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Detecting multiparticle entanglement of Dicke states
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Recent experiments demonstrate the production of many thousands of neutral atoms entangled
in their spin degrees of freedom. We present a criterion for estimating the amount of entanglement
based on a measurement of the global spin. It outperforms previous criteria and applies to a wide
class of entangled states, including Dicke states. Experimentally, we produce a Dicke-like state using
spin dynamics in a Bose-Einstein condensate. Our criterion proves that it contains at least genuine
28-particle entanglement. We infer a generalized squeezing parameter of −11.4(5) dB.

Entanglement, one of the most intriguing features
of quantum mechanics, is nowadays a key ingredient
for many applications in quantum information science
[1, 2], quantum simulation [3, 4] and quantum-enhanced
metrology [5]. Entangled states with a large number of
particles cannot be characterized via full state tomog-
raphy [6], which is routinely used in the case of pho-
tons [7, 8], trapped ions [9], or superconducting cir-
cuits [10, 11]. A reconstruction of the full density matrix
is hindered and finally prevented by the exponential in-
crease of the required number of measurements. Further-
more, it is technically impossible to address all individual
particles or even fundamentally forbidden if the particles
occupy the same quantum state. Therefore, the entan-
glement of many-particle states is best characterized by
measuring the expectation values and variances of the
components of the collective spin J = (Jx, Jy, Jz)

T =
∑

i si, the sum of all individual spins si in the ensemble.

In particular, the spin-squeezing parameter ξ2 =

N (∆Jz)
2

〈Jx〉2+〈Jy〉2
defines the class of spin-squeezed states for

ξ2 < 1. This inequality can be used to verify the pres-
ence of entanglement, since all spin-squeezed states are
entangled [12]. Large clouds of entangled neutral atoms
are typically prepared in such spin-squeezed states, as
shown in thermal gas cells [13], at ultracold tempera-
tures [14–16] and in Bose-Einstein condensates [17–19].

Systems with multiple particles may exhibit more than
pairwise entanglement. Multiparticle entanglement is
best quantified by means of the so-called entanglement
depth, defined as the number of particles in the largest
non-separable subset [see Fig. 1 (a)]. There have been
numerous experiments detecting multiparticle entangle-
ment involving up to 14 qubits in systems, where the
particles can be addressed individually [9, 20–24]. Large
ensembles of neutral atoms pose the additional chal-
lenge of obtaining the entanglement depth from collec-
tive measurements. Following the criterion for k-particle
entanglement of Ref. [25], multiparticle entanglement
has been experimentally demonstrated in spin-squeezed
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FIG. 1. Measurement of the entanglement depth for a total
number of 8000 atoms. (a) The entanglement depth is given
by the number of atoms in the largest non-separable subset
(shaded areas). (b) The spins of the individual atoms add
up to the total spin J whose possible orientations can be de-
picted on the Bloch sphere. Dicke states are represented by
a ring around the equator with an ultralow width ∆Jz and
a large radius Jeff . (c) The entanglement depth in the vicin-
ity of a Dicke state can be inferred from a measurement of
these values. The red lines indicate the boundaries for vari-
ous entanglement depths. The experimental result is shown
as blue uncertainty ellipses with one and two standard devia-
tions, proving an entanglement depth larger than 28 (dashed
line).

Bose-Einstein condensates [17]. However, the method
only applies to spin-squeezed states, which constitute
a small subset of all possible entangled many-particle
states. Moreover, the strong entanglement of states with
extreme sub-shot-noise fluctuations is not detected under
influence of minimal experimental noise [26]. Whereas
entanglement detection for more general entangled states
has already been developed [27, 28], it is desirable to ex-
tend these methods towards the detection of multiparti-

http://arxiv.org/abs/1403.4542v2


2

cle entanglement.
In this Letter, we introduce a method for the quan-

tification of entanglement. Our criterion is applicable
to both spin-squeezed and more extreme states, yield-
ing superior results compared to the inspiring work by
Sørensen/Mølmer [25] and Duan [29]. It enables us to
quantify the multiparticle entanglement of an experimen-
tally created Dicke-like state, yielding a minimum entan-
glement depth of 28. In addition, we extract a gener-
alized squeezing parameter, which is also applicable to
Dicke states, of −11.4(5) dB, so far the best reported
value in any atomic system.
Dicke states [30] constitute a particularly relevant class

of highly entangled, but not spin-squeezed states. They
are simultaneous eigenstates |J,M〉 of J

2 and Jz , and
the spin-squeezing parameter ξ2 does not detect them
as entangled [31]. Nonetheless, Dicke states have opti-
mal metrological properties [32–34] and can be used to
reach Heisenberg-limited sensitivity [35]. They are also
useful for quantum information processing tasks, such
as 1 → (N − 1) telecloning or open-destination tele-
portation [36]. Experimentally, high-fidelity Dicke states
with small particle numbers have been created with pho-
tons [22, 23] and trapped ions [9], and have been detected
by global measurements [37].
Among other methods [38, 39], large numbers of atoms

in Dicke states with |J,M = 0〉 may be created in spinor
Bose-Einstein condensates [40]. Spin dynamics creates
a superposition of Dicke states with varying total num-
ber of particles in a process that resembles optical para-
metric down-conversion [41, 42]. In previous work, the
entanglement of these states was proven by a homodyne
measurement [43] and by a test of the metrological sen-
sitivity beyond shot noise [44]. However, the achieved
metrological sensitivity did not imply more than pair-
wise entanglement [34].
For the generation of the desired Dicke states, we pre-

pare a 87Rb Bose-Einstein condensate of 2 × 104 atoms
in a crossed-beam dipole trap with trapping frequencies
of 2π × (200, 150, 150) Hz. Initially prepared in the Zee-
man level (F,mF ) = (1, 0), atoms collide and form cor-
related pairs in the two Zeeman levels (1,±1). These
atoms are transferred to distinct spatial modes [41, 45],
which are addressed by microwave dressing [40] the Zee-
man level (1, 1) [Fig. 2 (b)]. In an experimental run, up
to N = 8× 103 atoms are transferred to the first excited
mode along the strongest trap axis within 240 ms. Since
they are transferred pairwise, we expect an equal num-
ber of atoms N±1 = N

2 in the two Zeeman levels (1,±1).
These atoms are highly entangled in analogy to optical
parametric down-conversion. It is the central objective
of this Letter to quantify the entanglement depth of the
created many-particle state.
We restrict the description of the output state to the

two relevant Zeeman levels (1,±1). In this pseudo-spin- 12
system, we characterize the state by the collective spin

FIG. 2. Preparation and detection of a Dicke-like state. (a)
A Bose-Einstein condensate in the level (F,mF ) = (1, 0) gen-
erates clouds with the same number of atoms in the levels
(1,±1) (1). A microwave pulse (2) transfers the atoms from
(1,−1) to (2, 0). Optionally, a microwave pulse (3) can be
used to couple the two clouds for the measurement of Jeff .
Finally, the atoms in the level (1, 1) are transferred to (2, 2)
before detection. (b) The number of atoms is measured by
standard absorption imaging (insets). On well-resolved reso-
nances depending on the internal state energy, distinct spatial
modes are populated with a large fraction of the total number
of atoms. The black line is a Gaussian fit to guide the eye. In
our experiments, we use the resonance at ≈ 28 Hz.

J, resulting from the sum of the individual pseudospins.
In this picture, the ideal output state with equal num-
ber of atoms constitutes the Dicke state

∣

∣J = N
2 ,M = 0

〉

with vanishing fluctuations ∆Jz . The fluctuations of the
collective spin can be measured directly by counting the
number of atoms in the two Zeeman levels. For this pur-
pose, we transfer the atoms to the levels (2, 0) and (2, 2)
with microwave pulses [see Fig. 2 (a)]. Subsequently, the
trap is switched off and a strong magnetic field gradient
separates the spin components during ballistic expansion.
The number of atoms is then measured by standard ab-
sorption imaging. The absolute number of atoms was
calibrated [44] and it was confirmed that shot noise fluc-
tuations are observed for a coherent state [see Fig. 3 (a)],
which was created by splitting a Bose-Einstein conden-
sate with a π

2 microwave pulse.

We measure Jx and Jy by rotating the total spin us-
ing a π

2 microwave coupling pulse on the (1, 1) to (2, 0)
transition before the number measurement [see Fig. 2
(a)]. Whether Jx or Jy is measured depends on the rela-
tion between the microwave phase and the phase of the
initial Bose-Einstein condensate. The condensate phase
represents the only possible phase reference in analogy
to the local oscillator in optics. Intrinsically, it has no
relation to the microwave phase, such that we homoge-
neously average over all possible phase relations in our
measurements. For a given phase difference α, a rotation
yields a measurement of Jα ≡ cosαJx+sinαJy . Averag-
ing over all possible α, the measured expectation value

of the second moment corresponds to 1
2π

∫ 2π

0 〈J2
α〉dα =

〈

1
2 (J

2
x + J2

y )
〉

. After a random rotation, we thus record
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FIG. 3. Characterization of the experimentally created Dicke-like state. (a) Measurement of the width ∆Jz for varying total
number of atoms (red line). Each value and its statistical uncertainty (gray shading) is calculated for a 1000-atom interval
within the total number of atoms. The measured values of ∆Jz are well below the shot noise limit (theory: black dashed line,
experiment: blue solid line) and partially explained by a lower limit of the number dependent detection noise (black solid line).
(b) The measured value of Jeff as a function of the total number of atoms almost reaches its optimal value (black dashed line).
The inset shows that the normalized Jeff is slowly reduced during an additional hold time. (c) The recorded data allows for a
determination of the optimal spin-squeezing parameter as a function of the total number of atoms. At a total of 8000 atoms,
it reaches a value of −11.4(5) dB.

the effective spin length J2
eff = 〈Ĵ2

eff〉 = 〈J2
x + J2

y 〉, which
equals the spin length in the limit of vanishing

〈

J2
z

〉

[46].
Dicke states can be ideally characterized by the mea-
surement of a large Jeff and a small variance (∆Jz)

2 [see
Fig. 1 (b)].

Figure 3 (a) depicts the results of our measurement
of ∆Jz depending on the total number of atoms N .
The recorded fluctuations were corrected for the inde-
pendently measured detection noise of 10.9(3) atoms to
obtain the pure atomic noise. The detection noise was
directly extracted from images of the detection beams
and is mainly caused by the photoelectron shot noise on
the camera. The measured atom number fluctuations are
well below the atomic shot noise level, reaching down to
−12.4±1.2 dB at a total number of 8000 atoms. The fluc-
tuations are almost independent of the total number of
atoms with a small trend of 0.15

√
N . We do not record

an increase of the measured fluctuations for a variable
additional hold time of up to 420 ms. Thus, we can ex-
clude three-body losses, collisions with the background
gas or radio-frequency noise as relevant noise sources.
We attribute the measured fluctuations to an additional
detection noise since photoelectron shot noise and the
influence of technical noise of the imaging beams are ex-
pected to increase slightly for a larger number of atoms.
The solid line in Fig. 3 (a) shows an estimated lower
limit of this effect [26].

A measurement of the effective spin length Jeff is pre-
sented in Fig. 3 (b). The values for Jeff almost reach their
optimal value of Jmax = N

2 . This measurement shows
that the created state is nearly fully symmetric. After a

variable hold time, the measured effective spin length di-
minishes slowly [see Fig. 3 (b), inset]. We thus conclude
that the measurement result is limited by magnetic field
gradients and collisions. Elastic collisions can transfer
individual atoms to other spatial modes, reducing the en-
semble’s purity and the achievable effective spin length.
The combined measurements of ∆Jz and Jeff prove that
the created many-particle state is in the close vicinity of
an ideal symmetric Dicke state.

The measurements can be combined to extract a gener-

alized squeezing parameter ξ2gen = (N − 1) (∆Jz)
2

〈J2
x〉+〈J2

y〉−N/2
which extends the concept of the spin-squeezing param-
eter to more general entangled states, including Dicke
states [47–49]. Figure 3 (c) presents the measured gen-
eralized squeezing parameter as a function of the total
number of atoms. Note that the quasi-constant plateau
is not statistically significant. At a total of N = 8000
atoms, it reaches a value of −11.4(5) dB. This represents
the best reported value reached in any atomic system.

In addition to this proof of entanglement, the measured
data allow for a quantification of the entanglement depth.
Given states with an entanglement depth k, it is possible
to deduce a minimal achievable (∆Jz)

2 for each value
of J2

eff [26]. All states below this minimum must have
an entanglement depth larger than k. It can be shown
that the states on this boundary |Ψ〉 = |ψ〉⊗N

k are ten-
sor products of identical k-particle states |ψ〉. Interest-
ingly, these k-particle states are ordinary spin-squeezed
states. Figure 4 shows the boundary in the case of 28-
particle entanglement at a total number of 8000 atoms.
As a cross-check, random states with 28-particle entan-
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FIG. 4. Detection of k-particle entanglement based on
the total spin. The red line marks the boundary for k-
particle entangled states with N = 8000 and k = 28 in

the (
〈

Ĵeff/J
2
max

〉

, (∆Jz)
2)-plane. As a cross-check, random

states with k-particle entanglement are plotted as blue dots,
filling up the allowed region. The criterion of Ref. [29] only
detects states that correspond to points below the dashed blue
line. An improved linear criterion is gained from calculating
a tangent to the new boundary (dashed red line).

glement are plotted in the figure. This confirms that our
criterion is optimal and superior to the linear condition
of Ref. [29]. Finally, the criterion detects a larger en-
tanglement depth than the criterion given in Ref. [25]
when it is applied to spin-squeezed states with minimal
experimental noise [26]. It thus outperforms the original
criterion in experimentally realistic situations. Beyond
spin-squeezing, the criterion is applicable to unpolarized
states and thus allows for an optimal evaluation of the
entanglement depth of a Dicke-like state as created in our
experiments.
Figure 1 (c) shows the entanglement depth of the cre-

ated state for 8000 atoms. The red lines present the
newly derived boundaries for k-particle entanglement.
All separable (unentangled) states are restricted to the
far left of the diagram, as indicated by the k = 1 line.
The measured values of (∆Jz)

2 and 〈Ĵ2
eff/J

2
max〉 are rep-

resented by uncertainty ellipses with one and two stan-
dard deviations. The center of the ellipses corresponds
to an entanglement depth of 68. With two standard de-
viations confidence, the data prove that our state has
an entanglement depth larger than 28. These numbers
are only partly limited by the prepared state itself, but
also by the number-dependent detection noise. This de-
tection noise results in a larger measured value of J2

z

and thus decreases the lower bound for the entanglement
depth. This is the largest reported entanglement depth
of Dicke-like states. In the future, the measured entan-
glement depth can be increased by an improved number
detection, compensated magnetic field gradients and a

faster spin dynamics.

In summary, we have presented a criterion for the de-
tection of multi-particle entanglement based on a mea-
surement of the ensemble’s total spin. In the case of spin-
squeezed states, the criterion outperforms the results of
previous criteria in experimentally realistic situations. It
also extends to more general entangled states, most im-
portantly to Dicke states. We have applied the criterion
to detect an entanglement depth larger than 28 in an
experimentally created Dicke-like state. The experimen-
tal results also allow for a determination of a generalized
squeezing parameter of −11.4(5) dB.
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Quantum State Estimation, Lecture Notes in Physics,
Springer Berlin Heidelberg, Vol. 649 (2004).

[7] A. G. White, D. F. V. James, P. H. Eberhard, and P. G.
Kwiat, Phys. Rev. Lett. 83, 3103 (1999).
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Phys. Rev. A 85, 022321 (2012).

[35] M. J. Holland and K. Burnett,
Phys. Rev. Lett. 71, 1355 (1993).

[36] A. Chiuri, C. Greganti, M. Paternostro, G. Vallone, and
P. Mataloni, Phys. Rev. Lett. 109, 173604 (2012).

[37] A. Noguchi, K. Toyoda, and S. Urabe,
Phys. Rev. Lett. 109, 260502 (2012).

[38] T. Vanderbruggen, S. Bernon, A. Bertoldi, A. Landragin,
and P. Bouyer, Phys. Rev. A 83, 013821 (2011).

[39] R. Bucker, J. Grond, S. Manz, T. Berrada, T. Betz,
C. Koller, U. Hohenester, T. Schumm, A. Perrin, and
J. Schmiedmayer, Nature Phys. 7, 608 (2011).

[40] D. Stamper-Kurn and M. Ueda,
Rev. Mod. Phys. 85, 1191 (2013).

[41] C. Klempt, O. Topic, G. Gebreyesus, M. Scherer, T. Hen-
ninger, P. Hyllus, W. Ertmer, L. Santos, and J. J. Arlt,

Phys. Rev. Lett. 103, 195302 (2009).
[42] C. Klempt, O. Topic, G. Gebreyesus, M. Scherer, T. Hen-

ninger, P. Hyllus, W. Ertmer, L. Santos, and J. J. Arlt,
Phys. Rev. Lett. 104, 195303 (2010).

[43] C. Gross, H. Strobel, E. Nicklas, T. Zibold,
N. Bar-Gill, G. Kurizki, and M. K. Oberthaler,
Nature 480, 219 (2011).
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SUPPLEMENTAL MATERIAL

S1. ESTIMATION OF VARIANCES

The experimental results of Fig. 3 are based on an es-
timate of the variance of the total spin of the ensemble.
This section shows how these values can be extracted
from the raw data. First, the raw data is presented. Sec-
ond, the statistical treatment for the unbiased estima-
tion of the underlying variance is described. Finally, we
show that the variance of Jz results mainly from number-
dependent detection noise.

A. Measured probability distribution of Jz and Jα

The number of atoms in the Zeeman levels is mea-
sured by standard absorption imaging with an illumina-
tion time of 70µs and an intensity of 40W/m2. The
absolute number of atoms was calibrated [40] and it was
confirmed that shot noise fluctuations are observed for a
coherent state [see Fig. 3 (a)]. Without the microwave
coupling pulse, a measurement of the number of atoms
in the Zeeman levels corresponds to a measurement of
Jz. While an ideal Dicke state would show no fluctu-
ations at all, we record a finite variance. This finite
variance may stem from fluctuations of the number of
atoms and from noise in the detection system. Figure S1
(a) shows the histogram of all measured values for Jz
with a total number of atoms between 3000 and 7000.
The measured distribution is much narrower than the
corresponding result for a coherent state. After a π

2 mi-
crowave pulse, it is possible to record the corresponding
histogram in the Jx-Jy-plane. Since the microwave has
an arbitrary phase difference α from the atomic phases,
each measurement projects onto a different axis Jα in
the Jx-Jy-plane. The histogram in Fig. S1 (b) thus in-
cludes measurements along all possible directions. The
histogram shows super-shot-noise fluctuations, yielding
a large effective spin length Jeff . The presented data can
be used to estimate the second moment of the underlying
probability distribution.

B. Unbiased estimation of the second moment of

the probability distribution

The measurement process creates a finite set of ran-
dom numbers xi according to a special, non-Gaussian
probability function P (x) [see Fig. S1 (b) as an example].
Such a probability function is well described by its mo-
ments µ1 =

∫

xP (x)dx and µk =
∫

(x− µ1)
kP (x)dx for

k > 2. The second moment µ2, which presents the central
quantity of interest within our work, can be estimated
straightforwardly from the measurements as shown be-
low. However, the variance of this estimate is more diffi-

FIG. S1. Histograms of the recorded spin measurements. (a)
The accumulated measurements of Jz are shown for a Dicke-
like state (solid blue columns) and a coherent state (open
columns). The distribution of the Dicke-like state is much
narrower than the distribution of the coherent state. The lat-
ter is very close to a binomial distribution with shot noise
fluctuations (dashed line). We corrected for a small offset
between the two distributions. (b) The accumulated mea-
surements of Jα are shown for a Dicke-like state (solid red
columns). The distribution compares well to the distribution
of a perfect Dicke state (solid grey line with shading). It is
much wider than the sub-shot-noise distribution of Jz (solid
blue columns).

cult to deduce and has previously been gained from split
samples [16]. In this section, we present a formula for an
unbiased estimate of this variance (called second moment
variance estimator, SMVE), allowing for the calculation
of correct error bars for the central result of our work [see
Fig. 1 (c)].

For a given sample of n independent measurements
according to the probability function P (x), it is possible
to calculate the sample moments
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m1 =
1

n

n
∑

i=1

xi,

m2 =
1

n

n
∑

i=1

(xi −m1)
2,

m4 =
1

n

n
∑

i=1

(xi −m1)
4.

The expectation value of m2 is easily calculated to be

〈m2〉 =
n− 1

n
µ2.

It is thus possible to define an unbiased estimator for µ2:

µ̂2 =
n

n− 1
m2.

This estimate shows statistical fluctuations which are de-
scribed by the variance of µ̂2,

var(µ̂2) =
n2

(n− 1)2
var(m2)

=
n2

(n− 1)2

(

〈

m2
2

〉

− 〈m2〉2
)

=
n2

(n− 1)2
〈

m2
2

〉

− µ2
2. (S1)

Thus, the problem of finding an estimator for var(µ̂2)
reduces to finding an estimator for µ2

2. Hence, we calcu-
late the expectation values

〈

m2
2

〉

and 〈m4〉 by using aug-
mented and monomial symmetric functions (see Ref. [50]
p. 416).

〈

m2
2

〉

=
(n− 1)2

n3
µ4 +

(n− 1)(n2 − 2n+ 3)

n3
µ2
2

〈m4〉 =
n3 − 4n2 + 6n− 3

n3
µ4 +

3(n− 1)(2n− 3)

n3
µ2
2

This linear system of equations can be solved to yield an
estimator for µ2

2. By substituting this in Eq. (S1), we
obtain the final result for the SMVE,

var(µ̂2) =
n

(n− 3)(n− 2)
m4−

n(n2 − 3)

(n− 3)(n− 2)(n− 1)2
m2

2.

The SMVE allows for a direct calculation of the error bars
from the moments of the recorded sample without any
assumption on the shape of the probability distribution.
Figure S2 shows the result of a Monte-Carlo simulation

to demonstrate the application of the SMVE. We gener-
ate random numbers according to a probability function

x
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FIG. S2. Application of the SMVE to generated random num-
bers. We have generate random numbers according to a prob-
ability function P (x). For each sample size n, we have applied
the SMVE to 104 samples. The open circles present the mean
of the calculated SMVEs with their statistical uncertainties.
These results compare well to the directly calculated vari-
ance of the 104 sample variances (red solid dots). It is sta-
tistically equal to the prediction var(µ̂2) = 1

n
µ4 − n−3

n(n−1)
µ2
2

and completely incompatible with the naive guess var(µ̂2) ≈
1
n
(µ4 − µ2

2) (dashed line).

P (x) = 1
π

√

1
1−x2 , similar to Fig. S1 (b), and accumu-

late samples of variable size. The SMVE is applied to
104 samples of each size, yielding estimates for var(µ̂2).
Figure S2 shows that these estimates approximate the
directly calculated variance of the 104 sample variances
very well. It is statistically equal to the prediction gained
solely from the shape of the probability distribution.

In summary, the statistical treatment allows for a cor-
rect evaluation of the second moment of the underlying
probability function and its uncertainty.

C. Estimation of the detection noise

The second moment gained from the experimental
measurements via the statistical treatment above is a
combination of the variance (∆Jz)

2 of the atomic many-
particle state and the detection noise. The detection
noise comprises an atom-independent part which is dom-
inated by the photoelectron shot noise on the camera pix-
els and an atom-dependent part. The atom-independent
noise was measured continuously during the data acqui-
sition by analysing images without atoms. Since we are
interested in an estimate for (∆Jz)

2, the data in Fig. 3
(a) are corrected for the atom-independent noise.

The atom-dependent detection noise results from fluc-
tuations of the photoelectrons counted on the camera
pixels which are stronger at a large number of atoms.
Additionally, a change in the number of counted photo-
electrons has a larger effect on the estimated number of
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x =
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FIG. S3. Creation of an artificial absorption image. The op-
tical transmittance of an idealized atomic cloud is calculated
from an average of many experimental absorption images. A
typical detection image without atoms is multiplied by the
optical transmittance to gain a synthetic absorption image
with adjustable number of atoms.

atoms at high column densities resulting in an increased
sensitivity at a large number of atoms. This noise source
is not independent of the atomic noise and it is thus not
legitimate to subtract it. Nevertheless, we estimate the
approximate strength of these fluctuations for compari-
son with our results. For this purpose, we calculate the
mean optical transmittance from many experimental re-
alizations (see Fig. S3) to approximate an ideal atomic
cloud without atom number fluctuations. This optical
transmittance image is adjusted to represent clouds with
different numbers of atoms. We synthesize absorption
images by multiplying empty detection images with the
gained transmittance images. These artificial absorption
images provide a measure of the atom-dependent detec-
tion noise since they do not contain any atom number
fluctuations by construction. The resulting estimate for
the atom-dependent detection noise is shown in Fig. 3
(a) (dashed line). Although it underestimates the effect
of photoelectron shot noise for strongly depleted absorp-
tion images, it nevertheless explains the major part of
the measured variance (∆Jz)

2.

S2. BOUNDARIES FOR GENUINE k-PARTICLE

ENTANGLEMENT

This section presents a method for the determination
of the entanglement depth based on the measurement of
〈J2
x + J2

y 〉 and (∆Jz)
2. With this method, we determine

the allowed regions for k-particle entanglement in Fig. 1
(c). Section S2A provides a numerical method to calcu-
late the boundaries. In Sec. S2B, we present the entan-
glement criterion with a closed formula, and we discuss
that it applies to pure states, mixed states and mixed
states with a varying particle number. Finally, Sec. S2C
presents a comparison with the original spin-squeezing
criterion of Ref. [24]. We show that our criterion detects
a larger entanglement depth for extreme spin-squeezed
states in the presence of minimal noise.

A. Numerical determination of the boundaries

The following numerical method can be used to deter-
mine the allowed region in the (〈J2

x +J2
y 〉, (∆Jz)2)-space

for quantum states with at most k-particle entanglement
for a given particle number N [51]. We consider states
of the form

|Ψ〉 = ⊗Mn=1|ψ(n)〉, (S2)

where |ψ(n)〉 is the state of the nth non-separable subset
containing kn qubits and kn 6 k. In total, there are M
non-separable subsets. Here, “qubit” refers to individual
pseudo-spin- 12 atoms in the experiment. We define the
collective operators

Jl :=
M
∑

n=1

j
(n)
l

for l = x, y, z, where j
(n)
l denotes the components of

the kn-particle spin operators and act on the nth non-
separable subset of qubits. Note that we consider kn = k
in the main text, whereas here, we extend our discussion
to the general case kn 6 k.
The total variance (∆Jz)

2 is given by the sum of the
variances of the kn-particle spin operators

(∆Jz)
2 =

∑

n

(∆j(n)z )2. (S3)

On the other hand, for a state of the form (S2)

〈J2
x + J2

y 〉 =
∑

n

〈
(

j(n)x

)2

+
(

j(n)y

)2

〉

+
∑

m 6=n

(

〈j(m)
x 〉〈j(n)x 〉+ 〈j(m)

y 〉〈j(n)y 〉
)

.

Since for non-negative values {xl}Ll=1 and positive integer
L we have

∑

l 6=m

xlxm 6 (L− 1)
∑

l

x2l ,

we obtain

〈J2
x + J2

y 〉6
∑

n

〈
(

j(n)x

)2

+
(

j(n)y

)2

〉

+(M − 1)
∑

n

(

〈j(n)x 〉2 + 〈j(n)y 〉2
)

. (S4)

For simplicity, we assume that N is divisible by k. In
this case, states of the form

|Ψ〉 = |ψ〉⊗N
k (S5)

saturate the inequality (S4), where |ψ〉 is a k-qubit
state. Due to convexity arguments, it is sufficient to



9

look for states of the form (S5) to calculate the bound-
ary points. A boundary point can be obtained for a given
X = (∆Jz)

2 from

〈J2
x + J2

y 〉(X) = max
|Ψ〉,N

k
(∆jz)2=X

[

N
k 〈j

2
x + j2y〉|ψ〉

+
(

N
k − 1

)

N
k

(

〈jx〉2|ψ〉 + 〈jy〉2|ψ〉
)

]

. (S6)

Thus, a constrained optimization for a given (∆jz)
2
|ψ〉

over |ψ〉 has to be performed. This can be simplified
further as follows. For even k, the states at the boundary
can be sought in the form (S5), where |ψ〉 is the ground
state of the spin-squeezing Hamiltonian

h(λ) = j2z − λjx. (S7)

Thus, an optimal state |ψ〉 is obtained from spin squeez-
ing [13]. Note that the ground state of h(0) is degenerate.
In this case, the symmetric ground state has to be chosen,
i.e., the symmetric Dicke state with 〈jz〉 = 0.
Hence, the boundary points can be obtained for even

k as a function of a single real parameter λ as

〈J2
x + J2

y 〉(λ) =
[

N
k 〈j

2
x + j2y〉|ψ〉(λ)

+
(

N
k − 1

)

N
k

(

〈jx〉2|ψ〉(λ) + 〈jy〉2|ψ〉(λ)
)

]

,

(∆Jz)
2(λ) =N

k (∆jz)
2
|ψ〉(λ),

where |ψ〉(λ) is the ground state of h(λ). This also means

that states of the form |ψ〉⊗N
k (λ) correspond to points on

the boundary. Since 〈jz〉|ψ〉(λ) = 0, we have 〈Jz〉 = 0 for
the states on the boundary mentioned above. Any state
beyond the boundary is at least (k+1)-particle entangled.

B. Proof for general states with a large number of

particles

In the previous section, we have presented a numerical
method to calculate the boundary for k-particle entan-
gled states assuming that the state is a tensor product
of k-qubit pure states and the particle number is fixed.
It is possible to prove that these boundaries are valid for
general states (S2) with kn 6 k.
To obtain a closed formula for the boundary, we employ

the definition [13]

Fj(X) := 1
j min

〈jx〉
j

=X

(∆jz)
2.

The spin-squeezing criterion for k-particle entangled
states is given as

(∆Jz)
2 > JmaxF k

2

(

√

〈Jx〉2 + 〈Jy〉2
Jmax

)

. (S8)

Equation (S8) is valid for any tensor product of states of
the form (S5) with kn ≤ k [13,S3].
Moreover, for pure k-particle entangled states it is

straightforward to show that

〈J2
x + J2

y 〉 6 Jmax(
k
2 + 1) + 〈Jx〉2 + 〈Jy〉2. (S9)

Hence, using the properties of Fj(X), for states with k-
particle entanglement,

(∆Jz)
2 > JmaxF k

2





√

〈J2
x + J2

y 〉 − Jmax(
k
2 + 1)

Jmax





(S10)

holds. Naturally, we can use the formula only if the ex-
pression under the square root is positive. Otherwise, the
lower bound on (∆Jz)

2 is trivially zero. For large N and
k ≪ N, the first term under the square root in Eq. (S10)
is ∼ N2, while the second one is ∼ N. Thus, we obtain
approximately

(∆Jz)
2 & JmaxF k

2





√

〈J2
x + J2

y 〉
Jmax



 . (S11)

Note that, since Fj(x) 6 1
2 , a sub-Poissonian variance,

i.e., (∆Jz)
2 < N

4 is required to detect multi-particle en-
tanglement.
The inequality (S10) can be used to quantify the entan-

glement depth of pure states. It gives the same boundary
for k-particle entangled states as the method of Sec. S2A.
It can also be shown that our criterion holds not only for
pure states, but also for general mixed states [52]. More-
over, it can be generalized to the experimentally impor-
tant case of mixed states with a fluctuating total number
of particles. Since the total proof exceeds the scope of
this publication, it will be published elsewhere [53].

C. Comparison with the spin-squeezing criterion

Our criterion reliably detects the entanglement depth
of Dicke states. In particular, it detects the symmetric
Dicke state with 〈Jl〉 = 0 for l = x, y, z as fully N -particle
entangled, since the inequality (S10) with k = N − 1 is
violated. In this section, we show that our criterion is also
valuable for the evaluation of spin-squeezed states, since
it outperforms the criterion of Ref. [24] in the presence
of noise.
In order to compare the performance of the two crite-

ria, we consider the ground states of the spin-squeezing
Hamiltonian

H(Λ) = J2
z − ΛJx, (S12)

for N = 4000 spin- 12 particles. For Λ = ∞, the ground
state is fully polarized. For Λ = 0, it is the symmetric
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FIG. S4. Comparison with the spin-squeezing criterion. The
graph shows the entanglement depth detected by the condi-
tion (S10) (solid line) and the spin-squeezing condition (S8)
(dashed line) for N = 4000 spin- 1

2
particles with additive

white noise to account for imperfections. For states that are
not completely polarized, Eq. (S10) detects a considerably
larger entanglement depth. The inset shows that the max-
imal detected entanglement depth depending on the noise
contribution is larger for our criterion (circles) than for the
spin-squeezing criterion (crosses) if some very small noise is
present.

Dicke state. In principle, such states are detected by the

spin-squeezing criterion of Ref. [24] as fully N -particle
entangled for all Λ > 0. However, this statement only
holds for ideal pure states. In experimentally realistic
situations, small noise contributions are always expected,
especially for the case of large numbers of particles as
considered here. While the criterion of Ref. [24] becomes
extremely sensitive to noise for strongly squeezed states,
our criterion is much more robust.

We account for these small noise contributions by mix-
ing the density matrix of the ideal spin-squeezed state ρid
with a noisy state ρn. The noisy state is chosen such that
each atom is in an incoherent 50/50 mixture of its two
spin states. For a quantitative comparison, we estimate
the entanglement depth of the state ρ = (1−p) ρid+p ρn
with a noise contribution of p = 0.05. Fig. S4 shows the
detected entanglement depth for the spin-squeezing crite-
rion (S8) and our criterion (S10). For strongly squeezed
states, where 〈Jx〉 ≪ Jmax, our criterion detects a large
entanglement depth, while the result of the method de-
scribed in Ref. [24] tends to zero. The robustness against
noise exhibited in this example is a general property and
is independent of the exact type of noise.

In summary, our criterion detects the entanglement
depth of both spin-squeezed states and more general
states in experimentally realistic situations. Most promi-
nently, it is ideally suited for the characterization of Dicke
states, as produced in our experiments.


