =

=2 (n+ 1) k(1+ )™ (14 s —ms —2ms* — s*m* + m*b* + mbz)2 :
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Now by considering another form of ® defined by equation (14), we have

B 2m*nb%s — 2m*ns® + Am3nb%s — 6m*ns® — m3nb? — 2m3b%s + 2m2nb’s

d—
(ms —1)%
mns® — 4m2ns® — 2b°m3 — 2m?nb? — 2m?b%s + 3m?*ns® — 20°m? + nb*>m
(ms — 1)*
3s5°m? 4 4mns® + 3m?*ns + 3m?s + 3s°>m
(ms —1)4
—mn+2mns—ns—m-+2ms—n—s—1
(ms—1)4

Equation (16) can be rewritten as
(b* — 5%)(ms — 1)*® = —2b*m?n — b'nm — 2b*m?* — 2b*m?® — nb®> — nb’m

—b*'m?n — b? — b*m + s(2b*m*n + 4b*m®n — 20*'m?® + 2b*m*n — 2b*m?
+3m2nb? + 3b°m? + 2nb*m + 2b*m — nb* — b?) + s*(26*m® + 5m*nb?
+56*m? + 5nb*m + 3b*m + mn +m +n + 1) + s*(—4dm*nb* — 10m*nb?
+26*m® — 6m?nb® + 2b6>m? — 3m*n — 3m? — 2mn — 2m +n + 1)
(17)
In view of equation (16) and (17), (b* — s?)(ms — 1)*® does have same degree

of polynomial in s and b only if m = 0 which contradicts our assumptions.
Therefore case (ii) of Theorem (4) holds. In this case, we have

(18) Too = 0,

(19) S5 = 0.

4. PROJECTIVELY FLATNESS AND SCALAR FLAG CURVATURE

In this section, we have studied projective flatness of locally dually flat
Finsler metric F' for both Lemma 2 and 3.
For lemma 2 of locally dually flat:

Proposition 2. Let F' = (atf—,)nH (m # 0,—1) be the («a, B)-metric on a
manifold M. Then locally dually flat metric F' with isotropic S-curvature is
locally projectively flat in adapted coordinate system with G* = CtBy".

Proof. From Proposition (1), we have r;; = 0. Then using equation (11), we
get [T+ 2(b?7 —0ib")]a? = [—20— 5 (3ko —2—3k3b®) 78] 5. Since o is irreducible
polynomial of 3¢, we conclude that

2
(20) T+ 5(b% —6b") =0
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and
20 + (3ky — 2 — 3ksb*) T3 = 0.

Now contracting equation (9) with b, we get
1
50 = g(/Bz;lel — 0b%).

Since s = 0 the above equation can be written as

s
Using equation (20) and (21), we have
0=332r3  and 6 = EHLr,

Using the values of 6 and 6, in equation (9), we get s;; = 0. Thus 3 is closed.
Let

1 1[/3+2b?
(22) 5(81 — Tbl)a2 =3 {(—sz — 1) T,B] Y
and
1 1
(23) §k37,32bl = §k3b2rﬁyl.

Using equation (22), (23), and (12), we get

G, = CTpy,

where C' = 1?;51 + # + k3—21’2 is a constant. Thus « is projectively flat.

Now we have r;; = 0,s; = 0 and s;; = 0, using these values in equations
(6), (7), and (8) we obtain R =0 and Q" = 0. Thus we have G* = Py, where
P = C73. Thus we can say that locally dually flat metric F' with isotropic
S-curvature is locally projectively flat in adapted coordinate system. O

For lemma 3 of locally dually flat:

Proposition 3. Let ' = (O‘Jf#(m # 0,—1) be a locally dually flat non-
Randers type (a, B)-metric on a manifold M. Suppose that F is of isotropic
S-curvature S = (n+ 1)cF, where ¢ = ¢(x) is a scalar function on M. Then
F is a locally projectively flat in adapted coordinate systems with G = 0.

Proof. We have

(24) S0 = é(ﬁgl - le),

(25) Too = ;[0@ — (6,pHa?],
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(26) G = %[%yl + 0'a?].
By (18) and (25), we obtain
(6,602 = 653.
Since o? is an irreducible polynomial the above equation reduces to
=0,

and

o, = 0.
Then equations (24), (25), and (26) become
(27) si0 =0,

G =0,

700 = 0.

By equations (19) and (27), we get so = 0 and s, = 0 respectively. Thus by
equation (6), we get G* = 0. O
Proposition 4. Let F' = (otp)™ (m # 0,—1) be locally projectively flat with

zero flag curvature. If T = O,chen F' is locally Minkowskian.
Proof. Let us assume that F' is locally projectively flat, so that in local coor-
dinate system the spray coefficients of F' are in the form G* = Py’, where in
our case P = C7f. It is known that if the spray coefficients of F' are in the
form G* = Py, then F is of scalar flag curvature with

P? — Py” B C?72B% — CrpfyF — CBuwty”

(28) K= — =

0

Lemma 4. Suppose that F' = (a+f7),:n+1 (m # 0,—1) is projectively flat with

constant flag curvature K = X\ = constant, then K = 0.

Proof. From equation (28), we have \(a + 3)*"*? = (C*7%8% — C1fy* —
CButy®)a®™. Hence A [@?™2 4 (P"F2)2mHL g + (P1F2)o2mp24, L f2mH2] =
(C?7232 — Crp By* — CBur1y*)a®™. Comparing the different coefficients of «,
we have
() AC?) = C2r2,

(i) A (2ml+2) = —Cr,xy", which is not possible, and

(iii) A = 0.
Case (i) If A = 0 then 7 = 0. Thus we have K = 0. In this case G' = G?, = 0.
Case (ii) If A\(*"5"%) = C?72 then \ = @ Cor? which is a function of
only. That is, flag curvature K = K(x). Thus F'is Riemannian metric. But we
have already assumed that F' is non-Riemannian. Thus A = (;0272

m+1)(2m+1)
will be possible only if A =0 = 7. Again we have K = 0.
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Proof of Theorem (2). By Propositions (2) and (3), we conclude that F is
dually flat and projectively flat in any adapted coordinate system. By Lemma
(1), we have

Fu = CFFy.

The spray coefficients G* = Py’ are given by P = %C’F. Since G* = 0, then
P = 0 and thus C' = 0. It implies that F,» = 0 and then F' is a locally
Minkowskian metric in the adapted coordinated system. This completes the
proof. ([l
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