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The electron spins of semiconductor defects can have complex interactions with their host, 

particularly in polar materials like SiC where electrical and mechanical variables are intertwined. By 

combining pulsed spin resonance with ab-initio simulations, we show that spin-spin interactions 

within SiC neutral divacancies give rise to spin states with an enhanced Stark effect, sub-10-6 strain 

sensitivity, and highly spin-dependent photoluminescence with intensity contrasts of 15-36%. These 

results establish SiC color centers as compelling systems for sensing nanoscale fields. 

PACS numbers: 42.50.Ex, 71.70.Ej, 76.30.Mi, 76.30-v  

   

Leveraging advanced SiC processing capabilities alongside solid-state spin control is a promising 

pathway to quantum-information and sensing technologies [1-6]. Much like nitrogen-vacancy (NV) 

centers in diamond [7], neutral divacancies in SiC [1, 8-10] have a spin-triplet electronic ground state 

with optical addressability and long spin coherence times [4, 5] that persist up to room temperature. 

The NV center in diamond is currently being developed for applications ranging from quantum 

communication [11] to nanoscale nuclear magnetic resonance [12, 13]. The extensive uses of SiC in 

industry, including wafer-scale growth [14], high-power devices, and substrates for epitaxially grown 

GaN [15] and graphene [16], could propel these technologies and many others [17-19] forward. 

Underlying the success of such advancements will be an improved understanding of how spins in 

semiconductor defects interact with their host crystal. 

In this letter, we demonstrate that the spin transitions of neutral divacancies in 4H-SiC are highly 

sensitive to electrical and mechanical perturbations of their host. They exhibit an electric-field response 

that is 2-7 times stronger than that [20, 21] for NV spins in diamond and highly spin-dependent 

photoluminescence (PL) for high-fidelity spin readout. Moreover, AC strain-sensing protocols 
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demonstrated here lead to an optimized sensitivity projected to be in the       √      range, where 

N is the number of interrogated spins. Although electric- and strain-field effects on SiC spins are 

interrelated due to SiC’s piezoelectricity, our ab-initio simulations disentangle these two effects and 

attribute the strong electric field response of these spins to the high electron polarizability in SiC. 

Because our techniques are based on point defects and measure intrinsic quantities, their applicability 

extends down to the nanometer scale. 

Neutral divacancies consist of neighboring C and Si vacancies and exist in 4 inequivalent forms in 

4H-SiC, which we label PL1-PL4.  Their ground-state triplet spin states are described by the Hamiltonian 

[20, 22]: 

 

                         
           (  

    
 )               ,                            (1) 

 

where the defect axis is aligned along z, h is Planck’s constant, g = 2.0 is the electron g-factor, μB is the 

Bohr Magneton,  is the vector of spin-1 Pauli matrices, B is the magnetic field, and D, Ex, and Ey are the 

zero-magnetic-field splitting parameters. These terms can be expanded as                  and 

         
                  where the D0 and     

  terms are the crystal-field splittings in the 

absence of applied strain and electric fields,     and    are the Stark-coupling parameters of the ground-

state spin to an electric field (F) that is respectively parallel and perpendicular to the defect axis,     and 

   are the strain-coupling parameters, and  is the effective strain field defined in Ref. [22]. PL1 and PL2 

are oriented along the SiC c-axis and have C3v symmetry (    
 =0). PL3 and PL4 are oriented along basal 

planes, at 109.5° from the c-axis. This orientation reduces their symmetry to C1h, resulting in nonzero 

    
  and thus broken degeneracy between all three spin sublevels at zero magnetic field.  

Our experiments use high-purity semi-insulating 4H-SiC wafers, purchased from Cree Inc., in 

which neutral divacancies are incorporated during crystal growth. We thinned 500 m-thick chips of SiC 

down to 50 m-thick membranes and used epoxy to mount them on top of piezo actuators, which are in 

turn mounted to copper cold fingers for cryogenic operation. The neutral divacancies’ zero-phonon line 

(ZPL) optical transitions can be seen as peaks in their PL spectra [10] when we illuminate a SiC 

membrane with 1.27 eV light at a temperature (T) of 20 K. Each inequivalent divacancy has a distinct ZPL 
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energy ranging from 1.0-1.2 eV. In addition, two other observed defects (labelled PL5 and PL6) have 

similar optical and spin transition energies to the neutral divacancies [4], but the defects with which 

they are associated have not been identified. Microwave radiation for electron spin resonance is 

supplied by waveguide antennae on chip or below the sample (see Refs. [4, 5] for experimental details). 

The piezo actuation applies tensile or compressive strain to the SiC membrane normal to the c axis (Fig. 

1a), which we estimate to be 5 × 10-7 strain/Vpiezo, where Vpiezo is the voltage applied to the piezo (see 

supplementary information (SI)). Control measurements assure that electric fields within the 

measurement volume due to Vpiezo are too weak to interfere with any measurements.   

 As strain is applied, the energy of each defect species’ ZPL splits and shifts as much as 2.3 meV, 

or 550 GHz (Fig. 1b). The ZPLs corresponding to the c-axis-oriented defects (PL1, PL2, and PL6) bifurcate, 

with the two resulting branches having orthogonally polarized PL (Fig. 1c). This splitting reflects the 

reduction of the C3v symmetry of the c-axis-oriented defects, whose doubly-degenerate excited state 

orbitals at zero strain are predicted [1] to closely match the structure of NV centers in diamond [23, 24]. 

In contrast, the basal-oriented defects (PL3, PL4, and PL5) have highly split ZPLs even at zero strain due 

to the crystal field. Each ZPL branch of the basal-plane-oriented defects trifurcates as strain is applied, 

with the polarization from each branch offset by 120°. This splitting indicates that, as expected, strain 

breaks the symmetry between orientations of defects in the basal plane that are equivalent at zero 

strain. 

Applying transverse strain to the SiC membrane also shifts the defect’s electronic spin transition 

energies. We measure these shifts with optically detected magnetic resonance (ODMR). Here, the 

ground-state spin is read out by exploiting the defects’ spin-dependent (ms = 0 vs. ms = ±1) PL intensity 

(I) and monitoring the changes in I (I) as the spins are rotated between spin eigenstates via electron 

spin resonance [4, 5]. 

The piezo actuator is found primarily to shift the two ms=±1 transitions of the c-axis-oriented 

divacancies together (Fig. 2a), as opposed to splitting them, indicating that the applied uniaxial stress 

primarily affects the D term of the Hamiltonian (Eq. 1) in this measurement. Although we observe DC 

spin resonance shifts of up to 0.8 MHz, the resolution of DC strain detection [22] is constrained by 

relatively broad 1/T2*-limited spin-resonance linewidths, where T2* is the inhomogeneous ensemble 

dephasing time (~1.5 s for these defects). 
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Our AC- strain-sensing technique enables more sensitive strain measurements that are limited 

by the much longer ensemble homogeneous coherence time (T2), which is up to 360 s for divacancies 

in SiC at 20 K [5]. We use Hahn-echo-based sensing [5, 20] to measure the change in the spins’ 

precession rate between ms=0 and ms=±1 spin states due to a synchronized Vpiezo waveform (Fig. 2b). 

The difference in strain applied before and after the central  pulse of the sequence causes a change in 

the spin precession rate across the two halves of the sequence (see SI for details). In turn, this time-

integrated difference phase-shifts the superposition of the spin echo. As Vpiezo is increased, I/IHahn 

oscillates according to this strain-induced phase shift (Fig 2c), where IHahn is the signal strength from a 

Hahn-echo sequence without Vpiezo applied. 

Despite the large uncertainty in our strain calibration (40%, see SI), we infer that the spin 

transitions of PL1-PL4 exhibit strain shifts roughly ranging from 2-4 GHz/strain, and that our ensemble 

measurements demonstrate a sub-10-6 strain sensitivity after averaging for two minutes per point. In an 

ideal measurement, with high optical collection and small background PL, AC strain sensing with neutral 

divacancies has a projected sensitivity in the      √      range (see SI). 

To measure the spin states’ response to electric fields, we use the same pulse sequence as for 

strain measurements (Fig. 2b), except that we apply a voltage (Velectrode) to electrodes across the SiC 

membrane (parallel to the crystal c-axis) instead of applying piezo-actuated strain (Fig. 3a) [20]. The 

basal-oriented defect spins (PL3-PL5) primarily couple to the c-axis electric field via   , causing their two 

ms=±1 spin transition energies to shift in opposite directions. The I signals from the two spin-

resonance transitions in our pulse sequence are therefore out of phase (Fig. 3b). The c-axis-oriented 

defects (PL1, PL2, and PL6) have slower I oscillations, indicating that their     parameter (Table 1) is 

significantly smaller than    for the basal-oriented defects. 

An important parameter for high-fidelity sensing is the ODMR contrast (Cdefect) between spin 

states, defined as the fractional change in PL due to an optically polarized spin population being flipped 

by ms=±1. We use spectrally resolved ODMR measurements to measure Cdefect from ZPLs, avoiding 

interference from background PL (Fig. 4a). Instead of applying ideal  pulses to flip spin states, we mix 

the spin populations with strong continuously applied microwave radiation and weak laser illumination. 

Calculating Cdefect from the measured fractional change in PL intensity (Imixed/I) requires detailed 

knowledge of spin mixing dynamics and rates, but use 3/2 × Imixed/I as a conservative lower bound for 

Cdefect (see SI). The inferred Cdefect lower bounds are found to range from 0.15-0.21 for the neutral 
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divacancies (PL1-PL4), and from 0.33-.36 for PL5 and PL6 at 20 K. These high Cdefect values are 

comparable to that for NV centers in diamond, whose optimized ODMR contrast is typically around 0.3 

[25, 26]. The optical lifetimes of the SiC divacancies, another important quantity for spin readout, are 

found to range from 12-15 ns (Fig. 4b and SI), also comparable to that for NV centers in diamond [25]. 

These favorable ODMR characteristics make SiC defects compelling systems for precision sensing.  

In order to understand the interplay between strain- and electric field-induced spin shifts in SiC, 

we carry out ab-initio density-functional calculations to calculate the zero-field splitting parameters in 

the ground-state Hamiltonian, along with electric- and strain-field perturbations to them. Our 

simulations calculate spin-spin interactions between electrons localized to the defects but neglect spin-

orbit coupling. We therefore focus on the c-axis-oriented divacancies (PL1 and PL2), whose C3V 

symmetry implies low spin-orbit coupling. Our simulation methodology (see SI) provides excellent 

agreement with the ground state D0 values for PL1 and PL2 in 4H-SiC, as well as for the NV center in 

diamond (within 1.5%). As a corroboration for the simulation methods and parameters, it also 

accurately calculates the change in zero-field splitting due to external pressure acting on NV center in 

diamond (12.6 MHz/GPa calculated vs. 14.6 MHz/GPa experimental [22].) 

The experimental observation that compressive and tensile strain perpendicular to the c axis 

primarily shifts the D term of the Hamiltonian for the c-axis oriented defects (see Fig. 2a) is supported by 

simulations. These show that this strain causes only a small deviation from C3v symmetry for the defect’s 

electronic orbitals, with their spin exhibiting a correspondingly small Ex,y term (see SI), and D shifting by 

7 GHz / strain, neglecting Poisson effects. These magnitudes are comparable to the experimentally 

determined (2-4 GHz/strain) values, but both are only order-of-magnitude estimates. For c-axis-

oriented-strain, a D shift of 5 GHz / strain is calculated. 

The measured electric field-spin coupling coefficients are consistently found to be higher than 

those [20, 21] for the diamond NV center, up to 1.9x higher for   and 7.6x higher for     (Table 1). Our 

simulations overestimate     for both neutral divacancies in SiC and the diamond NV center, but they 

corroborate the numerical values of relative enhancement of     for neutral divacancies in SiC over that 

for diamond NV centers. The simulated and experimentally derived relative enhancements agree within 

30%. 

Two physical effects contribute to    . First, electric fields distort the positions of atoms in the 

SiC lattice neighboring the divacancy. Second, electric fields shift the electron distribution surrounding 
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the defect. Both effects influence the spin-density matrix of the system, shifting the spin transition 

energies in the ground-state spin Hamiltonian (Eq. 1). Although these effects occur simultaneously and 

cannot be distinguished by experiments alone, simulations can separate the two effects. 

The piezoelectric effect primarily shifts the coordinates of the C atoms closest to the Si-vacancy 

portion of the divacancy. By calculating     with a distorted lattice but no extra electric-field-induced 

shifts to electron wavefunctions, we find     to be an order of magnitude smaller than its value when 

electric fields are turned on (Table 1). Thus, direct shifts of electron wavefunctions by external electric 

fields are primarily responsible for the Stark-shift parameters, not the piezoelectric effect. 

The enhanced Stark effect of divacancy spins in SiC over NV-center spins in diamond can be 

understood by differences in electron polarizability. The polar crystal bonds in SiC result in high electron 

bond polarizability, which can be seen by the material’s high (10.0) dielectric constant. Since defect 

wavefunctions are derived from bond orbitals, the dangling bonds that form the defect state also exhibit 

high polarizability (see Fig S10 in SI). In turn, this high polarizability causes a strong spin response to 

external electric fields. 

Our results show that the spins of neutral divacancies in SiC can sensitively detect both strain 

and electric fields. They have high optical polarization [5], high intrinsic ODMR contrasts, and a stronger 

response to electric fields than those of NV centers in diamond. In the future, basal-oriented-defect 

spins in SiC could be ideal for temperature sensing [18, 19, 27-29], since their large transverse crystal-

field splitting gives them first-order insensitivity to magnetic fields. Moreover, the combination of the 

spin-strain interactions measured here and the outstanding electromechanical properties of SiC [30] 

could make SiC an ideal material for coupling spins to mechanical resonators [31]. These coupled 

systems could lead to mechanically-induced spin squeezing [32], strong coupling between spins and 

phonons, and phonon lasing [33]. 
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Figures and tables 

 

 

FIG. 1. (a) A SiC membrane is epoxied to the top of a piezo actuator, which applies strain to the SiC 
membrane as it stretches. (b) PL spectra as a function of Vpiezo (strain) at T=20 K, showing that the optical 
transitions of SiC defects can be tuned with strain. The applied strain splits the ZPL optical transitions, 
with the c-axis-oriented defects (PL1, PL2, and PL6) bifurcating and the basal-oriented defects (PL3, PL4, 
and PL5) trifurcating. (c) Polarization dependence of the PL from the strain-split ZPL branches, measured 
at the points indicated by purple circles in (b). The analyzed polarization is in the plane perpendicular to 
the c-axis.  

 

 

FIG. 2. (a) An ODMR measurement of the 0.8 MHz strain-induced shift in D for PL2. The split peak within 
each curve is due to a nonzero stray B field of 0.35 G. (b) The modified Hahn-echo pulse scheme that we 

use for AC strain sensing. (c) AC strain sensing data for PL1-PL4, with tfree=100 s, tapplied= 80 s, T=20 K, 
and B=0. The fits are to single exponentially decaying sinusoids and have frequencies of 0.07 V-1, 0.07 V-

1, 0.12V-1, and 0.16 V-1 for PL1-PL4 respectively. The three curves are offset from the origin for clarity.  
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FIG. 3. (a) To sense electric fields with divacancy spins in SiC, Velectrode is applied across an h = 53 m thick 
SiC membrane with electrodes. The top electrode is a patterned grating, allowing light to be 
transmitted. The pulse pattern is the same as that used in Fig. 2b-c, except that Velectrode(t) is substituted 
for Vpiezo(t).  (b) AC electric field-sensing measurements for basal-oriented PL4, using both the higher 
(blue) and lower (orange) frequency spin-resonance transitions. (c) Electric field sensing for PL1, PL2, 

and PL6, the c-axis oriented defects. All data are taken at T = 20 K, tapplied = 80 s, tfree = 100 s, and B = 0. 
The fits are to exponentially decaying sinusoids, with the three curves offset from the origin for clarity. 

 

 

 

 

FIG. 4. (a) Plot of the ZPL intensity of PL4 without microwave radiation (blue curve) and the change in PL 

when strong microwave irradiation is applied to the sample (grey curve). Imixed/I is measured to be -
0.10, +0.11, -0.14, -0.10, -0.24, and -0.22 for PL1-PL6 respectively. (b) Time-resolved PL from PL4 as a 
function of delay from an excitation laser pulse. The decay constant of the exponential fit (black) is the 

optical lifetime (). T = 20 K, B = 0. See the SI for the calculation of Cdefect from Imixed/I and for the other 
defect species’ lifetimes and ODMR contrasts. 
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Defect/ 
Configuration 

Experiment  Theory  

               (*) 

NV center 17 0.35 0.76  

PL1  2.65 5.2 0.38 

PL2 1.61 4.2 0.23 

Ratio of PL1:NV 7.6:1 6.8:1 0.5:1 

Ratio of PL2:NV 4.6:1 5.5:1 0.3:1 

PL3 32.3 < 3 0.41  

PL4 28.5 0.44 0.79 

PL5 32.5 < 3  

PL6  0.96   

(*) Calculated with only atom-distortion effect 
 
 

TABLE 1. Experimentally measured and calculated Stark effect parameters for the PL1-PL6 ground-state-
spin Hamiltonian in 4H-SiC, in units of    z cm  ,  and a comparison to those for the NV center in 
diamond, with Ref [21] used as an experimental reference for the diamond NV center. The experimental 
(calculated) values of     are compared to the experimental (calculated) value for the diamond NV 

center (in bold). The experimental uncertainty for the SiC data is 5% (see SI). 

References 
 

1. N. T. Son, P. Carlsson, J. u. Hassan, E. Janzen, T. Umeda, J. Isoya, A. Gali, M. Bockstedte, N. 
Morishita, T. Ohshima and H. Itoh, Phys. Rev. Lett. 96, 055501 (2006). 

2. J. v. Tol, G. W. Morley, S. Takahashi, D. R. McCamey, C. Boehme and M. E. Zvanut, Appl. Magn. 
Reson. 36, 259 (2009). 

3. J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. V. d. Walle and D. D. 
Awschalom, Proc. Natl. Acad. Sci. USA 107, 8513 (2010). 

4. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine and D. D. Awschalom, Nature 479, 84 
(2011). 

5. A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X.-L. 
Feng and D. D. Awschalom, Nat. Commun. 4, 1819 (2013). 

6. R. Riedel, F. Fuchs, H. Kraus, S. Vath, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. 
A. Ilyin and V. Astakhov, Phys. Rev. Lett. 109, 226402 (2012). 

7. V. V. Dobrovitski, G. D. Fuchs, A. L. Falk, C. Santori and D. D. Awschalom, Ann. Rev. Cond. Mat. 
Phys. 4, 23 (2013). 

8. W. E. Carlos, N. Y. Graces, E. R. Glaser and M. A. Fanton, Phys. Rev. B 74, 235201 (2006). 
9. A. Gali, Phys. Status Solidi B 248, 1337 (2011). 
10. B. Magnusson and E. Janzen, Mat. Sci. For. 483-485, 341 (2005). 
11. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, 

D. J. Twitchen, L. Childress and R. Hanson, Nature 497, 86 (2013). 
12. H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom and D. Rugar, 

Science 339, 557 (2013). 
13. T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard and J. Wrachtrup, 

Science 339, 561 (2013). 
14. S. E. Saddow and A. K. Agarwal, Advances in silicon carbide processing and applications. (Artech 

House, 2004). 
15. L. Liu and J. H. Edgar, Mater. Sci. Eng. R 37, 61 (2002). 



10 
 

16. C. Berger, Z. Song, X. Li, W. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. 
H. Congrad, P. N. First and W. A. d. Heer, Science 312, 1191 (2006). 

17. S. Castelletto, B. C. Johnson, V. Ivady, N. Stavrias, T. Umeda, A. Gali and T. Oshima, Nat. Mat. 
Advanced Online Publication, 1 (2013). 

18. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, N. J. Noh, P. K. Lo, H. Park and M. D. Lukin, Nature 
500, 54 (2013). 

19. D. M. Toyli, C. F. d. l. Casas, D. J. Christle, V. V. Dobrovitski and D. D. Awschalom, Proc. Natl. 
Acad. Sci. USA 110, 8417 (2013). 

20. F. Dolde, H. Fedder, M. W. Doherty, T. Nobauer, F. Rempp, G. Balasubramanian, T. Wolf, F. 
Reinhard, L. C. L. Hollenberg, F. Jelezko and J. Wrachtrup, Nat. Phys 459, 459 (2011). 

21. E. v. Oort and M. Glasbeek, Chem. Phys. Lett. 168, 529 (1990). 
22. M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, Y. J. Karle, 

R. J. Hemley, N. B. Manson, L. C. L. Hollenberg and S. Prawer, arXiV: 1305.2291v2 (2013). 
23. G. Davies and F. Hamer, Proc. R. Soc. Lond. A. 348, 285 (1976). 
24. F. Grazioso, B. R. Patton, P. Delaney, M. L. Markham, D. J. Twitchen and J. M. Smith, Appl. Phys. 

Lett. 103, 101905 (2013). 
25. L. Robledo, H. Bernien, T. v. d. Sar and R. Hanson, New J. Phys. 13, 025013 (2011). 
26. M. Steiner, P. Neumann, J. Beck, F. Jelezko and J. Wrachtrup, Phys. Rev. B 81, 035205 (2010). 
27. V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard and D. Budker, Phys. Rev. 

Lett. 104, 070801 (2010). 
28. P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. 

H. Shim, D. Suter, H. Sumiya, J. Isoya and J. Wrachtrup, Nano Letters 13, 2738 (2013). 
29. D. M. Toyli, D. J. Christle, A. Alkauskas, B. B. Buckley, C. G. V. d. Walle and D. D. Awschalom, 

Phys. Rev. X 2, 031001 (2012). 
30. Y. T. Yang, Appl. Phys. Lett. 78, 162 (2001). 
31. E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave and G. D. Fuchs, arXiV: 1306.6356 

(2013). 
32. S. D. Bennett, N. Y. Yao, J. Otterbach, P. Rabl and M. D. Lukin, Phys. Rev. Lett. 10, 156402 (2013). 
33. K. V. Kepesidis, S. D. Bennett, S. Portolan, M. D. Lukin and P. Rabl, arXiv: 1306.5915 (2013). 

 

 


