ON SOME PROBLEMS OF APPROXIMATIONS¹

by Gábor SZEGŐ²

To Paul Erdős on his 50th birthday

§ 1. Introduction

The problems dealt with in the present Note are connected with the classical inequalities of A. Markov and S. Bernstein (cf. [3]). We formulate them as follows. Let f(x) be a polynomial of degree n satisfying the condition $|f(x)| \leq 1$ in the finite real interval $a \leq x \leq b$. We have then in the same interval

(1.1)
$$\begin{cases} |f'(x)| \leq \frac{2}{b-a} \cdot n^2, \\ |f'(x)| \leq [(x-a)(b-x)]^{-1/2} \cdot n. \end{cases}$$

Both bounds are sharp as it can be shown by the example $f(x) = T_n \left(2 \frac{x-a}{b-a} - 1 \right)$ where T_n is Chebyshev's polynomial.

We shall deal with the following four problems.

Problem 1: Let us consider all polynomials f(x) of a fixed degree n not vanishing identically. Introducing the norm

(1.2)
$$||f|| = \max e^{-x} |f(x)|, \qquad x \ge 0,$$

we seek the maximum M_n of the ratio ||f'||: ||f||.

Problem 2: Let x_0 be a fixed constant, $x_0 \ge 0$. Considering the same class of polynomials and the same norm as in Problem 1, we seek the maximum $M_n(x_0)$ of the ratio $|f'(x_0)| : ||f||$.

Problem 3: Again we consider the set of all polynomials $f(x) = \sum_{v=0}^{n} a_v x^v$ and the same norm ||f|| as in the previous Problems. We seek the maximum G_n of the ratio $|a_n|$: ||f||.

Problem 4: Let us consider all polynomials $f(x) = \sum_{v=0}^{n} a_v x^v$ of the fixed degree n satisfying the condition $|f(x)| \le 1$ in the interval $-1 \le x \le 1$. We seek the maximum H_n of

(1.3)
$$\max \left| \sum_{\nu=0}^{n} \log(\nu+1) a_{\nu} x^{\nu} \right|, \qquad -1 \leq x \leq 1.$$

² Stanford University, California, USA.

¹ This research was sponsored by the National Science Foundation.

4 SZEGŐ

In this Note we derive upper and lower bounds for the maxima defined in these Problems; especially in the cases 1, 2, 4 we determine the correct order of magnitude as $n \to \infty$. The explicit evaluation of these maxima seems to be rather difficult. Our results can be formulated as follows:

$$\begin{cases} \text{Problem 1: } M_n \sim n \,. \\ \text{Problem 2: } M_n(0) \sim n \,, \, M_n(x_0) \sim n^{1/2} \text{ if } x_0 > 0. \\ \text{Problem 3: } An^{1/3} < 2^{-n} \, n! \,, \, G_n < B \, n^{1/2} \,. \\ \text{Problem 4: } H_n \sim \log n \,. \end{cases}$$

Here A and B are positive constants independent of n. The symbol $a_n \sim b_n$ means always that the ratio $|a_n|b_n|$ is bounded away from 0 and ∞ . Occasionally, we use the symbol $a_n \cong b_n$ if the ratio $a_n|b_n$ tends to 1 as $n \to \infty$.

These Problems (except 3) arose in conversations with Professor Paul Turán during his stay at Stanford University in the first half of the year 1963. I owe him also some simplifications and other valuable comments to the proofs. Problem 4 has originated in the joint research of S. Knapowski—P. Turán on primes in certain arithmetic progressions [2].

Problem 3 is slightly different in character from the inequalities (1.1); it is the analog of the famous problem of Chebyshev characterizing the Chebyshev charac

shev polynomials $T_n(x)$.

§ 2. Upper bounds

1. Problems 1 and 2. We use the familiar inequality $e^{-x} > (1 - x/n)^n$ valid for 0 < x < n. Thus assuming ||f|| = 1, we have $|(1 - x/n)^n f(x)| \le 1$ in the interval $0 \le x \le n$. Applying to the polynomial $(1 - x/n)^n f(x)$ of degree 2n the first inequality (1.1), we find (a = 0, b = n)

$$\left| -(1-x/n)^{n-1}f(x) + (1-x/n)^n f'(x) \right| < \frac{2}{n} (2n)^2 = 8n.$$

In particular for x = 0 we find

$$|-f(0)+f'(0)| \le 8n$$

and since $|f(0)| \le 1$, we have $|f'(0)| \le 8n + 1$, i.e., $M_n(0) \le 8n + 1$. Hence, if f(x) is any polynomial of degree n not vanishing identically, we have

$$(2.1) M_n(0) \le (8 n + 1) ||f||.$$

Let $x_0 > 0$; we assume again that f(x) is not vanishing identically, i.e., ||f|| > 0. We apply (2.1) to the polynomial $f(x + x_0)$. Since $||f(x + x_0)|| \le e^{x_0} ||f||$, we obtain $|f'(x_0)| \le e^{x_0} ||f|| \cdot (8n + 1)$. This being the case for every $x_0 > 0$, we have $||f'|| \le (8n + 1) ||f||$ so that

(2.2)
$$M_n \le 8n+1 \text{ and } M_n(x_0) \le e^{x_0} (8n+1).$$

A better bound for $M_n(x_0), x_0 > 0$ (as a matter of fact the best one so far as the order of magnitude is concerned) can be obtained with the aid of the second inequality (1.1):

$$|-(1-x_0/n)^{n-1}f(x_0)+(1-x_0/n)^nf'(x_0)| \leq 2n\left(x_0(n-x_0)\right)^{-1/2}. ||f||,$$

$$(1-x_0/n)^n|f'(x_0)| \leq (1-x_0/n)^{n-1}|f(x_0)| + 2n\left(x_0(n-x_0)\right)^{-1/2}. ||f||.$$

We have $|f(x_0)| \le e^{x_0} ||f||$. Hence for a fixed x_0 , as $n \to \infty$, we have $M_n(x_0) < A n^{y_2}$, A > 0.

2. Problem 3. Let ε be positive. We have

$$(2.3) ||f||^2 = \max e^{-x} \left| f\left(\frac{x}{2}\right) \right|^2 \ge \varepsilon \int_0^\infty e^{-\varepsilon x} \cdot e^{-x} \left| f\left(\frac{x}{2}\right) \right|^2 dx.$$

Now

$$\int\limits_{0}^{\infty}\! e^{-(1+\varepsilon)x}\left|f\!\left(\!\frac{x}{2}\!\right)\right|^{2}dx=(1+\varepsilon)^{-1}\int\limits_{0}^{\infty}e^{-x}\left|f\!\left(\!\frac{x}{2\left(1+\varepsilon\right)}\!\right)\right|^{2}dx\;.$$

We set

(2.4)
$$f\left(\frac{x}{2(1+\varepsilon)}\right) = \sum_{\nu=0}^{n} c_{\nu} L_{\nu}(x)$$

where $L_{\nu}(x)$ denotes the Laguerre polynomials (cf. [4], p. 100, (5.1.6)). Consequently,

(2.5)
$$\frac{a_n}{2^n(1+\varepsilon)^n} = (-1)^n \frac{c_n}{n!}$$

so that ([4], p. 99, (5.1.1))

$$||f||^2 \ge \varepsilon (1+\varepsilon)^{-1} \sum_{\nu=0}^n |c_{\nu}|^2 \ge \varepsilon (1+\varepsilon)^{-1} |c_n|^2 =$$

$$= \varepsilon (1+\varepsilon)^{-1} (n!)^2 2^{-2n} (1+\varepsilon)^{-2n} \cdot |a_n|^2.$$

This yields the following inequality:

(2.6)
$$2^{-n} \, n! \cdot \frac{|a_n|}{\|f\|} \le (1 + \varepsilon)^{n+1/2} \, \varepsilon^{-1/2}.$$

Writing $\varepsilon = 1/n$, the right-hand expression will be $\sim n^{\frac{1}{2}}$.

3. Problem 4. We use the formula

(2.7)
$$\log m = \int_{0}^{\infty} \frac{e^{-t} - e^{-mt}}{t} dt, \qquad m > 0,$$

(cf. [1], p. 17, (18)), as it can be verified by differentiation with respect to m. (The formula is obvious for m = 1.) Hence we have the identity

(2.8)
$$\sum_{\nu=0}^{n} \log (\nu + 1) a_{\nu} x^{\nu} = \int_{0}^{\infty} e^{-t} \frac{f(x) - f(e^{-t} x)}{t} dt.$$

Let ε and ω be positive numbers, $\varepsilon < \omega$. We divide the integral in (2.8) in three parts: I, II, III corresponding to the intervals $[0, \varepsilon]$, $[\varepsilon, \omega]$, $[\omega, \infty]$. In the

SZEGŐ

first part we use the mean-value theorem combined with the first inequality (1.1); in the second and third part we use only the bound $|f(x)| \leq 1$. Then we find

$$|\operatorname{I}| \leq \int\limits_0^\varepsilon e^{-t} \frac{x - e^{-t} x}{t} n^2 dt \leq n^2 \int\limits_0^\varepsilon \frac{1 - e^{-t}}{t} dt \leq n^2 \varepsilon$$

since $e^{-t} \ge 1 - t$. Further

$$\begin{split} |\operatorname{II}| &< \int\limits_{\varepsilon}^{\omega} e^{-t} \frac{2}{t} dt < \int\limits_{\varepsilon}^{\omega} \frac{2 \, dt}{t} = 2 \log \frac{\omega}{\varepsilon} \,, \\ |\operatorname{III}| &< \int\limits_{\varepsilon}^{\infty} e^{-t} \, \frac{2}{t} \, dt < \frac{2}{\omega} \int\limits_{\omega}^{\infty} e^{-t} \, dt = \frac{2}{\omega} \, e^{-\omega} \,. \end{split}$$

We choose $\varepsilon = 1/n^2$ and $\omega = n$ so that for $-1 \le x \le 1$

(2.9)
$$\left| \sum_{v=0}^{n} \log (v+1) a_v x^v \right| < 1 + 6 \log n + \frac{2}{n} e^{-n} < 2 + 6 \log n.$$

It is easy to prove that $\limsup H_n / \log n \leq 4$ as $n \to \infty$.

A similar argument leads to an upper estimate for $\left|\sum_{v=0}^{n} \lambda_{v} a_{v} x^{v}\right|$ provided that $|f(x)| = \left|\sum_{v=0}^{n} a_{v} x^{v}\right| \leq 1$. Here we assume that the constants λ_{v} are the moments of a positive distribution,

(2.10)
$$\lambda_{\nu} = \int_{a}^{b} t^{\nu} d\alpha(t), \qquad \nu = 0, 1, \dots, n$$

or else that the sequence $\{\lambda_{\nu}\}$ is the difference of two sequences of the form (2.10).

§ 3. Lower bounds

In order to obtain lower bounds for the quantities M_n , $M_n(x_0)$, G_n , H_n defined above, we have to exhibit certain special polynomials f(x). We denote by $L_n^{(a)}(x)$ and by $L_n^{(0)}(x) = L_n(x)$ the Laguerre polynomials (cf. [4], p. 100, (5.1.6)).

1. The polynomial $L_n(x)$ satisfies the inequality ([4], p. 162, (7.21.3))

(3.1)
$$e^{-x/2} |L_n(x)| \le 1$$
, $x \ge 0$,

with the equality sign for x=0. Hence the function $f(x)=L_n(2x)$ has the norm ||f||=1. Now ([4], p. 101, (5.1.13) and (5.1.14))

$$\frac{d}{dx}L_n(x) = -L_{n-1}^{(1)}(x) = -L_0(x) - L_1(x) - \dots - L_{n-1}(x)$$

so that $|e^{-x/2}L'_n(x)| \leq n$ with equality for x=0; with other words $||L'_n(2x)|| = n$

= n. Hence $M_n \ge n$, $M_n(O) \ge n$ so that $M_n \sim n$, $M_n(O) \sim n$. 2. In order to obtain a lower bound for $M_n(x_0)$, $x_0 > 0$, we use ([4], p.239, (8.91.7)) where we write $\lambda = 0$ and we choose $\alpha \ge -1/6$. Thus

(3.2)
$$\max e^{-x/2} |L_n^{(a)}(x)| \sim n^{a/2-1/4}, \qquad x \ge a,$$

where a > 0 is arbitrary and fixed. Now let $c = c(n, \alpha, x_0) = c_n$ be a positive constant to be determined later; $\lim c_n$ will exist and it will be finite and positive. We write

(3.3)
$$f(x) = n^{1/4 - a/2} L_n^{(a)}(2x + 2c_n), \qquad 2c_n \ge a$$

so that ||f|| depends on n and $||f|| \sim 1$ as $n \to \infty$. Hence (see above)

$$\frac{1}{2}f'(x_{\mathbf{0}}) = -\,n^{1/4-a/2}\,L_{n-1}^{(a+1)}(2\,x_{\mathbf{0}}\,+\,2\,c_n) \sim n^{1/4-a/2}\cdot n^{\frac{a+1}{2}-\frac{1}{4}} = n^{1/2}.$$

Here we used Fejér's classical asymptotic formula for the Laguerre polynomials (cf. [4], p. 196, (8.22.1)); the oscillatory part of the main term is

$$\cos \left\{ 2(n-1)^{1/2} (2\,x_0 + 2\,c_n)^{1/2} - \frac{(\alpha\,+1)\,\pi}{2} - \frac{\pi}{4} \right\} = \cos x'\,.$$

We determine c_n in such a way that x' satisfies the condition $x' \equiv 0 \pmod{\pi}$. For this purpose we set

$$2(n-1)^{1/2} \left(2x_0 + 2c_n\right)^{1/2} - \frac{(\alpha+1)\pi}{2} - \frac{\pi}{4} = \left[2(n-1)^{1/2} \left(3x_0\right)^{1/2} \cdot \pi^{-1}\right] \pi = k \pi$$

where [y] is the greatest integer $\leq y$; k is an integer. Hence $\lim (2x_0 + 2c_n)^{\frac{1}{2}} =$ $=(3x_0)^{1/2}$ so that $\lim c_n=x_0/2$. Fejér's formula holds uniformly in every fixed positive interval.

3. Formula (3.2) is based on rather complicated considerations. A simpler approach to the same result $M_n(x_0) \sim n^{\frac{1}{2}}$, $x_0 > 0$, is the following. Let c be again a positive constant to be determined later. We choose

$$f(x) = T_n \left(\frac{x+c}{n} - 1 \right) = (-1)^n T_n \left(1 - \frac{x+c}{n} \right),$$

so that $e^{-x} |f(x)| \le 1$ in the interval $0 \le x \le 2n - c$. Now we write $1 - \frac{x_0 + c}{n} = \cos \varphi = 1 - \frac{\varphi^2}{2} + \dots$ so that $\varphi \simeq \left(\frac{2(x_0 + c)}{n}\right)^{1/2}$ and $T_n(\cos \varphi) = \frac{1}{n}$ $=\cos n \varphi = \cos (2n(x_0+c))^{1/2}$. We determine $c=c(n,x_0)=c_n$ in such a way that $(2n(x_0 + c_n))^{1/2} = (k + 1/4)\pi$, k an appropriate integer. For this purpose we may follow a similar procedure as above; $\lim c_n$ will exist and it will be again finite and positive. Hence $e^{-x_0} |f(x_0)| \sim 1$.

We discuss now the values $y = \frac{x+c}{n} - 1 \ge 1$ so that we can write $y = \operatorname{ch} \alpha$, $\alpha \ge 0$. We have then $f(x) = \operatorname{ch} n\alpha$ and

$$e^{-x}f(x) = e^{c-n(\cosh a+1)} \cdot \frac{e^{na} + e^{-na}}{2}$$
.

In order to prove $||f|| \sim 1$ it remains to show that max $(-\operatorname{ch} \alpha - 1 + \alpha) < 0$, $\alpha \ge 0$. This is indeed so, since $-\operatorname{ch} \alpha \le -1 - \frac{\alpha^2}{2} < 1 - \alpha$.

Now we consider

$$f'(x_0) = \frac{1}{n} \, T'_n \! \left(\frac{x_0 + c}{n} - 1 \right) = \frac{(-1)^{n-1}}{n} \, T'_n \! \left(1 - \frac{x_0 + c}{n} \right).$$

We write again $1 - \frac{x_0 + c}{n} = \cos \varphi$ so that $\varphi \simeq \left(\frac{2(x_0 + c)}{n}\right)^{1/2}$. But

$$n^{-1} T_n'(\cos \varphi) = \frac{\sin n \varphi}{\sin \varphi} \simeq \left(\frac{n}{2(x_0 + c)}\right)^{1/2} \sin\left(2n(x_0 + c)\right)^{1/2}.$$

Since $(2n(x_0+c))^{1/2} = (k+1/4)\pi$ we have $\sin(2n(x_0+c))^{1/2} = \pm \sin\frac{\pi}{4}$.

This proves the assertion.

4. We seek a lower bound for G_n . For the function (3.3) we have $||f|| \sim 1$ and

$$|a_n|=n^{1/4-\alpha/2}\cdot\frac{2^n}{n!}.$$

Choosing $\alpha = -1/6$ the lower bound $A \cdot 2^n (n!)^{-1} \cdot n^{1/3}$ follows.

5. Finally we seek a lower bound for H_n . In (2.8) we choose $f(x) = T_n(x)$ and we write x = 1. We obtain

$$\int\limits_0^{\tilde{t}} e^{-t} \, \frac{1 - T_n(e^{-t})}{t} \, dt = \int\limits_0^{\pi/2} \sin \varphi \, \frac{1 - \cos n \, \varphi}{\log \frac{1}{\cos \varphi}} \, d \, \varphi \geq \int\limits_0^{\pi/2} \sin \varphi \cos \varphi \, \frac{1 - \cos n \, \varphi}{1 - \cos \varphi} \, d \, \varphi$$

where the inequality $\log x \le x - 1$, $x \ge 1$, was used. Now

$$\int_{0}^{\pi/4} \frac{1-\cos n \, \varphi}{\varphi} \, d\varphi = \int_{0}^{n\pi/4} \frac{1-\cos x}{x} \, dx$$

and the last integral is $\sim \log n$.

This establishes the proof of (1.4).

(Received September 17, 1963)

BIBLIOGRAPHY

[1] Bateman Manuscript Project, Higher Transcendental Functions, vol. 1, 1953.
[2] KNAPOWSKI, S.—TURÁN, P.: "On an assertion of Chebyshev". To appear in Journal d'Analyse Mathématique.

[3] Schaeffer, A. C.: "Inequalities of A. Markoff and S. Bernstein for polynomials and related functions." Bulletin of the American Mathematical Society 47 (1941) pp. 565 - 579.

[4] Szegő, G.: Orthogonal Polynomials, revised edition, 1959.

О НЕСКОЛЬКИХ АППРОКСИМАЦИОННЫХ ПРОБЛЕМАХ

G. SZEGŐ

Резюме

В настоящей работе рассматриваются четыре задачи приближения, в каждой из которых участвуют полиномы с заданной степенью n. Три первые задачи аналогичны определенным проблемам приближения, в которых вместо конечных интервалов, употребляющихся в классических случаях, участвует бесконечный интервал $x \ge 0$. В работе приводятся два результата.

1) Определим для произвольного полинома f(x) «норму» следующим образом:

$$\|f\|=\max e^{-x}|f(x)|$$
 , $x\geqq 0$. Тогда $\|f'\|\leqq A_n\|f\|$,

где A_n — постоянная, зависящая только от степени n. A_n имеет порядок n.

2) Пусть
$$\left|\sum_{v=0}^n a_v x^v\right| \le 1$$
 в интервале $a-1 \le x \le 1$. Тогда $\left|\sum_{v=0}^n \log\left(v+1\right) a_v x^v\right| \le k \log n$,

где k посто янное.

Работа посвящается Р. Еврос в честь пятидесятилетия со дня рожления.