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Central to condensed matter physics are quantum impurity models,

which describe how a local degree of freedom interacts with a continuum.

Surprisingly, these models are often universal in that they can quantitatively

describe many outwardly unrelated physical systems. Here we develop a

double quantum dot-based experimental realization of the SU(4) Kondo

model, which describes the maximally symmetric screening of a local four-

fold degeneracy. As demonstrated through transport measurements and

detailed numerical renormalization group calculations, our device affords

exquisite control over orbital and spin physics. Because the two quan-

tum dots are coupled only capacitively, we can achieve orbital state- or

“pseudospin”-resolved bias spectroscopy, providing intimate access to the

interplay of spin and orbital Kondo effects. This cannot be achieved in the

few other systems realizing the SU(4) Kondo state.
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Kondo physics is at the heart of heavy fermion materials and heavy fermion su-

perconductivity [1,2], underpins Kondo insulators like samarium hexaboride [3–8], and

provides a path toward realizing non-Fermi liquids [9, 10]. In the simplest version of

the Kondo effect, itinerant electrons screen a local spin-1/2 moment through virtual

spin-flip processes, yielding a many-body spin singlet state. The observation of this

behavior in semiconductor quantum dots and subsequent confirmation of universal

scaling [11–13] ignited a surge of interest in studying Kondo physics using mesoscopic

or nanoscale systems, where key parameters may be tuned in situ.

Many insights have been gained by studying the Kondo effect in systems as diverse

as carbon nanotubes [14], complex oxide surfaces [15], nanowires [16, 17], magnetic

adatoms on metallic surfaces [18–20], vertical quantum dots [21], and break junc-

tions [22]. Lithographically-defined quantum dots in GaAs/AlGaAs heterostructures

complement these studies by providing a platform for designing quantum impurity sys-

tems with particular degeneracies and interactions [10], rather than relying on those

intrinsic to a particular material. Specifically, quantum dots should enable studies of

SU(4)-symmetric Kondo effect [23–28], which are relevant to systems that possess not

only spin but also valley or orbital degrees of freedom, like carbon nanotubes [29–34]

or silicon field effect transistors [35, 36].

In this article, we study experimentally and theoretically the transport properties of

a double quantum dot (DQD) with strong interdot capacitive coupling, with each dot

tunnel-coupled to its own pair of leads. This device geometry allows for unprecedented

control of the orbital degrees of freedom. We find excellent agreement between our

NRG calculations and the experimental data over a wide range of gate voltages and

temperatures, enabling us to demonstrate the SU(4) Kondo state for the first time in a

double quantum dot, and to identify universal SU(4) Kondo scaling. Furthermore, the

unique orbital state- or “pseudospin”-resolution of our device [37] allows us to explore

the orbital structure of the SU(4) Kondo state and study how simultaneous Zeeman

and pseudo-Zeeman fields manifest differently in each pseudospin channel.

Our DQD, formed by lithographically-defined gate electrodes (Fig. 1a), resides

in the two-dimensional electron gas (2DEG) of a GaAs/AlGaAs heterostructure with

mobility 2 × 106 cm2/Vs and electron density 2 × 1011 cm−2. The electrochemical

potential of each dot is tuned with its respective P gate, and the dot-lead tunnel rates

are tuned with the W gates. The interdot tunnel rates are tuned to be negligible using
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Figure 1: Survey of conductance at orbital degeneracies. (a) SEM micrograph of a

double quantum dot like the one measured. The scale bar (upper left) is 200nm. Currents are

measured from S1 to D1 (red dashed arrows) and from S2 to D2 (blue dotted arrows). (b)

Experimental conductance G = G1 + G2 at Ne = 1 and Ne = 3 LBTPs. Electron occupancies

are labeled within each hexagon, relative to a (0,0) hexagon where each dot’s occupancy is

only known modulo 2. Each square of data corresponds to a region spanning 3 mV in VP1

and VP2. The color scales are individually set so that only data between 75%–100% of the

maximum conductance are visible. Two examples of the data with the color scale unsaturated

are also shown (bottom-right). The red lines and blue lines behind the data schematically

depict the charge stability diagram (not to scale). Red dashed (blue dotted) lines indicate

Coulomb blockade peaks for dot 1 (2). (c) Charge stability diagram from NRG calculations of

G = G1 + G2. The parameters used were T = 30 mK, B = 0, U1 = 1.2 meV, U2 = 1.5 meV,

U ′ = 0.1 meV, ∆1 = 0.017 meV, ∆2 = 0.0148 meV, α1 = α2 = 1. ε1(2) is the energy of the

dot 1(2) state above the Fermi energies of the leads. The white text labels the number of

electrons on dots 1 and 2. The white brackets mark the location of Ne = 1 (lower-left) and

Ne = 3 (upper-right) LBTPs. (d) Cuts along the Ne = 1 and Ne = 3 LBTPs of (c) at zero

and finite temperatures, parameterized by −ε1. The left part of (d) corresponds to Ne = 1

and the right part corresponds to Ne = 3. At 30 mK, the conductance is higher at the peaks

nearest to the (1,1) hexagon, as in the experimental data of (b).
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the C gates. Differential conductances G1 and G2 are measured through dots 1 and 2

by applying independent 1 µV ac excitations at the source terminals S1 and S2 (f =

85 and 102 Hz) and measuring the resulting currents through drain terminals D1 and

D2.

A DQD may be modeled by charging energies, tunnel couplings, and effective dot

levels. The charging energy U1(2) is the interaction energy of two electrons on dot 1 (2).

The capacitive coupling between the dots results in an interdot charging energy U ′, the

energy by which states in dot 2 increase if an electron is added to dot 1, or vice versa.

Each of the dots is tunnel-coupled to a pair of leads, causing the discrete states of each

dot to hybridize with those leads. The energy scale of this hybridization, ∆1(2) for dot

1 (2), would be the linewidth of a state in the absence of Coulomb interaction. At a

given temperature T , the experimentally measured linewidth Γ1(2) is related to ∆1(2)

by a universal function. The coupling of a state to the source and drain leads may

be asymmetric, encapsulated in the asymmetry factor α1 = 4∆1S∆1D/(∆1S + ∆1D)2

for dot 1, and likewise for dot 2. Finally, the dot levels ε1,2 can be viewed as energy

gained by transferring an electron to the empty quantum dots. Most of these model

parameters may be explicitly determined or inferred from experimental data with the

aid of theory (supplemental info).

The SU(4) Kondo effect is only expected for particular parameter regimes. As a

function of ε1 and ε2, the summed experimental conductance G ≡ G1 +G2 through the

DQD exhibits a hexagonal “honeycomb” charge stability diagram [38]. Within each

hexagon, the electron occupancies of dot 1 and 2 are integers (N1, N2). Were U ′ = 0,

the charge configurations (N1, N2), (N1 + 1, N2), (N1, N2 + 1), (N1 + 1, N2 + 1) could

all be degenerate. The interdot capacitance breaks this degeneracy, resulting in a pair

of triple points where three of these orbital configurations are degenerate. Along a line

between triple points (“LBTP”), two orbital configurations are degenerate, (N1+1, N2)

and (N1, N2 + 1). This degeneracy constitutes a pseudospin, and along this line the

pseudo-Zeeman splitting EPZ equals zero. If the tunnel coupling is tuned to be weak,

Kondo-enhanced conductance is seen along the LBTP but not elsewhere in the charging

hexagons, underscoring the importance of the pseudospin degeneracy [37,39]. We will

only consider (even,odd)/(odd,even) degeneracies, where SU(4) Kondo is expected [24].

The (even,even)/(odd,odd) LBTPs may also exhibit related phenomena [40, 41], but

will not be considered further here.
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Along the (even,odd)/(odd,even) LBTPs, we observe experimentally a subtle pat-

tern in conductance (Fig. 1b), consistent with particle-hole symmetry for a four-fold

degenerate state, where the four-fold degeneracy is established by the spin and pseu-

dospin degrees of freedom. The color scales have been saturated to emphasize that the

conductance is always highest near the (odd, odd) hexagon, where quantum fluctua-

tions are stronger due to the high internal spin degeneracy of the excited (odd,odd)

state. For these measurements, Γ1 = Γ1S + Γ1D and Γ2 = Γ2S + Γ2D have been tuned

to ∼ 0.03 meV, with nearly symmetric source-drain coupling. The pattern is robust

against small source-drain biases (supplemental info).

To understand this pattern, consider the (0,1)/(1,0) LBTP (bottom-left of Fig. 1b).

The unpaired electron tunneling out of the double dot followed by an electron tunneling

back in from the leads can flip the spin, the pseudospin, or both simultaneously. In

this sense, all four degenerate states are equivalent, and the Kondo screening of the

combined pseudospin and spin degeneracy is described by the SU(4) symmetry [42].

The conductance enhancement along the (0,1)/(1,0) LBTP may be termed “1⁄4-filling”

SU(4) Kondo effect in that a four-fold degeneracy of the double dot is filled by only

one electron. Because of the particle-hole symmetry of the four-fold degenerate state,

the (2,1)/(1,2) LBTPs also exhibit equivalent 1⁄4-filling SU(4) Kondo, but the impurity

is hole-like. We label the LBTPs Ne = 1 for an electron-like impurity or Ne = 3

for a hole-like impurity. This number does not denote the total electron occupation

(modulo 4), as adding two electrons to either dot results in the same type of LBTP.

This contrasts with carbon nanotubes, which exhibit more conventional four-electron

shell filling. In a DQD, because the four-fold degeneracy is strongly broken away from

an LBTP, lower energy electrons pair off into two-electron singlet states on each dot

and may be largely ignored.

NRG calculations (details in supplemental info) of the summed conductance G =

G1 +G2 through the DQD (Fig. 1c), computed for realistic device parameters, support

this interpretation. The sign of the axes corresponds directly with the experimental

gate voltages. Because Fig. 1c is calculated at a finite temperature of 30 mK, the

conductance in the (1,1) valley between the Ne = 1 (bottom-left) and Ne = 3 (upper-

right) LBTPs is small, as is also evident from calculations of cuts along the LBTPs

(Fig. 1d). Note that the calculated G ≈ 4e2/h conductance at T = 0 (Fig. 1d) is

from SU(2) Kondo rather than SU(4) Kondo; since U ′ � U1, U2, the “1⁄2-filling” SU(4)
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Kondo effect in the (1,1) valley is not realized [43,44]. Instead, an ordinary SU(2) spin

Kondo effect occurs in each dot. This spin Kondo effect is characterized by a very small

Kondo temperature TK such that even a small temperature T (e.g. 10 mK in Fig. 1d)

is enough to completely suppress the conductance. In contrast, the higher degeneracy

in the SU(4) Kondo effect leads to higher Kondo temperatures along the Ne = 1 and

Ne = 3 LBTPs. This survey of LBTPs alone does not confirm SU(4) Kondo, but the

elegant four-fold pattern is suggestive and motivates further investigations.

The experimental search for SU(4) conductance scaling is not straightforward. In a

typical quantum dot Kondo system, by going to a temperature T � TK , one can deter-

mine ε from the position of the bare Coulomb blockade resonances [13]. In this system,

T cannot be increased much beyond TK before kBT becomes comparable to U ′ =

0.1 meV, hindering experimental identification of the bare resonances. To determine

ε1 and ε2 experimentally requires first establishing agreement with NRG calculations,

where ε1 and ε2 are given. We proceed to examine the temperature-dependent conduc-

tance scaling near the point of maximum symmetry, ε1 = ε2 = −U ′/2 = −0.05 meV,

where for symmetrical dots NRG predicts the summed conductance to approach 2e2/h

as T → 0. Because the entire LBTP is expected to exhibit SU(4) scaling, for our

comparison between theory and experiment we will work slightly away from the point

of maximum symmetry to attain higher TK .

At 40 mK, summed zero-bias conductance from experiment (Fig. 2a) and NRG

calculations (Fig. 2b) agree excellently over a range of ε1 and ε2 encompassing the

entire LBTP. To measure experimentally along the −ε1 and −ε2 axes, voltages VP1

and VP2 were swept simultaneously. This was necessary to compensate for the finite

cross-capacitance between gate P1 and dot 2, and vice versa. The experimental axes

were scaled into units of energy by using bias spectroscopy to determine the couplings

of P1 and P2 to the energy levels of the two dots. For the calculation of Fig. 2b, only

the parameters α1 and α2 should be considered free parameters; here α1 = α2 = 0.875.

The white dashed line in Fig. 2a corresponds to keeping the pseudo-Zeeman split-

ting EPZ equal to zero. Fig. 2c shows pseudospin-resolved conductances G1 and G2

along the EPZ = 0 line, parameterized by ε1. Reasonable agreement between theory

(solid lines) and experiment (points) is attained in both channels, especially in view

of the extreme sensitivity of G1 and G2 to the precise cut direction [45]. Using the

same NRG parameters, the summed conductance from theory and experiment agree
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Figure 2: Agreement between experimental data and NRG calculations. Experi-

mentally measured (a) and theoretically computed (b) total conductance at an Ne = 1 LBTP

in units of e2/h at T = 40 mK. The white dashed line corresponds to zero detuning. The blue

crosses mark the point ε1 = ε2 = −0.03 meV, where the SU(4) scaling will be demonstrated

in Fig. 3. The parameters used in the NRG calculations are the same as in Fig. 1c and 1d,

except with α1 = α2 = 0.875. (c) Conductances G1 (top) and G2 (bottom) along the LBTP,

indicated by the dashed lines in panels (a) and (b). Dots denote the experimental data, solid

lines are the NRG results. (d) Total conductance along the LBTP for a subset of measured

temperatures. Symbols denote the experimental data, solid lines are the NRG results. The

agreement between the experiment and theory over the range of energies shown is typical for

T ≥ 40 mK, but the experimental data saturate below 40 mK.
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over a range of temperatures at least up to 150 mK (Fig. 2d), although the 22 mK

(omitted for clarity) and 30 mK experimental data saturate without reaching their

expected low-temperature limits. We defer discussion of the saturation to later in the

paper. Nonetheless, the excellent agreement over a range of temperatures and energies,

even in the pseudospin-resolved conductances, allows us to use theory to identify the

maximum symmetry point in the experimental data.

In Fig. 3, the summed experimental conductance G at ε1 = ε2 = −0.03 meV is

compared with NRG calculations, as well as with the universal SU(4) and SU(2) scaling

functions. The Kondo temperatures TKSU(2) and TKSU(4) for the scaling functions have

been chosen to provide best fits to the experimental data. The experimental data (open

circles) are described well by either the SU(4) scaling function (blue dash-dotted line)

or the NRG calculations (black solid line), whereas the SU(2) scaling function (red

dashed line) does not provide a good description. The point ε1 = ε2 = −0.03 meV

was chosen instead of the maximum symmetry point −U ′/2 (−0.05 meV) because TK

is larger at −0.03 meV, allowing us to experimentally probe conductance closer to the

low-temperature limit. This is an important consideration given that the experimental

conductance empirically saturates at T = 40 mK throughout the LBTP (Fig. 2d). The

point ε1 = ε2 = −0.03 meV with elevated TK is nearer to the (0,0) end of the LBTP

than to the (1,1) end where pure spin fluctuations should be suppressed. However, even

at ε1 = ε2 = −0.04 or −0.05 meV, the data are consistent with the NRG calculations

and SU(4) scaling except at or below 40–45 mK. This is in keeping with the expectation

that SU(4) scaling should hold along the entire LBTP. Note that simply fitting to the

popular empirical Kondo form [13] would have missed this saturation (supplemental

info). We conclude that strong conductance enhancements along the Ne = 1 LBTP

are due to the SU(4) Kondo effect, and the SU(4) Kondo state must also appear at the

Ne = 3 LBTP due to particle-hole symmetry, as expected unambiguously in theory

and suggested by the data of Fig. 1.

We now consider using the DQD to perform pseudospin-resolved bias spectroscopy

of the SU(4) Kondo effect. Experimentally, we can perturb the Kondo ground state

by breaking either the pseudospin or the spin degeneracy. A pseudo-Zeeman splitting

EPZ is achieved with gate voltage-controlled detuning of the orbital states, whereas

a Zeeman spin splitting EZ is achieved by applying a magnetic field precisely in the

plane of the heterostructure using a two-axis vector magnet. For simplicity we fix EZ
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Figure 3: Universal scaling of the conductance. Experimental data for the temperature

dependence of the conductance (symbols) at ε1 = ε2 = −0.03 meV in Fig. 2d. Experimental

data are compared with NRG results as well as with the universal SU(4) and SU(2) curves

using best-fit Kondo temperatures TKSU(2) = 320 mK and TKSU(4) = 220 mK.

9



and smoothly vary EPZ .

Fig. 4 shows experimentally-measured conductances G1 (Fig. 4b) and G2 (Fig.

4d) as a function of source-drain biases VSD1 = VSD2, alongside pseudospin-resolved

spectral functions A1 (Fig. 4c) and A2 (Fig. 4e) calculated via NRG. The data were

taken in a 1.0 T Zeeman field at an Ne = 3 LBTP. We determine EZ ≡ |g|µBB =

0.025 meV for B = 1.0 T using a measured g-factor |g| = 0.44, in agreement with g =

−0.44 for GaAs (supplemental info). The parameters used for the NRG calculation are

essentially the same as in previous figures, but describe the Ne = 3 LBTP by employing

a particle-hole transformation. A peak in either spectral function corresponds to the

opening of an inelastic channel. Peaks at positive (negative) energy mark when the

energy of incoming electrons (holes) matches a state reachable through an exchange

process. The spectral functions should describe the bias spectroscopy up to constants of

proportionality, neglecting decoherence, finite level spacing, and nonequilibrium effects

(minimized by using asymmetric coupling of source and drain). For simplicity, we will

refer to the horizontal axes ω and −eVSD interchangeably.

The positions of the peaks may be qualitatively understood by considering inelastic

transitions between Zeeman-split states (Fig. 4a). In the Kondo effect, a bias voltage

can compensate for a broken degeneracy. Given that we have broken the spin and pseu-

dospin degeneracies, naively we expect that Kondo effect related fluctuations (anoma-

lies) could appear at six bias voltages: ω = ±EPZ , ω = ±EZ , and ω = ±(EZ + EPZ).

However, because dot 2 is fully occupied, only processes corresponding to incoming

holes, at negative energy, should manifest as peaks in G2 and A2. G2 exhibits two

broad (merged) peaks positioned at ω = −EPZ ,−(EZ + EPZ), with A2 in qualitative

agreement. Analogously, G1 and A1 exhibit a peak at negative energy, near ω = −EZ ,

because of the occupied state of dot 1. Dot 1 also has an empty state, so it should yield

processes involving incoming electrons. Inelastic transitions involving this empty state

and the three other filled states of the double dot should therefore appear as peaks at

ω = EPZ , EZ , EZ +EPZ . For small EPZ , the peak at EPZ is visible in both G1 and A1.

We interpret this peak as being merged with the other two expected peaks, with the

peak at smallest ω dominating, such that a peak should be seen at ω = min(EPZ , EZ)

in both G1 and A1.

Some of these peaks are related to more familiar Kondo phenomenology. The peak

at ω = 0 in G1 and G2 for EPZ = 0 is the “zero-bias anomaly” of a purely orbital
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Figure 4: Orbital state-resolved bias spectroscopy of the SU(4) Kondo resonance.

(a) Inelastic transitions between Zeeman-split states of dot 1 and dot 2 at an Ne = 3 LBTP.

(b) Experimental conductance G1 for dot 1 in a 1.0 T Zeeman field. The five traces cor-

respond to different values of EPZ , with EPZ > 0 meaning dot 1 is favored to hold the

unpaired electron. A predicted “spin-Kondo like” feature at −eVSD ≈ −EZ is observed. The

star marks a purely orbital Kondo state for EPZ = 0 which appears in both dots. (c) Calcu-

lated spectral function A1 for dot 1 in a 1.0 T Zeeman field. (d) Experimental conductance

G2 for dot 2 in a 1.0 T Zeeman field. For the same increments in EPZ , no peaks are pinned to

a particular energy, and instead they move with the pseudo-Zeeman splitting. (e) Calculated

spectral function A2 for dot 2 in a 1.0 T Zeeman field. For all panels, Γ1,Γ2 ≈ 0.04 meV.

Γ1S and Γ2S were both tuned to be ∼2–3% of Γ1D and Γ2D, respectively, such that the

biased leads probe the equilibrium local density of states on their respective dot. The bias

is applied to both dots simultaneously. The parameters used for the calculations were the

same as Fig. 1c and 1d, except with T = 40 mK and B = 1 T. Note that α1 = α2 = 1 serve

only as normalization factors in the calculation. The ε1, ε2 described an Ne = 1 LBTP and

a particle-hole transformation was performed to describe this Ne = 3 LBTP (supplemental

info).
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Kondo state, since spin degeneracy has been broken by EZ . The Zeeman-split levels

appear as a peak at ω = −EZ in G1 (appearing at both ±EZ for EPZ ≥ EZ). As the

(1,2) configuration becomes favored with increasing EPZ , dot 1 hosts the unpaired spin.

This unpaired spin gives rise to a spin Kondo resonance, reminiscent of the spin-1/2

Kondo effect, where the Kondo resonance splits into peaks at ±EZ when a magnetic

field gµBB > TK is applied [12, 46, 47]. For EPZ ≥ EZ , transport through the orbital

favoring the unpaired spin will exhibit the Zeeman splitting, and transport through

the other orbital will exhibit the pseudo-Zeeman splitting.

The remaining mystery in the experimental data is the saturation of the conduc-

tance at T . 40 mK, as observed in Fig. 2d and Fig. 3. We have calibrated the base

electron temperature of the leads Te based on Coulomb blockade thermometry using

the same device measured here, during the same cooldown in which the data presented

in Figs. 2 and 3 were taken. With only a single dot formed, we find Te = 22 mK. We

speculate that high frequency charge noise in this device, giving rise to fluctuations in

detuning, decoheres the Kondo effect and causes an apparent saturation at T > Te.

Coherent oscillations of a DQD charge qubit, considered as a two-level system, happen

with frequency Ω =
√
t2 + δ2/~, where t is the interdot tunnel coupling and δ is the

detuning. By measuring series conductance Gseries < 0.001 e2/h between the dots at the

triple points, we can establish the bound |t| < 0.3 µeV (details in [37]). We consider t to

be negligible, giving Ω = δ/~ and a typical “dephasing rate” Γδ =
√
〈δ2〉/~ ∼ 1/T2∗ ,

where
√
〈δ2〉 is the size of the detuning fluctuations. This loss of phase coherence

should result in an abrupt saturation of conductance at temperature T ∼
√
〈δ2〉/kB

due to a renormalization cutoff. With our experimental setup and device, we can-

not directly measure our fluctuations in detuning. However, other researchers have

used microwave-induced charge state repopulation to extract
√
〈δ2〉 as high as 3 µeV

(=35 mK) [48] and 3.7 µeV (=43 mK) [49] for DQDs in GaAs/AlGaAs heterostruc-

tures. This roughly corresponds to the temperature at which we observe the apparent

saturation.

In conclusion, we report on the SU(4) Kondo effect in a GaAs/AlGaAs double quan-

tum dot. We first show the importance of both spin and orbital degrees of freedom

by demonstrating the particle-hole symmetry of a four-fold degenerate state. We pro-

ceed to demonstrate the exceptional agreement of experiment and theory at a LBTP,

and show the expected universal SU(4) scaling. Finally, we use the pseudospin resolu-

12



tion afforded by this system to demonstrate how the Kondo resonance splits when the

four-fold degeneracy is broken: one dot exhibits a Zeeman splitting and the other a

pseudo-Zeeman splitting. These results highlight the remarkable power of using lateral

quantum dots to realize and investigate quantum impurity problems.
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[26] López, R. et al. Probing spin and orbital Kondo effects with a mesoscopic inter-

ferometer. Phys. Rev. B 71, 115312 (2005).

[27] Sato, T. & Eto, M. Numerical renormalization group studies of SU(4) Kondo effect

in quantum dots. Physica E 29, 652–5 (2005).

15



[28] Eto, M. Enhancement of Kondo Effect in Multilevel Quantum Dots. J. Phys. Soc.

Jpn. 74 (1), 95–102 (2005).
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S1 Full LBTP survey

The data presented in Fig. 1b are only a subset of the full survey of conductance

around lines between triple points (LBTPs). The full survey, shown in Fig. S1, demon-

strates that 11/12 of Ne = 1 or Ne = 3 LBTPs exhibit higher conductance towards

the adjacent (1,1) hexagon. In addition, twelve (1,1)/(2,0) or (0,2)/(1,1) LBTPs were

surveyed: these should possess a five-fold degeneracy assuming the (2,0) ground state

is a singlet rather than triplet. The Ne = 1 and Ne = 3 LBTPs differ qualitatively

from the (1,1)/(2,0) and (0,2)/(1,1) LBTPs in that the latter class of LBTPs do not

exhibit a simple pattern of which end of the LBTP has higher conductance. Experi-

mental parameters Γ1, Γ2 and peak conductances are extracted from each data set and

summarized in Table S1.

Because we claim that the Ne = 1 and Ne = 3 LBTP data reflect the particle-hole

symmetry of a four-fold degenerate state, it is natural to expect that the pattern is

destroyed when the four-fold degeneracy is broken. Fig. S2 shows the Ne = 1 and

Ne = 3 LBTPs surveyed again in an in-plane magnetic field of 2.0 T, corresponding

to EZ = gµBB = 0.051 meV for g = 0.44. Here, EZ > Γ1, Γ2 for all of the surveyed

LBTPs. With the Zeeman splitting having broken the spin degeneracy at the LBTPs, a

periodic pattern is no longer discernible. Table S2 summarizes the extracted parameters

for each data set, as in Table S1.

Fig. S3 shows how a small but finite VSD affects the observed asymmetry at an

Ne = 1 LBTP. The LBTP measured here corresponds to the same absolute electron

occupation numbers as data set 553 shown in Fig. S1. Only for negative VSD approach-

ing −10 µV does the conductance near (0,0) exceed that near (1,1). For positive VSD,

the pattern of higher conductance nearer to (1,1) than (0,0) is actually exaggerated.

The effect of finite VSD is similar regardless of whether it is applied to dot 1 or 2. Input

offset voltages from current amplifiers could obscure our observed pattern, were it not

for our ability to stabilize these voltages to within 1 µV (see section S8.1).
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Data set Γ1 Γ2 γ1 γ2 Data set Γ1 Γ2 γ1 γ2

664 24 32 0.82 0.89 743 27 31 0.43 0.80

672 29 36 0.69 0.66 737 27 29 0.66 0.77

678 35 39 0.63 0.68 732 27 31 0.56 0.78

688 28 36 0.54 0.67 729 28 31 0.59 0.79

695 32 42 0.67 0.70 722 30 33 0.69 0.80

704 33 32 0.73 0.78 716 32 34 0.74 0.80

658 26 27 0.51 0.89 758 28 33 0.48 0.68

649 30 27 0.66 0.88 754 30 31 0.64 0.67

642 28 27 0.75 0.90 766 27 30 0.51 0.64

501 26 31 0.51 0.84 773 27 34 0.59 0.68

553 28 29 0.82 0.89 780 29 34 0.73 0.67

709 30 33 0.74 0.92 787 29 34 0.77 0.66

Table S1: For each data set shown in Fig. S1, experimentally controllable parameters

Γ1, Γ2, γ1, and γ2 are extracted by fitting a Lorentzian lineshape to a Coulomb blockade

(CB) peak neighboring the LBTP. Γ1(2) corresponds to the FWHM of the CB peak

in dot 1 (2), in units of µeV. The width in gate voltage is converted to an energy

using conversion factors derived from bias spectroscopy, taken near each LBTP. γ1(2)

are defined to equal the conductance at the CB peak of dot 1 (2) in e2/h. For these

data it is not known whether the source or drain lead is more coupled for either dot.

In all cases, the electron temperature Te = 20 mK.
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Data set Γ1 Γ2 γ1 γ2

1240 29 33 0.98 0.70

1248 29 34 0.88 0.65

1260 31 36 0.90 0.80

1226 32 32 0.62 0.78

1213 30 35 0.70 0.83

1184 31 32 0.76 0.87

1157 34 32 0.94 0.95

1163 31 35 0.94 0.99

1176 35 31 0.88 0.98

1144 32 29 0.58 1.02

1135 32 31 0.75 0.99

1130 30 35 0.79 0.97

Table S2: For each data set shown in Fig. S2, experimentally controllable parameters

Γ1, Γ2, γ1, and γ2 are extracted and reported as in Table S1.
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S2 Summary of NRG calculations

S2.1 NRG calculations

In our numerical calculations the double quantum dot (DQD) system is modeled by

the following Hamiltonian

H = HDQD +HTun +HLeads, (1)

where

HDQD =
∑

jσ

εjnjσ +
∑

j

Ujnj↑nj↓

+ U ′
∑

σσ′

n1σn2σ′ + gµBBzSz, (2)

describes the two dots, with njσ = d†jσdjσ the occupation number operator of dot

j = 1, 2 for spin σ, εjσ the energy of a spin-σ electron residing on dot j. Uj (U ′)

denotes the intradot (interdot) Coulomb correlations, while Bz is the magnetic field

applied along the z-direction and Sz is the z-component of the double dot’s spin. The

tunneling Hamiltonian HTun reads

HTun =
∑

αk

∑

jσ

tαj(c
†
αjkσdjσ + d†jσcαjkσ), (3)

where c†αjkσ is the creation operator of an electron in lead α = L,R coupled to dot j,

with momentum k and spin σ of energy εαjk. Tunneling processes between the dots

and leads are described by hopping matrix elements tαj. Tunneling between the two

dots is suppressed by tuning gates in our experiment, and hence is omitted from the

model. The leads are described by noninteracting quasiparticles

HLeads =
∑

αjkσ

εαjkc
†
αjkσcαjkσ. (4)

Due to the coupling to external leads, the dots’ levels acquire a width described by

∆αj = πραj|tαj|2, with ραj the density of states of lead α coupled to dot j.

We performed the full density-matrix numerical renormalization group calculations

(fDM-NRG) [1, 2, 3, 4], employing the Budapest Flexible DM-NRG code [5]. For ef-

ficient calculations, we used the charge U(1) and the spin SU(2) symmetries in each
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channel, resulting in four symmetries altogether. When considering the effect of ex-

ternal magnetic field Bz, the spin invariance is reduced to the U(1) symmetry for the

spin z-component in each channel. In our computations we retained 2500−5000 states

at each iteration depending on the exploited symmetries and used the discretization

parameter Λ = 2.

We calculated the linear conductance through dot j using the following formula

Gj =
e2

h
αj∆j

∑

σ

∫
dω πAjσ(ω)

(
−∂f(ω)

∂ω

)
, (5)

where f(ω) is the Fermi-Dirac distribution function and αj = 4∆Lj∆Rj/(∆Lj + ∆Rj)
2

is the left-right asymmetry factor for dot j, with ∆j = ∆Lj + ∆Rj. Ajσ(ω) denotes the

spectral function of the j-th dot level for spin σ, Ajσ(ω) = − 1
π
ImGR

jσ(ω), with GR
jσ(ω)

the Fourier transform of the retarded Green’s function, GR
jσ(t) = −iΘ(t)〈{djσ(t), d†jσ(0)}〉.

To improve the quality of the spectral functions and reduce the effects related with

broadening of Dirac delta functions, we also used the z-averaging trick [6].

S2.2 Choosing NRG parameters

Most of the parameters used in NRG calculations may be extracted from routine mea-

surements of the two dots. To a good approximation, a small decrement in the dot level

is proportional to a small increment in gate voltage. The proportionality constant, as

well as the charging energies U ′, U1, and U2, are measured directly by routine bias

spectroscopy. U ′ may be extracted from the change in ε1 of dot 1’s Coulomb blockade

peak position as an electron is added to dot 2, or vice versa. U1 and U2 are determined

from Coulomb blockade diamonds taken over a wider range of energy; results of the

conductance calculations around the LBTP are largely insensitive to values of U1 and

U2 as they are much greater than U ′.

∆1 and ∆2 define the coupling strength (or linewidth) for dot 1 and 2 in an un-

derlying Anderson model. ∆1 may be extracted by taking cuts away from the LBTP

on a mixed valence peak of dot 1 (side of charge stability hexagon). There, for large

intradot interactions U1 and U2, the FWHM of the conductance curve Γ1, divided by

T, must be a universal function of ∆1/T , and likewise for dot 2. In principle, for an

experimentally measured Γ at known temperature T , ∆ should be specified by NRG

calculations of that universal function. In practice, however, the ∆ parameters may

10



require some fine tuning of order 10% for best agreement, as other effects may affect

the widths of the measured peaks (perhaps Fano interference at zero magnetic field, or

neglected internal states of the dots, etc.).

Effectively, the NRG calculations use two free parameters, the asymmetry param-

eters α1 and α2. These are selected such that the calculations reproduce the exper-

imentally observed height of the mixed valence peaks of dot 1 and 2, as well as the

temperature dependent conductance in other regions of parameter space.

In Fig. 4, most of the parameters used for the spectral function calculation were

unchanged from those used in NRG calculations earlier in the paper. However, in the

calculation we set α1 = α2 = 1 for simplicity, as it would only contribute a scale factor

otherwise. For each value of EPZ , the corresponding values of ε1 and ε2 are shown in

Table S4.

For computational convenience we treated an Ne = 1 LBTP. However, by means

of a particle-hole transformation (ω → −ω, djσ ↔ d†jσ, ε1 → ε1 − U1 − 2U ′, ε2 →
ε2 − U2 − 2U ′), we use these calculations to describe the Ne = 3 LBTP. The spectral

functions shown in Fig. 4 are the result of this particle-hole transformation. For this

data set, the precise values of ∆1 and ∆2 were not determined, as the tuning of the

device was different from when the data for Figs. 2 and 3 were taken. Nonetheless,

the ∆ values should be similar and the spectral functions describe the data remarkably

well.

S3 Extracting LBTP cuts from 2D data sets

The zero-detuning cuts presented in Fig. 2c and 2d were extracted numerically from

2D data sets. The cuts are highly sensitive to cut direction such that adjusting the

endpoints by even a few µeV can result in significantly different conductances along the

cut. With experimental data alone, this poses a significant problem, since the line of

zero detuning cannot be exactly identified. Moreover, it is difficult to control for shifts

of the LBTP unrelated to renormalization as the temperature is varied. Physically

meaningful shifts of the mixed-valence peaks with temperature are to be expected, but

undesirable shifts, predominantly from random charge transitions in the donor layer of

the heterostructure, may also contribute.

To address these concerns, for fixed NRG parameters we compare the 2D exper-
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imental data sets to the 2D NRG calculations, at each measured temperature. The

pseudospin-resolved conductances from the experimental data and from NRG were fit

to Lorentzians to find the peak positions. The experimental data were then offset

such that the peak positions matched those in the NRG data. Some manual shifts of

0.005 meV or less were used following the fitting procedure to provide best agreement

along the LBTP cuts. Note that the scale factor between gate voltage and energy is

experimentally determined, and only the offsets of the axes are adjusted.

S4 Temperature dependence details

As stated in the main text, the point ε = -0.03 meV was chosen for the temperature

dependence because it is a point where TK is large compared to experimentally ac-

cessible temperatures. However, apart from the saturation observed at T = 40 mK

that prevents observation of the low-T rollover, the experimental data are consistent

with both SU(4) universal scaling and NRG calculations for our device configuration at

other points along the LBTP. In Figs. S4 and S5 we show the temperature dependence

at ε = -0.04 meV and ε = -0.05 meV, respectively.

Uncertainties in the experimental conductances of Fig. 3 are likely dominated by

the uncertainty in maintaining constant ε1 and ε2 between data taken at different

temperatures, rather than conductance noise. We extract the conductances from the

2D maps of Figs. 2a and 2b and similar maps at other temperatures. The offsets (but

not the scale) of the ε1 and ε2 experimental axes of Figs. 2a and 2b are set using

the theoretical calculations, and this considerably reduces this uncertainty. After this

alignment procedure, the remaining uncertainty in ε1 and ε2 may be conservatively

taken as the pixel spacing of ε1 and ε2 in our 2D conductance maps, approximately

0.003 meV.

In determining error bars, experimental points in the 2D conductance map neigh-

boring ε1 = ε2 = −0.03 meV are considered to be independent measurements of the

conductance at ε1 = ε2 = −0.03 meV, with a Gaussian weight: wi = exp[−((ε1 −
(−0.03))2 + (ε2− (−0.03))2)/σ2], where σ = 0.003 meV. The error bars then reflect the

standard deviation of the weighted mean, and are largest at low temperatures where

the conductance varies the most rapidly in any direction in ε1 and ε2. The (unbiased)

standard deviation of the weighted mean, s, is given by:

12



1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

G 
(e

2 /h
)

1
2 3 4 5 6

10
2 3 4 5 6

100
2 3 4 5 6

1000
Temperature (mK)

 Experimental data
 NRG results
 SU(4) universal scaling
 SU(2) universal scaling

Figure S4: Experimental data for the temperature dependence of the conductance

(circles) at ε1 = ε2 = −0.04 meV in Fig. 2d. Experimental data are compared with

NRG results as well as with the universal SU(4) and SU(2) curves using best-fit Kondo

temperatures TKSU(2) = 202 mK and TKSU(4) =155 mK. Parameters for the NRG

computations were: B = 0, U1 = 1.2 meV, U2 = 1.5 meV, U = 0.1 meV, ∆1 = 0.017

meV, ∆2 = 0.0148 meV, α1 = α2 = 0.875. These are the same used in Fig. 3.

13



1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

G 
(e

2 /h
)

1
2 3 4 5 6

10
2 3 4 5 6

100
2 3 4 5 6

1000
Temperature (mK)

 Experimental data
 NRG results
 SU(4) universal scaling
 SU(2) universal scaling

Figure S5: Experimental data for the temperature dependence of the conductance

(circles) at ε1 = ε2 = −0.05 meV in Fig. 2d. Experimental data are compared

with NRG results as well as with the universal SU(4) and SU(2) curves using best-

fit Kondo temperatures TKSU(2) = 132mK and TKSU(4) = 111mK. Parameters for the

NRG computations were the same as in Fig. S4.
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s2 =
V1

V 2
1 − V2

ΣN
i=1wi(xi − µ∗)2 (6)

where µ∗ is the weighted mean, V1 = ΣN
i=1wi, and V2 = ΣN

i=1w
2
i .

S5 Empirical Kondo forms

The empirical Kondo form was introduced by D. Goldhaber-Gordon, et al. [7] and

provides a convenient approximation of conductance through a quantum dot in the

SU(2) crossover regime as a function of temperature:

G(T ) = G0

(
1 + (21/s − 1)

(
T

TK

)n)−s

,
(7)

where s = 0.22, n = 2, G0 is the conductance attained at zero temperature, and TK

is the Kondo temperature. This form is purely phenomenological and was invented

to describe succinctly the numerically-calculated spin-1/2 SU(2) universal scaling [8].

With such a formula it is convenient to estimate TK from experimental results using

nonlinear regression, however care must be taken in its application. Importantly, for

s = 0.22 and n = 2 this formula does not describe the universal SU(4) scaling. Various

papers have nonetheless used the empirical SU(2) form (7) to fit data for which the

applicability is not clear. In the absence of an alternative, this is a reasonable heuristic

since the differences between the SU(4) and SU(2) scaling are subtle, but this procedure

is not strictly justified.

In particular, the leading-order temperature dependence of (7) is quadratic by de-

sign at T � TK in order to describe SU(2) Kondo scaling, but conformal field theory

predicts the SU(4) Kondo state to have a leading-order cubic temperature depen-

dence at T � TK , despite retaining a Fermi liquid character (normally associated with

quadratic dependence) [9]. Therefore, both parameters s and n must be changed to

expect a nice agreement for T . TK , where the empirical form is designed to apply.

Fig. S6 shows how s = 0.22, n = 2 describes SU(2) universal scaling in the crossover

regime. Changing s alone is seen to be insufficient to describe the SU(4) universal

scaling especially for temperatures T < TK , where the fitting is most sensitive. How-

ever, a good fit to the SU(4) universal scaling may be obtained with s = 0.20, n = 3.

We must emphasize that although (7) provides an accurate fitting in the full crossover

15



1.0

0.8

0.6

0.4

0.2

0.0

G/
G 0

0.01
2 3 4 5 6 7

0.1
2 3 4 5 6 7

1
2 3 4 5 6 7

10
T/TK

 SU(2) universal scaling
 SU(4) universal scaling
 s = 0.22, n = 2
 s = 0.33, n = 2
 s = 0.20, n = 3

Figure S6: Universal SU(2) (red) and 1/4-filling SU(4) (blue) scaling curves for the

conductance as a function of temperature. TKSU(2) and TKSU(4) are both defined such

that G/G0 = 0.5. Also shown are empirical fits in the form of (7): s = 0.22, n = 2

describes SU(2) (black dotted); s = 0.33, n = 2 best approximates the SU(4) form

without changing n (solid black); s = 0.20, n = 3 provides a good approximation of

the SU(4) form.
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Magnetic field (T) Splitting (µeV) |g|
1.0 — —

2.0 51 0.44

3.0 80 0.46

4.0 104 0.45

Table S3: Approximate spin state splittings and corresponding g-factors as a function

of magnetic field.

region, it fails at temperatures T � TK , where it does not reproduce the well-known

logarithmic behavior characteristic of the Kondo problem.

From our experiences with analyzing the experimental data in this paper, empir-

ical forms must be used with great care and supported by other methods. A blind

application to our data would yield spurious conclusions, owing to the saturation at

T = 40 mK. Also, as can be seen from the NRG results for our device, there are

some expected deviations from the universal scaling, particularly at T > TK , where

the empirical forms become less accurate.

S6 g-factor calibration

The Zeeman energy EZ is related to the magnetic field B by EZ ≡ |g|µBB, where µB

is the Bohr magneton and g is the g-factor. Among GaAs/AlGaAs heterostructures,

the g-factor can vary considerably, and so we calibrate in situ for our device by looking

for a Zeeman splitting in the bias spectroscopy as we vary an in-plane magnetic field.

Fig. S7 displays conductance through dot 2, demonstrating the Zeeman splitting. A

splitting is seen to emerge by B = 1.0 T, though the exact splitting is not resolved

owing to the width of the level. As the field is increased, we can extract the splitting

by reading off the value of VSD(2) above which the source-drain voltage drop is large

enough to allow for inelastic spin flip scattering processes. From this value, any offset

for true zero bias is then subtracted (usually a few µV or less). Table S3 summarizes

the extracted splittings and corresponding g-factors. We find |g| consistent with that

of bare GaAs, |g| = 0.44, and take this value in calculating EZ for given B.
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Figure S7: Conductance G2 as a function of source-drain bias VSD(2) across dot 2

and gate voltage VP2, at in-plane magnetic fields of B = 1.0 T (top-left), B = 2.0 T

(top-right), B = 3.0 T (bottom-left), and B = 4.0 T (bottom-right). The color scale

is fixed for all four values of magnetic field, which are labeled in the upper-left of each

plot. Blue solid lines correspond to the alignment of the source lead Fermi energy with

the ground state, and blue dotted lines correspond to alignment of the drain lead Fermi

energy with the ground state. White arrows denote where VSD(2) is read off to extract

the splitting.
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EPZ (meV) ε1 (meV) ε2 (meV)

0 -0.06333 -0.06167

0.012 -0.05667 -0.06833

0.018 -0.05387 -0.07113

0.026 -0.04966 -0.07534

0.036 -0.0445 -0.0805

Table S4: Parameters ε1 and ε2 used for each value of experimental EPZ in Fig. 4 and

Fig. S8.

S7 Bias spectroscopy at Ne = 1 LBTP

Fig. S8 shows the orbital state-resolved bias spectroscopy and calculated spectral

functions at an Ne = 1 LBTP, in a 1.0 T Zeeman field. The spectral functions shown

are the same as those shown in Fig. 4, up to the particle-hole transformation that was

applied to describe the Ne = 3 LBTP. By considering the cartoon of Fig. S8a, and

identifying each electron-like process with a corresponding hole-like process in Fig. 4a,

the relationship between the Ne = 1 LBTP and Ne = 3 LBTP becomes clearer. We

again consider ω and −eVSD as equivalent.

In dot 2, all of the expected features are observed (Fig. S8d): a weak peak at

ω = EZ , a peak (threshold) that tracks with EPZ for EPZ < EZ , and a purely orbital

Kondo peak at ω = 0 for EPZ = 0. The overall shapes of the curves are in rough

qualitative agreement with the spectral functions in Fig. S8e, although the relative

peak heights may differ.

However, in dot 1 (Fig. S8b), the purely orbital Kondo peak at ω = 0 for EPZ = 0

is obscured by poorly understood background conductance at positive ω. Additionally,

an unexpected feature is observed at ω = −30 µV that does not track with EPZ . It is

tempting to suggest that the LBTP being measured is actually a (1,1)/(2,0) LBTP. In

this interpretation, both dots could hold an unpaired electron, and both dots should

exhibit a peak at ω = ±EZ . In other words, the spectral functions for both dots should

look similar to Fig. S8e, with ω → −ω for dot 1. However, the increasing conductance

at positive ω in Fig. S8b is in qualitative agreement with Fig. S8c, and would not be

expected in this alternate explanation. Additionally, our ability to maintain electron
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Figure S8: (a) Inelastic transitions between Zeeman-split states of dot 1 and dot 2 at

an Ne = 1 LBTP. (b) Experimental conductance G1 for dot 1 in a 1.0 T Zeeman field.

The five traces correspond to different values of EPZ , with EPZ > 0 meaning dot 2 is

favored to hold the unpaired electron. (c) Calculated spectral function A1 for dot 1.

(d) Experimental conductance G2 for dot 2. (e) Calculated spectral function A2 for dot

2. For all panels, Γ1,Γ2 ≈ 0.04 meV. Γ1S and Γ2S were both tuned to be ∼ 2–3% of Γ1D

and Γ2D, respectively, such that the biased leads probe the equilibrium local density

of states on their respective dot. The bias is applied to both dots simultaneously. The

parameters used for the calculations were T = 40 mK, B = 1 T, U1 = 1.2 meV, U2 =

1.5 meV, U = 0.1 meV, ∆1 = 0.017 meV, ∆2 = 0.0148 meV. Note that α1 = α2 = 1

serve only as normalization factors in the calculation. The ε1, ε2 used are in Table S4.
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occupation number assignments is supported by Fig. S1. Therefore, the unexpected

feature is instead likely associated with a low-lying excited state.

S8 Technical details

S8.1 Electronics

For the data taken in Fig. 1b and 4 of the paper, custom current amplifiers designed

by Y. Chung of Pusan National University (early version of that which is presented in

[10]) were used in place of commercial Ithaco / DL Instruments 1211 current amplifiers,

which have been previously employed in our measurement setup [11]. The custom

amplifiers are crucial to this experiment in that the input offset voltage of the current

amplifiers must remain stable over a period of days to avoid applying an uncontrolled

source-drain bias across the dot. Over a continuous interval of 2.8 days, the standard

deviation of the input offset voltage was measured to be 1.0 µV for the amplifier

attached to dot 1, and 0.6 µV for the amplifier attached to dot 2. The amplifiers

were characterized in the same locations where they were used for measurement, as

no active temperature control of the amplifiers was performed during measurement or

characterization.

S8.2 Magnetic field calibration

Because of small but uncontrolled sample tilt with respect to axes defined by the two-

axis magnet in our experimental dewar, energizing only the in-plane coil will give rise

to a perpendicular component as seen by the sample, and vice versa. To apply a

magnetic field precisely in the plane of the sample, as is done in Fig. 4, we calibrate in

situ using a four-wire current-biased measurement of Shubnikov-de Haas oscillations in

resistance, as a function of both the nominally perpendicular field Bz and nominally

in-plane magnetic field By.

Fig. S9 shows the Shubnikov-de Haas oscillations observed near a perpendicular

magnetic field of 0.3 T, and how they track with an added in-plane field. The geometry

of the 2DEG mesa is not well defined, so both even and odd components of magnetore-

sistance contribute to the measured resistance. The observed stripes correspond to a

constant perpendicular field. The slope of the stripes gives a compensation factor such
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Figure S9: Four-wire resistance as a function of the y-axis (in-plane) and z-axis (per-

pendicular) magnetic fields. The slopes of the solid white and dashed white lines are

m = −0.0206 and m = −0.0203, respectively. This corresponds to a 1.2◦ misalignment

between the y-axis field and the plane of the sample.

that any perpendicular component introduced by the in-plane magnetic field may be

cancelled out by application of an added perpendicular field to within a few percent.

Even an applied field in the plane of the sample will subtly modify orbital states

because of the finite extent of the electronic wavefunctions normal to the plane, an

effect we neglect in our analysis.

S8.3 Bias spectroscopy

To apply and maintain a particular EPZ while changing the applied source-drain biases

VSD1(2) across dot 1 (2) requires some care. Gates P1 and P2 as well as leads S1

and S2 all have capacitances to both dot 1 and dot 2. These capacitances must all

be characterized every time the W gates or magnetic field are changed. Once the

capacitances are known, electrostatic gating of the dots by the biased source leads

may be compensated by changes in VP1 and VP2. Further details have been published

previously [12].

22



References

[1] Wilson, K. G. The renormalization group: Critical phenomena and the Kondo

problem. Rev. Mod. Phys. 47, 773–840 (1975).

[2] Bulla, R., Costi, T. A. & Pruschke, T. Numerical renormalization group method

for quantum impurity systems. Rev. Mod. Phys. 80, 395–450 (2008).

[3] Weichselbaum, A. & von Delft, J. Sum-Rule Conserving Spectral Functions from

the Numerical Renormalization Group. Phys. Rev. Lett. 99, 076402 (2007).
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