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Introduction

The investigations described in the present paper join to a theorem of
B. TRACHTENBROT ([8], Theorem 1). This theorem serves the purpose of deter-
mining a 2-graph if the truth function realized by it is known, and it solves
the problem completely from theoretical point of view. However, in applying
this theorem, there arises a so high number of tests which means a grave
disadvantagein practicalapplication. Our investigations are devoted to improv-
ing TRACHTENBROT’s idea into a more determined method which seems to be
able for being performed by an electronic computer or by a machine built
for this special aim.

§ 1 gives a survey on the situation of researches in the investigated field.
§§ 2—4 contain the description of the proposed algorithm.! The problems
(arisen in boundaries of graph theory and logic) are investigated by terms
of combinatorial set theory.

At the end of § 4 the questions of machine realization are touched (wit-
hout the endeavour to perfectness).

The paper terminates with four appendices. App. 1 presents a proposition
which has an auxiliary réle in the algorithm. App. 2 considers a part of the
main problem which requires to be treated separately. The two final appen-
dices touch the immediate further questions of the theory, namely they give
such mathematical formulations of the problems which will prove, it can
be hoped, to be profitable in the future research.

§ 1. The notion of repetition-free realization. Preliminary theorems

It is supposed that the most important initial concepts (truth function,
monotonic dependence, prime implicant, repetition-free superposition of truth
functions; strongly connected two-terminal graph, canonical decomposition
of such graphs, path) are already known to the reader. Concerning these notions
we refer to the papers [1], [2], [3], [7], [8].

Let e, . . ., e, denote (all) the edges of a 2-graph (i.e. strongly connected
two-terminal graph)®; let us assign the truth variables z;, ...z, to these
edges, 1espectively Let that truth function f(x,, . . ., x,) be considered which
has the value 4 (on a place of its definition domaln) 1f and only if there exists
a path of & whose every edge corresponds to a truth variable having the value

!The reader who is interested only in performing our procedure can omit the
proofs of propositions of § 3. The ending of each proof is denoted by Q. E. D.
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4. Then, usually, it is said that the graph & realizes the function f without
repetition. There are well-known the following fundamental facts:

[ depends effectively and monotomic increasingly on its each wvariable,

a set of edges of & is a path if and only if the conjunction of the variables
corresponding to these edges is a prime implicant of f,

& can be decomposed canonically if and only if f can be decomposed by
repetition-free superposition* (KvzNEcov [7], Theorem on p. 197),

if the realizable function f cannot be decomposed by superposition, then
[ has essentially only one realization (i.e. any two 2-graphs realizing f can be
connected by an isomorphism which maps the terminals of one of the graphs
to the terminals of the other graph) (TRACETENBROT [8], Theorem 2, p. 237).

The first fact exposed just now gives a necessary condition in order
that a truth function should be realizable; however, this condition is not suffi-
cient at all. So there arises the problem of realizability: let be
stated for a function in order a necessary and sufficient condition for a
function to be realizable (without repetition). Further, starting by a given
truth function f, it is desirable to find a possibly simple procedure in order to
construct the graph realizing f in the case when f has been found to have a
realization.

We shall now consider these problems in the particular case when f is
assumed to have no decomposition by (repetition-free) superposition.? A remark-
able way in order to attempt our problems is shown by a theorem of B. TRACH-
TENBROT ([8], Theorem 1, p. 236) which will be recapitulated here in a some-
what different formulation. The correspondence between the paths of a 2-graph
® and the prime implicants of the function f realized by & implies that, if we
are searching the graph ®, the paths of & (as sets of edges, regardless to the
ordering) can be given easily, therefore it remains to be determined how these
edges are incident to the vertices. The set of (all) edges incident to an inner
vertex is called an inner star. The theorem of Trachtenbrot states that a set
9 of edges of & is an inner star if and only if § satisfies each of the following three
requirements :

A) any edge beside $ is contained in some path which contains no edge of 9,

B) for any path, the number of the common edges of $ and this path is either
0 or 2,

C) to each pair of edges of § there exists a path containing both of these edges.*

For any set of edges of (¢ it can be controlled whether these conditions
A), B), C) are fulfilled or not. So, theoretically, the theorem of Trachtenbrot
gives a procedure for solving our construction problem.> However, the producere
got by direct, “rough” application of this theorem is not satisfactory from two
points of view either. Firstly, it does not give an elegant solution for the problem
of realizability. Namely, if we apply this procedure for a non-realizable function
/., then there are two possibilities: either it arises an obvious irregularity already

2 Naturally, under the presupposition that f admits a (repetition-free) realization.

3The particular case of the problem of realizability was formulated as Problem
2 in [4] (p. 36). — Concerning the relation of the general problem to this particular
case, we refer — beside the mentioned theorem of Kuznecov — to § 2 of [7] and to [4].

4 Our assumption on the indecomposability of f is essential in order that this
theorem should be true. In the contrary case, the notion of inner star must be replaced
by a more special and complicated notion.

5 For the sake of completeness, one has to determine finally the edges incident
to the one and the other terminal. Concerning this simple task see [8].
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in the course of applying the procedure (but, in general, not at the beginning),
or we reach regularly a 2-graph which realizes a truth function different from
the function f given previously. Secondly, even in the case of realizability, the
procedure requires a great number (27, where n is the number of the edges)
of tests each of which decides whether a special subset satisfies the conditions
or not. Consequently, it is desirable to seek a more definite algorithm in the
sense that it has a reduced number of steps in comparation to the direct method
which consists of testing all sets of edges concerning they fulfil A), B), C) or
not. The main parts of the present paper are devoted to improve TRACHTEN-
BROT’s theorem into a more constructive (therefore more mechanizable) proce-
dure which serves the purpose of determining the inner stars concerning a
function, indecomposable by superposition, supposed to be realizable.®

The first imperfectness exposed above makes justifiable to look for a solu-
tion of the problem of realizability consisting of a possibly explicit criterion
which can be applied for a truth function f still before constructing the graph
realizing f (if such a graph exists). This difficult problem will be touched in
Appendix 3.

§ 2. Formulation of the problem in terms of combinatorial set theory

If a truth function f is given which depends monotonic increasingly
on its each variable, then the prime implicants can be regarded as certain
subsets of the set £ consisting of the variables of f. Also the properties A),
B), C) occurring in TRACHTENBROT's theorem can be expressed in terms
of combinatoral set theory. Using this idea, the questions can be raised as
transformed followingly.?

Let a finite set £ be given, further a collection .59 of subsets of £ such that
& satisfies the following condition: if P, € .9, P,€.% and P, # P,, then
neither P, D P, nor P, C P, holds.

A subset £ of E is called a W-set if it satisfies all the three statements
(I), (1), (TII):

(I) To any element x of £ — F there exists a set P(€ .59) such that x € P €
ckE—-F. —

(IT) If an intersection P () F is not empty, then P N F = 2 (for the
members P of .9).

(ITII) To any pair z, y of elements of F there exists a set P(€ %) satisfying
Po {z, 9}

Let I}JS fix two elements «, b (chosen arbitrarily) of Z. Our aim is in §§
3 —4 to determine those W-sets with at least four elements which are supersets
of {a, b}; especially, to decide whether a such W-set exists or not. During

these investigations a W-set F which fulfils F 2 {a, b} and F = 4 will be
called a desired W -set.

Some of the propositions stated in the course of our investigations give
sufficient conditions in order that no desired W-set exists. After proving a
proposition of this character, it will be supposed that the condition is not ful-
filled (even if this supposition is not formulated explicitly).

6 Although the procedure proposed here is more definite in the mentioned sense,
it has a more complicated description than the ‘‘rough method”.

7If the elements of a set U are sets themselves, then we shall say that % is the
collection of its members.
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§ 3. Foundation of the algorithm

Proposition 1. If one of the following statements o), ),y ) is trué,then there
exists no desired W-set:

o) a€ P, beP holds for no member of .5,

f) acP, b¢ P holds for no member of 5,

y) a & P, b€ P holds for no member of $P.

Proof. If o) is true, then no superset of {a, b} can fulfil (III). If e.g.
B) holds and ¢(# a, b) is an element of an arbitrary superset F of {a, b},
then 5% cannot have a member P satisfying P N F = {a, ¢}, hence F does not
fulfil (III). Q. E. D.

Now we define four collections AY, .0 70 50 of subsets of E by
the following rules:

Sy, consists of the sets of form P — {a, b} where P runs through the
members of %7 containing both of @ and b.

S consists of the sets of form P — {a} where P runs through the mem-
bers of %0 satisfying @ € P and b ¢ P.

S consists of the sets of form P — {b} where P runs through the
members of &0 satisfying b € P and a ¢ P.

S consists of those members of .99 which contain neither a nor b.

We form further collections® of subsets of E. Each of .0, 50 b
consists of the (distinct) sets of form P — H{ where P runsthroughthe members
of PV, 5 PP, respectively, and HY is the union of the members of
Sy Let HY, HP, HP denote the unions of the members of L, ., 50,
respectively.

Proposition 2. If
(1) (HPUHP) — HY

is mot empty, then there exists no desired N -set.

Proof. We verify the proposition indirectly. Firstly, we show that any
desired W-set F is a superset of the difference (1). In the contrary case, since
(I) assures that any element of £ — F occurs in some member of &, any
element of the difference outside # would be contained in some member
of %¢. — In the further proof we separate two cases.

Case 1: the difference (1) contains two or more elements. Let x, y be
distinct elements of (1). By (III) there exists a member P of % containing
both z and y, but this P must contain one of a, b too, what contradicts to (II).

Case 2: the difference consists of one element x. If F is a desired W -set,
then it contains a, b, x; let a further element of # be denoted by y. By (I11) there
is a P(€ 50) such that P N F = {z, y}. The fact that P contains neither a
nor b contradicts to the definition of z. Q. E. D.

So we can suppose HY c HY and H{ c HY. Let 52, 5P, S
be defined as the collections of setsof form @ N HY N H}’ where @ runs through
the members of .57L, AL, PP, respectively. Similarly, let F#Q, 5P, 5§,
be defined as the collections of sets of form @ — R where @ runs through the
members of P, PSP, respectively, and R is defined by the following
induction. Let R, be the union of those members of &’ each of which consists
of (exactly) one element. If R, , is already defined and there exists a set of

81t is allowed that the empty set occursas a member of the collections to be defined.
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form P — R;_; (P € ) consisting of one element, then let R; be the union
of R;_, and the one-element sets of form P — B, (P € %%). Let R denote the
last R;.

Let H?, H®, H®, H®, HY®, HY denote the union of the members
of PP, FP PO FD gP P respectively.

The next proposition follows immediately from the above definitions.

Proposition 3. There hold the equalities HY = HY = HY and HY =
—IH =

Proposition 4. Each desired \W-set is a subset of HY \J {a, b}.

Proof. Let x be an arbitrary element = a, b of a desired W-set. (II)
certifies that & cannot occur in some member of .55, so x occurs in a member
of one of P, P, PP, By our agreement after proving Proposition 2, x
is an element of some member of S7{. If no member of 7P contained z, then
{a, } would not occur as a subset of some P (¢ .99), this contradicts to (III).
Therefore « must belong to HY’, and, by a similar inference, also to H. This
implies that @ € HY.

We have to prove finally that each element = a, b of a desired W-set
is contained in H{. This is implied obviously by the following statement: if y
isan element of some set R;, then y cannot occur in any desired W-set. In prov-
ing this statement, we can assume that the similar statement was already
verified for the elements of R, ;. There exists a member P of 57§ such that
P — R, , = {y}. If y were contained i 1n a desired W-set ', then PN F={y}
would be true, what contradicts to (II). Q. E. D

Proposition 5. If one of 5P and 575‘3’ contains the empty set, then there
exists no desired W -set.

Proof. Let be assumed that ¢ occurs as a member of e.g. 5@, This means
that a suitable member P of .9 has an empty intersection with HY (= HY).
If F were a desired W-set, then P (1 F would be equal to {a} this contra-
dicts (II). Q. E. D

Proposition 6. A subset F(> {a,b}) of E is a desired W-set if and only
if all the following seven conditions are fulfilled (F” denotes the set # — {a, b}):

(0 P c B 23,

(I') (= (X)) To any element x of E — F there exists a set P(€ )
such that v € PC E — F.

(II;) Each member of P and SP has a non-empty intersection with
Fe,

(I13) No proper subset of F’ fulfils the property (II7).

(I1;) Every intersection mentioned in (I1;) consists of exactly one
element.

(IL;) If an intersection P (N F’ is non empty (where P ¢ ), then
Piii= 2,

(II1") To any pair x, y of elements of F’ there exists @ member of ¢
containing both x and y.

Proof. Let us remember that the desired W-sets are characterized by the
requirements (I), (IT), (IIT), F > 4, F D {a, b}. Firstly we shall prove that
any desired W-set satisfies the properties exposed in Proposition 6. (0’) was
stated already in Proposition 4. (I’) is trivially satisfied. Owing (0’), (II)
implies (II]) and (II3); one can see easily that (1I;) follows from (0’), (II) and
(IT3) (see also Proposition 3).9 (II;) and (IIT’) are immediate consequences of
(II) and (IIT), respectively.
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Conversely, let a subset F of E possess the properties enumerated in
Proposition 6. (I) is satisfied by # trivially. Let P N F = 0 be assumed
for an arbitrary P(< .90), in this case there are three possibilities:

if both of a, b is contained in P N F, then (O’) assures P N F = {a, b}
(H$ is disjoint, by its definition, to any member of .% containing a, b),

if exactly one of a, b belongs to PN F, then (0’) and (II}) imply PNF= 2,

if neither a nor 4 is contained in P N F, then P ) F = 2 follows from
(07) and (IL3); :

so (II) is satisfied by F in each possible case.

We are now going to show that # fulfils (IIT). Let a pair z, y of elements
of F be considered. If x = a and y = b, then (III) holds since the assumption
of Proposition 1is supposed to be false. If exactly one of a, b occurs in the pair
x, y, then (III) is implied by (0’) and (II;) (indeed, if e.g. « differs from a and
b, then (O’) and Proposition 3 assure that  occurs in some member of 5%
and in some member of .%). Finally, if @ and b do not occur in the 1nvest1gated
pair, then (III) is a consequence of (III’). Q. E. D.

§ 4. Oversight of an algorithm for determining the \W-sets

Owing the results of the preceding paragraph and Appendices 1, 2, we
can propose an algorithm which determines the W-sets if the set £ and the
members of .9, belonging to a realizable truth function f indecomposable by
superposition, are given. Before all, we determine the three-element W-sets
(see App. 2). Afterwards we consider the pairs of elements of £ (in arbitrary
order), and we apply the following procedure for each of these pairs. Firstly,
we look at whether the considered pair @, b occurs in a W-set, determined
sooner, or not. If it does occur, then the investigation of the pair a, b is finished,
there exists no other W-set which is a superset of {a, b}; we consider the next
pair.l® In the other case (i.e. if there was got no W-set sooner, containing both
a and b) we form the sets according with the definitions of § 3. In the correspond-
ing stages we control the fulfilment of the supposition of Proposition 1, 2, 5
respectively. (If one of these suppositions is fulfilled, then the investigation
of the pair a, b isfinished.) In the case when it is possible that {a, b} is a subset
of some W-set, it remains to decide which subset of H§ satisfies (I’) — (III”).
Proposition 7 (in App. 1) gives a method for determmmg the subsets satisfying
(I1y) and (I13) explicitly, we must choose the set from these sets (if it exists)
which fulfils also (1’), (II3), (II;), (III”). This can be executed by tests.

The procedure presented just now seems to be convenient for being realiz-
ed by a machine whose activities are, in great lines, similar to an electronic
digital computer. Instead of arithmetical operations, it need perform some set-
theoretical operations. The storage of the machine contains the subsets of E
which occur in the procedure. The members of % are stored during the whole

9 The reader can observe that the properties enumerated in Proposition 6 do not
form an independent system, namely, we could get an equivalent system by omitting
(IT3). However, the admission of this property in our propesition will prove to be advant-
ageous from the view point of our further aims.

1°This test is made justified by the fact that the intersection of two distinct
W-sets cannot have two or more elements since f is indecomposable and realizable.

— Ifweomitted thisstep, then a W-set having m elements would appear in (m) exemplars.

2
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procedure. It seems to be a convenient method that each set is stored in one
memory cell. The length of the cells (i.e. the number of digits in any cell)

is greater or equal to the number of elements of Z (% digits correspond one-one
to the elements of E). The value of the digits can be +1, —1 or 0. +1 denotes
that the corresponding element of E occurs in the stored subset, —1 denotes
that the corresponding element does not occur in the subset, and 0 is the value
of the digits to whom no element of £ is assigned. We must storealso the W-sets
constantly when they had been produced. The sets occurring only in investi-
gating a fixed pair can be cancelled after the transition to an other pair. The
members of e.g. 7§ are stored similarly as the members of .59, but now also
those digits have the value O which correspond to the elements of £ — HY;
we must provide that no member of 57§ should be stored in two exemplars.
Furthermore, it is necessary to have a special unit which serves for executing
the method justified by Proposition 7

Appendices
1

In the present section a proposition of combinatorial set-theoreticalnature
is proved. The idea of this proposition is not essentially new, a thought of
related character arises already in [5] and [6].1* However, I believe that the
equivalence stated here has not yet been formulated in such an explicit manner.

Let M = {r,, r,,...,7,} be a finite set, let a collection of its certain
B

subsets N,, N,, . . ., N“3 be given. We can suppose U N, = M. Let the truth
y=1

variables 1}, 1,, . . ., t, be assigned to r,, 7,, . . ., 7,, respectively. Let us form for

each N, (y =1, ..., ) the disjunction R, “of those (unnegated) variables
which correspond to the elements of N,.

Proposition 7. The following two statements are equivalent for a subset
M’ of M:

(i) M” has a non-empty inftersection with each of Ny, N,, . .., Ng and for
any proper subset M" of M’ there exists a set N, (1 <y < f) whwh satisfies
M"NN,=9.

(ii) "The conjunction of the variables which correspond to the elements of
M’ is a prime implicant of the (monotonic increasing) truth function

frpty. . t) =R &M &...&N,.

Proof. Under a full elementary conjunction of { we understand, usually, a
conjunction in which each of 1, . . ., 1, exactly once occurs and which contains
only these variables (the unique occurrence of a variable can be unnegated
or negated). These conjunctions can be identified with the places of the defi-
nition domain of f in the customary manner. Let % and B be full elementary
conjunctions; A is said to be greater as % if there is no variable which occurs ne-
gated in U and unnegated in .

Let us assign to any subset 2/’ of M a full elementary conjunction by what
follows: the conjunction contains 1, (1 < 6 < o) unnegated if and only if 1,
occurs in the set M. One can see that /"D A" holds if and only if a greater
conjunction is assigned to M’ than to M”". The value of f on the place

11 Cf. Theorem on p. 337 and Footnote® in [6].

2 A Matematikai Kutaté Intézet Kozleményel IX. A/1—2.
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corresponding to M’ shows whether A/’ has a non-empty intersection with
each of WN,, ..., N; or not.

M’ has the property (i) if and only if the full elemontary conjunction
9 (assigned to M’) satisfies the following to statements: f(2)= 4, and 8 < U,
B = A imply §(L) where B is an arbitrary full e]ementarv conjunction of f.
Let % be the conjunction which results from 9 by cancellmg the variables
which occur in U negated. Since | is monotonic increasing, A fulfils the above
statement if and only if 9’ is a prime implicant of {. Q. E. D.

2

The presented procedure is able to determine those W-sets only which
consist of at least four elements. It remains the task of determining the three-
element W-sets. This can be performed as it follows.

Let a, b be fixed elements of E. The next proposition can be verified
similarly to Proposition 1.

Proposition 8. If one of the statements «), ), y) occurring in Proposition
1 is true, then there exists no three-element \W-set containing both a and b.

Let the sets Dy, D, be defined by

B = U4, D=L
Pa P
P sz

-and let D,, C be defined by D, =U P, C= NP where P runs through those
members of .9 which contain exactly one of 4, b.

Proposition 9. If either the set C — (D, \J D,) is empty or it contains at least
two elements, then there exists no three-element \W-set containing a and b.

Assume that C — (Dy | D,) consists of one element c, in this case there
are two possibz’lz’ties 5

) {a, b, c} isa W-set, there exists no other three-element W -set containing
a and b and (D,UD;) —{a, b, c} cD,,

(ii) there emsts no three-element \W-set containing a and b, and ((D, U D;) —
—{a, b,c}) — D, is not empty.

Proof. One can see easily that {a, b, ¢} fulfils (II) and (III) if and only
ifceC — (DU Dy). If ¢ (,_c) is an arbltlarv other element of C— (D, U D,),
then (I) cannot be fulfilled by{a, b, ¢}.IfC—(D,U D,) ={o}, then( (D UD3)——

— {a, b, c}) — D, =0 is the necessary and sufficient condition in order that
{a,b, ¢} should fulf11 (D). Q. B.D;

3

Let f be a truth function as at beginning § 2. We have there formulated
what the properties due to TRACHTENBROT mean in terms of combinatorial
set theory. The exposed correspondence makes possible that also other pro-
perties of f should be expressed set-theoretically.

Namely, let the finite set £ and the collection .59 be given as in § 2
50 is called indecomposable by superpositiorn. if to any non empty subset F(c E)
there exist two members P,, P, of % such that (P; N F) =0, P, N F == 0, and
the union (P; N F) U (P, — F) is not a member of 0.1

12 Concerning the equivalence of this property and the original definition of
indecomposability, see Theorem 2 in [2] (p. §1) and Corollary in [4] (p. 36).
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The collection .5 is called realizable by a 2-graph if there exist such sub-
sets Vp, Vg, V1, Vg, ..., Vi of E such that
o) any element of K occurs in exactly two of Vp, Vo, V4, ..., V, and
ﬁ ) the following two properties are equivalent for a subset F of E:
1°) I g &°
2°) each of the intersections F N Vp and F N Vg consists of one ele-
ment, and each of the intersections ¥ N V4, ..., F N V, consists
of 0 or 2 elements, and no proper subset of # satisfies the statements
exposed above in 2°).
Now TRACHTENBROT’s theorem can be expressed in the following manner;
if %0 is indecomposable by superposition and realizable by a 2-graph, then the
sets V,, Vs, ..., V) (are determined uniquely and) coincide with the W-sets.

4
We say that the truth function

GYss Yo+ o9 Ynsr)

originates by r-fold distribution from the function

f(@y, @y, .0, )

if there exists a partition of the set {y,, y,, ..., ¥ns,} such that

the number of the classes in 7, and

in that case when we start with g and we put the variables equal to each
other in any class, then the resulting function ¢” coincides with f essentially
(i.e. there exists a one-to-one mapping of the set of the variables of ¢’ onto
the set of the variables of f such that the equality of all pairs of corresponding
variables implies the equality of the values of ¢” and f).

For the sake of simplicity, we shall consider only such truth functions
which depend monotonic increasingly from all the variables, and only such real-
izations in which always non-negated variables correspond to the edges of the
of the realizing graphs.!®

Let us consider a truth function f. The question of determining an optimal
realization of f (by a 2-graph) can be expressed in the following manner:
let us find a truth function ¢ such that

g admits a repetition-free realization, and

g originates by 7-fold distribution from f where the number » has the pro-
perty that all the functions originating by 0-fold, 1-fold, ..., (» — 1)-fold
distribution from f are non-realizable (in the repetition-free sense).

(Received October 2, 1961)
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0 BECMIOBTOPHOW PEAJIM3ALMU ®YHKUUA UCTUHHOCTH
CITOCOBOM [ABY XMOJIOCHbIX I'PA®OB, I

A. ADAM

Pagpaboran anropu¢m, NpUrogHbli JUisi MalWMHHOIO BbIIOJIHEHUS, JUIS
onpejeneHusi BHYTPEHHUX 3Be3]l Ha OCHOBe TeOpeMbl | LUTHPOBAHHOK padoTHI
TpAXTEHBPOTA, MCXOAA M3 peasiM3yeMoil (QYyHKUMH, KOTOpasi HepasJIo)KuMa
OTHOCHTEJIbHO CYTIepIO3ULIHH.
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