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THERMODYNAMIC ASPECTS OF ROCK FRICTION

N. MITSUI1 AND P. VÁN1,2

Abstract. Rate- and state-dependent friction law for velocity-step tests is

analyzed from a thermodynamic point of view. A simple macroscopic non-

equilibrium thermodynamic model with a single internal variable reproduces

instantaneous jump and relaxation. Velocity weakening appears as a conse-

quence of a plasticity related nonlinear coefficient. Permanent part of dis-

placement corresponds to plastic strain, and relaxation effects are analogous

to creep in thermodynamic rheology.

1. Introduction

Frictional force appears between two contacting objects and it influences their
relative motion. In geophysics, relative motion at plate boundary is considered as
frictional sliding. The frictional interaction of continental plates leads to earth-
quakes. Large earthquakes generate propagating coseismic deformations as seismic
waves and they can cause disasters, therefore it would be useful to know when,
where, and how large earthquakes will occur in order to mitigate the damages by
appropriate measures. This is a difficult problem.

The difficulty partially comes from the incomplete understanding of earthquake
mechanism. Earthquakes are caused by fracture and deformation in the earth’s
crust. Therefore the deformation before, and the fracture during an earthquake
have to be modelled. One may think that the difficulty of earthquake mechanism
comes from the instability of the fracture. However, the incompleteness of the
deformation theory of the medium with external force is also essential. For example,
crystallized rock material of the crust is fragmented, and grains with various size
(e.g., sand, mud) may influence the mechanical properties, too. Consequently,
the theory should explain the deformation by the applied external stress based
on a constitutive law (with temperature if possible). However, present theory is
based mainly on elasticity (e.g., Aki & Richards 2002) and the constitutive laws
are empirical.

The relation between friction and earthquake can be understood with the ex-
ample of metals. In tribology, one cannot avoid erosion of frictional surfaces even
if they are polished and smooth. The wear off the surface, the erosion, is related
to the accumulation and the release of stress, which leads to waves and vibrations.
Thus, the mechanism of earthquakes is connected to the instability of the friction
laws.

Properties of rock friction have been investigated mainly by laboratory experi-
ments, and empirical equations have been proposed as rate- and state-dependent
friction law (Dieterich 1979; Ruina 1983). There are various models to explain
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the mechanism (Baumberger & Caroli 2006; Putelat et al. 2011), developing for-
mer micro- and mesoscopic ideas as the real contact area theory (Bowden & Tabor
1950) and thermal activation theory (Eyring 1936).

Thermal activation theory is originally proposed for chemical reactions in Eyring
(1935). It was first adopted to friction in Heslot et al. 1994 for paper, and in
Brechet & Estrin 1994 for metals. First was applied for rock friction in Nakatani
2001, and later analysed in Baumberger & Caroli 2006 and Putelat et al. 2011
through the absolute rate theory about creep of crystals (Polrier 1985). Rock
friction is considerably related to the erosion of surfaces and the degradation and
wear of rock fragments between the sliding samples. Therefore it is not evident
that microchemistry is the best approach to grasp the universal aspects of the
background mechanism. Experimental results of granular friction show similar
features to those of bare rocks, this way supporting our opinion (Marone 1998;
Kawamura et al. 2012).

In what follows, we focus on the universal aspects of friction, avoiding micro- and
mesoscopic considerations. These aspects are best understood when only macro-
scopic concepts are applied, those which are expected to be valid independently of
microstructures and micromechanisms. From this point of view, the second law of
thermodynamics is the straightforward theoretical background for rate- and state-
dependent friction. We consider the dynamic, non-equilibrium, interpretation and
extension of thermodynamics of homogeneous bodies, where the conditions of sta-
bility of equilibrium are connected to the second law (Matolcsi 2005). Stability is
a key aspect in rate- and state-dependent friction, too.

In this paper, we treat the dependence of dynamic friction on the shear
loading velocity (Dieterich 1979; Ruina 1983) in the framework of non-
equilibrium thermodynamics of homogeneous (discrete) bodies with internal vari-
ables (Maugin & Muschik 1994a,b). First, we summarize the qualitative properties
of rock friction experiments. Second, we mention the key points of thermodynam-
ical modeling and derive the constitutive differential equations in Section 3. After
that we discuss the results and compare the model with experimental expectations
in Section 4.

2. Summary of rock experiments and empirical constitutive laws

The rock experiments of sliding friction are described by the so-called rate- and
state-dependent friction law. The equations of this law unify the results obtained
from two types of rock experiments; the first one is the time dependence of static
coefficient of friction (Dieterich 1972) and the second one is slip velocity dependence
of the dynamic coefficient of friction (Dieterich 1978).

The properties of dynamic friction are the following (see the details in Marone
1998):

(1) frictional coefficient in stable sliding conditions with a constant load-point
velocity depends on the logarithm of the load-point velocity;

(2) the magnitude of the instantaneous jump of the frictional coefficient de-
pends on the change of the load-point velocity;

(3) the following relaxation of the frictional coefficient to new value in stable
sliding is also dependent on the instantaneous change of the load-point
velocity;
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(4) oscillation occurs in some cases (e.g., large load-point velocity, polished
surfaces, thin sand interface layer between the samples) (e.g., Marone et al.
1990).

These properties can be reproduced by using two classical equations except the
oscillation. The first one is the constitutive law (1), expressing the relation between
frictional coefficient µ and slip velocity V with an additional variable, called state
variable θ. The second one is the evolution law (2) expressing the time evolution
of state variable depending on the slip velocity. The followings are by Dieterich
(1979).

µ =
τ

σ
= µ∗ + a ln

(

V

V∗

)

+ b ln

(

V∗θ

Dc

)

, (1)

dθ

dt
= 1−

V θ

Dc
, (2)

where τ is the shear stress, σ is the normal stress, µ∗ is the constant frictional
coefficient for steady-state slip at reference slip velocity V∗, a and b are the material
parameters,Dc is the critical slip distance, and t is time. Later on an other evolution
law was proposed by Ruina (1983).

dθ

dt
= −

V θ

Dc
ln

(

V θ

Dc

)

. (3)

Experimental data of static friction is better reproduced by the equations of
Dieterich (1979) (eqs. (1) and (2)), and the dynamic one is by those of Ruina (1983)
(eqs. (1) and (3)) (see the comparison with experimental data in Marone 1998).
Thus another versions have been proposed (e.g., Perrin et al. 1995; Kato & Tullis
2001) in order to reproduce the experimental data better. However, none of them
are completely satisfactory.

There are two particular problematic aspects in these laws; the first one is, that
the meaning of the state variable θ is not clear, and the second one is that slip
velocity at the frictional surface is assumed to be equal to the load-point velocity of
the contacted rock samples. These observations lead to the following improvements
in a recent version (Nagata et al. 2012):

τ = Θ+ aσ ln

(

V

V∗

)

, (4)

dΘ

dt
=

bσ

Dc/V∗

exp

(

−
Θ−Θ∗

bσ

)

−
bσ

Dc
V − c

dτ

dt
. (5)

where Θ∗ is the shear strength for steady-state slip at V∗, and c is a positive
constant. In these equations, state variable θ is replaced by shear strength Θ ac-
cording to Nakatani (2001), and slip velocity V is different from load-point velocity
Vl = V + 1

k
dτ
dt , estimated by another way with shear stress τ and system stiffness k.

The third term in the right hand side of (5) is a stress weakening term, a proposi-
tion based on the estimation of shear strength by the acoustic wave transmissivity
experiment of Nagata et al. (2012). These equations reproduce also oscillation of
the shear stress and fit the data better than the previous versions.

The above mentioned equations reproduce several aspects of the experimental
results, but their origin is empirical, and their form is not explained. The appli-
cation of thermal activation theory was an important step toward an explanation.
Nakatani (2001) partially verified the theory in rock friction experiments. However,
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the direct influence of thermal activation for mechanical phenomena is not evident.
This is also indicated by the observation, that in experiments in Nagata et al. (2012)
the rock sample was prepared to level out of the contacted surface by sliding (Na-
gata, personal communication).

3. Thermodynamics of the frictional layer

Stability and dissipation are two characteristic concepts that require some clar-
ification before considering the specific properties of friction.

3.1. Thermodynamic approach. Thermodynamic processes can be classified as
equilibrium, steady-state, and non-equilibrium. Related concepts are equilibrium
and non-equilibrium thermodynamic states. Equilibrium thermodynamic bodies
are described only by state variables that may be nonzero in case of equilibrium
processes. On the other hand, in state space of non-equilibrium bodies there are
variables that have zero values in case of equilibrium processes. These are called
internal variables in the following in the sense of Verhás (1997). Our thermodynamic
model of friction assumes homogeneous thermodynamic bodies, where continuum
and other structural aspects of the phenomena are given by additional variables
in the homogeneous modelling framework (Matolcsi 2005; Cimmelli et al. 2014)
of rate- and state-dependent friction. The aforementioned properties of dynamic
friction are regarded as follows; 1) stable sliding is steady-state, and 2)-4) shear
stress reaction in velocity-step test and oscillation is non- equilibrium process. The
state variables θ and Θ in the rate- and state-dependent friction models resemble
an internal variable from a thermodynamic point of view.

Dissipation can be interpreted by the nonvanishing source term in the entropy
balance. It is directly related to the difference between equilibrium and non-
equilibrium. Here we have to consider carefully the relation between dissipation
and friction. Dissipation is irreversible phenomenon, and permanent displacement
corresponds to irreversible phenomenon in rock friction. On the other hand, the
recoverable part of displacement does not lead to dissipation, it is analogous to
elastic deformation in solids. Consequently we divide frictional displacement into
irreversible and reversible parts.

The entropy of the body, S, is the function of the internal energy U and the
additional state and internal variables. The partial derivative of entropy by the
internal energy is the reciprocal temperature, 1/T . The stability of physical systems
is related to the existence of entropy of a body as a thermodynamic potential
and the the requirement that the total entropy is increasing along thermodynamic
processes in insulated thermodynamic systems in general (Matolcsi 2005). This is
the background of our following simple dynamic friction models.

3.2. Macroscopic model of rock friction in thermodynamics. In the follow-
ing we develop a treatment of sliding friction in the framework of non-equilibrium
thermodynamics. The particular approach has three independent parts. First of all
the thermodynamic theory of rheology with internal variables motivates the evolu-
tion equations of internal variables that are compatible with the second law (Verhás
1997). Secondly, permanent displacement is introduced by a rate variable, as it is
necessary in case of plasticity theories (see e.g., Fülöp & Ván 2012). Finally the
friction related a part of entropy production is not quadratic, but first order Euler
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Figure 1. Sliding thermomechanical body

homogeneous expression of the thermodynamic forces, analogous to plasticity the-
ories (Ziegler 1983; Maugin 1999). The particular nonlinear function is motivated
by the non-associative plasticity concept of Houlsby & Puzrin (2006) with the help
of nonlinear Onsagerian conductivity coefficients (Ván 2010).

Let us consider a body on a horizontal surface with massm. There are two forces
that determine the motion of the body: the external force Fe, and the damping force
Fd, due to friction (Fig. (1)). The position of the body is denoted by x. The body
is not considered completely rigid, however we assume that one particular material
point of the body may characterize its instantaneous position. The equation of
motion is

mẍ = Fe − Fd. (6)

Moreover, we assume that the work of the external force changes the energy of the
body, E. Therefore

Ė = Feẋ. (7)

In this case thermodynamics requires that the damping force contributes only to
the internal energy of the body. Our body is an open system energetically, however,
we do not calculate directly the energy balance of the environment here. Instead of
it, we assume that the external force accelerates the body and also that the body is
deformable. In our homogeneous model, the deformation is expressed by an internal
variable, the recoverable displacement, r. Therefore we distinguish between kinetic
and the elastic energies of the body.

The internal energy, U , is the difference of the total energy, E, the kinetic energy
and the elastic energy:

U = E −m
(ẋ)2

2
− k

r2

2
, (8)
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where k is the parameter of the elasticity, r is the recoverable part of the displace-
ment and we assume a particular kinematic condition: the instantaneous position of
the body is the sum of a permanent and a recoverable displacements. A convenient
method of their distinction is an additive separation of the displacement rates:

V = ẋ = ṙ + z, (9)

where V is the rate of the position x, and z is the rate of the permanent dis-
placement. This kinematical condition is well accepted method to introduce the
distinction of plastic and elastic strain rates in plasticity (see e.g., Fülöp & Ván
2012; Rusinko & Rusinko 2011).

The dissipation can be calculated by the entropy balance, assuming that the
entropy is the function of the internal energy only:

Ṡ(U) =
1

T

(

Feẋ−mV V̇ − krṙ
)

≥ 0 ⇒ T Ṡ = FdV − krṙ ≥ 0. (10)

The damping force and also the rate of the recoverable displacement ṙ are the
constitutive quantities to be determined in accordance with the requirement of
nonnegative entropy production. The entropy produced by friction is dissipated
to the environment as heat. The stationary temperature of the sliding bodies
depends on the efficiency of the heat transfer between the body, the surface and
the environment. The above inequality does not refer to this process, here the
entropy balance is related to the body and not to the environment.

The simplest solution of the inequality (10) assumes linear relationships be-
tween the thermodynamic fluxes and forces with coefficients L1, L2, L12, and L21

(de Groot & Mazur 1962). Therefore

Fd = L1ẋ− L12kr, (11)

ṙ = L21ẋ− L2kr. (12)

The left hand sides show the thermodynamic fluxes and they are related to
thermodynamic forces with thermodynamic conductivity coefficients in the right
hand sides. The symmetric part of the matrix of the constant thermodynamic
coefficients is positive definite, therefore

L1 > 0, L2 > 0, and L1L2 − L2 ≥ 0, (13)

where L = (L12 + L21)/2. Substituting eq. (6) to eq. (11) we obtain

mẍ = Fe − L1ẋ+ L12kr, (14)

ṙ = L21ẋ− L2kr. (15)

We can eliminate the recoverable displacement r and obtain a third order differential
equation for x:

Ḟe + L2kFe = m
...
x + (L1 + L2km) ẍ+

(

L1L2 − L2 + a2
)

kẋ. (16)

Equivalently, displacement x can be eliminated and the recoverable displacement
is obtained as independent variable of the differential equation:

mr̈ + (L1 + L2km) ṙ = (L − a)Fe −
(

L1L2 − L2 + a2
)

kr (17)

where a = (L12 −L21)/2. In these equations the coefficient L1 characterizes direct
mechanical damping effects. If it is constant, then it can be identified as the clas-
sical damping which is proportional in magnitude and opposite in direction to the
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velocity. Equation (16) can be rewritten introducing the velocity V = ẋ instead of
the displacement:

τ1Ḟe + Fe = τ2m̂V̈ + m̂V̇ + ηV, (18)

where we have introduced new coefficients

τ1 =
1

L2k
, m̂ = m+

L1

L2k
, τ2 =

m

L1 +mkL2

, η = L1 −
L12L21

L2

. (19)

These material parameters are nonnegative according to the thermodynamic
requirements in (13). We can recognise different relaxation modes for the force and
the velocity, depending on the mode of the experimental control. When the velocity
is controlled, by abruptly changing between two stationary states, then the force is
relaxed with relaxation time τ1 between the corresponding stationary values. When
one controls the force, then the velocity is “creeping” between stationary values with
relaxation time τ2 and inertia m̂. This is analogous to the standard model of rock
rheology, the so called Poynting-Thomson-Zener body, with the additional inertial
term. This model is proposed also to explain the experimental data (e.g., Matsuki
2008; Lin et al. 2010). Moreover, it is proved to be fundamental in thermodynamic
rheology (see e.g., Verhás 1997; T. 2008; Fülöp et al. 2014).

It is also remarkable, that the eliminated additional variable r in eq. (18) has a
clear and measurable physical meaning as recoverable displacement: it is responsi-
ble for the elastic properties of the body, representing deformations that relax to
equilibrium, when the external force is zero. In this respect the recoverable dis-
placement is an internal variable, spanning the non-equilibrium part of the state
space, while the displacement x spanning the equilibrium part.

4. Results and discussion

We will show to what extent the properties of rate- and state-dependent friction
law can be reproduced by using our model. In this paper, we do not reproduce
oscillations, therefore we neglect the inertial term with the coefficient m in (14).
Assuming velocity control, the slip velocity V is equal to the load-point velocity
Vl. We will analyse in three steps; 1) with linear thermodynamic coefficients, 2)
introducing nonlinearity by using a constant that is independent of load-point ve-
locity, and 3) introducing nonlinear coefficient depending on load-point velocity.
The features are as follows;

(a) instantaneous jump when the load-point velocity is abruptly changed,
(b) the following relaxation to the stable sliding friction after the jump,
(c) velocity strengthening,
(d) velocity weakening,
(e) nonlinear dependency of (a)-(d),
(f) logarithmic dependency of (a)-(d),
(g) offset of frictional coefficient independent from load-point velocity (e.g, µ =

0.6− 0.9).
That is, (a)-(d) are qualitative features and (e)-(g) are quantitative ones.

4.1. Linear thermodynamic coefficient. In this subsection, we will show only
equations and explain the relation between force and load-point velocity. The
equations (11)-(12) reproduce that (a) instantaneous change of load-point velocity
causes frictional jump and (b) following relaxation to the constant value of steady
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state friction. The stable-sliding frictional forces Fd1 and Fd2 at the load-point
velocity V1 and V2 are

Fd1 =

(

L1 − L12

L21

L2

)

V1, (20)

Fd2 =

(

L1 − L12

L21

L2

)

V2, (21)

with the following steady-state condition of eq. (12)

ṙ = L21ẋ− L2kr = 0. (22)

The peak value at the instantaneous change from V1 to V2 is

Fdp = Fd1 + L1 (V2 − V1) = L1V2 − L12

L21

L2

V1. (23)

Therefore feature (c) can be also reproduced by using eqs. (20) and (21), while
properties (d)-(g) are not reflected in the model. E.g. the positive coefficient of
the velocity difference between in eq. (20) and eq. (21) is required by the entropy
inequality, therefore velocity weakening violates the second law in this framework.
Accordingly, linear constant coefficients cannot reproduce all experimental data.

The validity of our model in principle is not restricted to friction in case of slow
speed jumps. It can be made compatible with the classical Dieterich and Ruina
laws (1)-(3) when introducing a transition of the force to the reference velocity. If
a constant value Fd0 is subtracted from Fd in the left hand side of eqs. (20)-(21),
the equation of the steady-state friction for load-point velocity Vss is revised as

Fdss = Fd0 +

(

L1 − L12

L21

L2

)

Vss, (24)

and it can reproduce feature (g). However, properties (d)-(f) cannot be reproduced.
In order to improve our model we introduce nonlinearity in eqs. (20)-(21).

4.2. Velocity dependent nonlinear thermodynamic coefficient. Here we will
introduce a nonlinear thermodynamic coefficient in order to reproduce both the
offset of frictional coefficient (feature (g)) and relative one depending on the load-
point velocity (features (d)-(f)). The following nonlinearity is assumed for L1, the
damping coefficient:

L1(V ) =
β

1 + β
α |V |

. (25)

The corresponding damping force L1(V )V is constant for α
β ≪ |V | and propor-

tional to the velocity for α
β ≫ |V |. The term is switching between the two char-

acteristic damping behaviors, the transition point is determined by the parameters
α and β. This kind of nonlinearity was introduced in Ván (2010) for modelling
yield criteria and flow rules in thermodynamic plasticity, developing the ideas in
Houlsby & Puzrin (2006).

In the following, we will show how eqs. (11)-(12) and (25) can reproduce the
experimental results. To compare the calculated result to experimental ones, the
damping force, Fd, is related to frictional coefficient µ,

Fd = µN =
β

1 + β
α |V |

V − L12kr, (26)
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Figure 2. Comparison of the rate- and state-dependent friction
laws for velocity jumps and steady-state velocity strengthening ex-
periments. The Dieterich model (solid line), Ruina model (dotted
line) and the thermodynamic one (dashed line) show different re-
laxations. Dieterich and Ruina models are calculated with the
parameters V∗ = 1µm/s, µ∗ = 0.6, V1 = 1µm/s, V2 = 10µm/s,
a = 0.015, Dc = 20µm and b = 0.01. Thermodynamic model has
the following parameters; V1 = 1µm/s, V2 = 10µm/s, l12 = 0.2/N ,
l21 = 0.005, l2 = 0.39µm/sN , αc = 0.64Ns/µm, βc = 10.0Ns/µm,
k = 1N/µm.

where N is the normal loading force. The variables and the thermodynamic coeffi-
cients are divided by N

µ =
Fd

N
=

β/N

1 + β/N
α/N |V |

V −
L12

N
kr. (27)

and replaced as follows

µ =
βc

1 + βc

αc

|V |
V − l12kr (28)

with αc = α/N, βc = β/N, l12 = L12/N .
Finally we solve (28) and (12). In case of steady-state conditions, when the load-

point velocity Vss is constant, the frictional coefficient is calculated substituting eq.
(22) into (28),

µss =

(

βc

1 + βc

αc

|Vss|
− l12

l21
l2

)

Vss, (29)

where l21 = L21 and l2 = L2.
We can derive the velocity dependency of steady-state friction by using eq. (29).
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Figure 3. Comparison of the rate- and state-dependent fric-
tion laws for velocity jumps and steady-state velocity weaken-
ing experiments. The Dieterich model (solid line), Ruina model
(dotted line) and the thermodynamic one (dashed line) show dif-
ferent relaxations. Dieterich and Ruina models are calculated
with the parameters V∗ = 1µm/s, µ∗ = 0.6, V1 = 1µm/s,
V2 = 10µm/s, a = 0.015, Dc = 20µm and b = 0.02. Ther-
modynamic model has the following parameters; V1 = 1µm/s,
V2 = 10µm/s, l12 = 0.2/N , l21 = 0.005, l2 = 0.195µm/sN ,
αc = 0.644Ns/µm, βc = 10.09Ns/µm, k = 1N/µm.

The condition of velocity strengthening of steady-state friction is

βc
(

1 + βc

αc

V1

)(

1 + βc

αc

V2

) > l12
l21
l2

. (30)

On Fig. 2 we compare the performance of the classical Dieterich (eqs. (1)-(2)
and Ruina (eqs. (1) and (5)) models with our thermodynamic model ((28) and
(12)). We can see the frictional features ((a)-(c), (e) and (g)) are reproduced with
the equations (28) and (12), while only feature (f) cannot be reproduced. The
discrepancies between our model and the empirical laws can be seen in the type of
relaxation.

The condition of velocity weakening of steady-state friction is

βc
(

1 + βc

αc

V1

)(

1 + βc

αc

V2

) < l12
l21
l2

. (31)

The calculation results are shown in Fig. 3. The parameters of the classical
models are from Marone (1998). Some parameters and initial values of the discrete
thermodynamical model ((28) and (12)) can be calculated from the steady-state val-
ues of friction: l2, αc, and βc. Other parameters are related to dynamic properties
and are determined to show a comparable figure.
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We can see the simulated temporal change of friction with displacement showing
velocity weakening, while the deviation remain in relaxation and f) logarithmic
dependency of stable sliding friction to load-point velocity. These properties in
velocity weakening are similar to that in velocity strengthening, and both of them
are rooted in the constitutive equations ((28) and (12))). Logarithmic dependency
of load-point velocity requires a development of the model.

Both velocity strengthening and weakening are compatible with the thermody-
namic conditions (13), that is, they both satisfy the second law of thermodynamics.
Furthermore, the differences in requirements between eq. (30) and eq. (31) indicate
a possible mechanism in this respect. In this model, it is caused by the difference
between the linearity of the instantaneous jump and that of the following relax-
ation to the load-point velocity. A possible explanation of the mechanism can be
the appearance of dissipative structures during frictional jump and the following
relaxation. There are several observations indicating substructures in sheared
granular layers (see e.g. Mair & Marone (1999), figure 11). An indirect experimen-
tal observation of such phenomena may appear in the normal stress measurements
(see e.g. Linker & Dieterich (1992)).

The difference in linear and non-linear relation of thermodynamic coefficients
implies the difference in the microscopic structure in frictional layer that is formed of
rock fragments between rock samples. It is inferred by the analogy of the differences
in heat conduction and heat convection and the relation to the thermodynamic
coefficients. In rock friction, loss of elastic stability and the development of shear
bands can be fundamental. Thus the corresponding continuum description should
introduce the loss of stability, a kind of plasticity, in case of an essentially granular
media. Mesoscopic models with weakly nonlocal constitutive relations can provide
an explanation, and also the exact form of the nonlinear thermodynamic coefficients.
It is an interesting problem and we will deal with it in a future work.

5. Summary and conclusion

Our simple thermodynamic model incorporates several aspects of rate- and state-
dependent friction in a uniform theoretical framework. The separation of dissipative
and non-dissipative parts, and the interpretation of the relaxation of state variable
are remarkable. The most important advantage of our model is that the jump
condition was a consequence of the evolution equation and was not a separate
assumption. However, the number of the parameters is higher, and the logarithmic
relaxation is not incorporated in our model. Introducing logarithmic terms in the
theoretical framework as additional assumptions is straightforward. However, the
most important question is to find a mechanism, an explanation of the origin of
these terms. We suggest that a more detailed analysis of the continuum aspects
may lead to such an explanation.
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