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ABSTRACT

In this work, the simulated adulteration of coconut drink by dilution with water was investigated using
laser-light backscattering (LLB) imaging. The laser vision system consisted of six low power laser modules,
emitting 1 mm diameter beams at wavelengths of 532, 635, 780, 808, 850 and 1,064 nm. The backscattering
images were acquired by a grey scale camera with 12 bit resolution. Eight parameters were extracted to
describe the backscattering profile. The methods of linear discriminant analysis (LDA) and partial least
squares (PLS) regression were performed on LLB parameters for classifying and predicting dilution level of
adulterated coconut drink samples. Based on the results, LLB signals responded sensitively to adulteration.
LDA results showed that adulterated samples were correctly recognized with accuracies between 60 and
100%. PLS models were able to estimate the adulteration level of samples with coefficients of determination
of 0.57–0.97 in validation. This result demonstrated the potential of laser-light backscattering imaging as a
rapid and non-destructive optical technique for evaluation of coconut drink adulteration.
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INTRODUCTION

Food adulteration is a prohibited act to gain quick economic profit, in which the quality of
original food is deliberately reduced by either adding inferior substances or removing valuable
components (FDA, 2009). Adulteration can mislead the consumers about the quality of products
(Aouadi et al., 2022; Bodor et al., 2023). Moreover, allergic reactions may occur, when
consumers do not know the exact components of foods they are consuming. Every year, the
economic damage caused by food adulteration was estimated to be around V30 billion for
the global market (Steinberg et al., 2019) and V8 to V12 billion for the European market
(European Commission, 2020).

Fruit-based drinks are rich in nutrients and bioactive substances, such as carbohydrates,
proteins, vitamins, antioxidants and minerals. Among fruit-based beverages, coconut drink is
known for not only its nutritional value but also as an isotonic drink thanks to its excellent
rehydration index and blood glucose response (Intan Kailaku et al., 2015). Fruit-based beverages
have become one of the most frequently adulterated foods because of their high market value.
The practice of adulteration of fruit-based drinks is mainly performed through dilution with
water, addition of sugar and food additives, and addition of less valuable juices; of which water
dilution is the most common one because it is simple and inexpensive.

In order to protect the consumers from low quality beverages, numerous studies have been
conducted to develop non-destructive techniques for detection of adulterated products. These
methods can offer several advantages over chemical approaches, including quick data acquisi-
tion, no or less requirement for sample preparation, and environment protection (Soós et al.,
2014; Vitális et al., 2020; Zaukuu et al., 2022). For instance, infrared (IR) spectroscopy was
applied for quantifying addition of sugar to orange juice (Ellis et al., 2016), detecting artificial
sweeteners in commercial fruit juices (Mabood et al., 2018), identifying exogenous carbohy-
drates in coconut water (Teklemariam et al., 2021), and classifying grape nectars adulterated
with apple juice and cashew juice (Miaw et al., 2018). Sitorus et al. (2022) used mid-infrared
spectroscopy in range of 4,000–16,702 nm for detecting adulteration of coconut milk with
distilled water (Sitorus et al., 2022). In addition, a combination of electronic tongue and elec-
tronic nose was used to detect adulterants in tomato juices (Hong et al., 2014). Moreover, digital
image analysis was applied to identify adulteration in Physalis juice (Licodiedoff et al., 2013),
and orange juice (Stinco Scanarotti et al., 2014).

Among non-destructive approaches, LLB imaging is a novel technique for food quality
control, which has found its application in determining quality attributes of fruits and crops
during ripening and storage (Adebayo et al., 2017; Ali et al., 2017; Sanchez et al., 2020), detecting
defects in fruits (Mollazade et al., 2017; Wu et al., 2020), monitoring quality parameters of fruits
in postharvest processes (Hashim et al., 2013; Dénes et al., 2013). The principle of LLB imaging
is based on the phenomenon of light backscattering that occurs when the light photons interact
with internal components of food matrices and scatter back to the surface (Mollazade et al.,
2012). The backscattering profile at the surface of food matrices is related to their quality
attributes (Lu et al., 2006). Thus, measurement and analysis of the backscattering profile of
foods could provide information about their quality.

LLB imaging was mainly used for quality evaluation of agricultural produces, its application
on transparent or partially opaque materials is very limited. To the best of our knowledge, there
is no literature on application of LLB imaging for detecting adulteration of coconut drinks. Thus,
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the main objective of this work aimed at investigating the applicability of laser light backscat-
tering imaging technique for detection of adulterated coconut drink.

MATERIALS AND METHODS

Materials

Ready-to-serve coconut drink was purchased from the distributor SPAR Hungary Ltd. (Bicske,
Hungary). The product ingredients mainly included water (92%), sugar, coconut milk (3%), and
stabilizers. The samples were stored at room temperature (approximately 20 8C) before the
experiment.

Simulation of adulteration

Simulation of adulteration of coconut drink was performed at five dilution levels by adding
distilled water to the original coconut drink at 5% (v/v) increment to make five adulteration
levels (0 as original drink, 5, 10, 15, and 20%).

Acquisition of laser backscattering images

The laser-induced diffuse reflectance system consisted of six low power laser modules, emitting
1 mm diameter beams at wavelengths of 532, 635, 780, 808, 850, and 1,064 nm. Direct reflec-
tance was avoided by adjusting the incident angle of the light beam at 158. Backscattering images
were taken using a 12 bit camera (MV1-D1312, Photonfocus, Lachen, Switzerland) with 0.113
mm/pixel spatial resolution. To improve the signal-to-noise ratio and prevent the interference of
environmental light during the measurement, image acquisition was conducted in a dark cham-
ber. Figure 1 presents the setup of the vision system.
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Fig. 1. Setup of the laser vision system
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After being well stirred, samples were poured into a Petri dish with 3.5 mm height. For
measurement of each adulteration level, three samples were used. Image acquisition of each
sample was carried out using six laser light sources sequentially. Three images were captured for
each wavelength and saved as binary image data. As a result, 18 images were obtained for each
sample. The measurement of a sample lasted for less than 1 min; therefore, the result was not
affected by sedimentation.

Method of image analysis

The captured images were processed using an algorithm, which was written in GNU Octave
software (version 4.4.1). The binary images were converted to greyscale images (Fig. 2). Light
intensity (0–4,095) was normalized to the range of 0–1. The 1 dimensional scattering profile was
computed by averaging normalized intensity (Fig. 3). The LLB profile had a symmetric shape
with highest intensity at the light incident point. As the distance from the incident point
increased, the light intensity declined gradually. The LLB parameters were extracted (Fig. 4),
including the peak widths at three selected intensity levels of 75%, 50%, 25% (D75, D50, D25);
and the illuminated areas at selected intensity level of 50% (A50), the ring of 25–75 (A2575). The
sharpness and the shape of the profile were described using the ratios of the widths (D25/D75,
D50/D75) and the areas (A50/A2575).

Statistical analysis

Statistical analyses were performed using the free software R (version 4.2.1, R Foundation for
Statistical Computing, Vienna, Austria) and RStudio (version 2023.06.1 þ 524, Posit Software
PBC, Boston, MA, USA). Two-way analysis of variance (ANOVA) was used to test significance
of effects of adulteration and wavelength on LLB parameters (P ≤ 0.05). Correlation analysis was
performed to determine the relationship of LLB parameters and adulteration level. The classi-
fication ability of LLB imaging over adulterated samples was evaluated using linear discriminant
analysis (LDA). The percentage of correctly classified data in validation was used to evaluate the

Fig. 2. Example of a backscattering image
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classification power. Partial least squares (PLS) regression was used to predict the adulteration
level. PLS model performance was evaluated based on coefficient of determination (R2) and root
mean squared error (RMSE) in validation. Both LDA and PLS models were trained using 80%
randomly selected data and validated using the remaining 20% data.

RESULTS AND DISCUSSION

Change of LLB parameters

The significant changes of LLB parameters according to dilution level and wavelength were
evaluated using two-way ANOVA at significance levels of P < 0.05 (Table 1). The result showed
that adulteration had significant effects on parameters related to the peak widths and the
illuminated areas of LLB profiles, including D75, D50, D25, A50, and A2575 (P < 0.05).

Fig. 4. Description of extracted backscattering parameters

Fig. 3. 1 dimensional profile of LLB signal
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Meanwhile, the parameters describing the sharpness and the shape of signals (D75/D25,
D50/D25, A50/A2575) did not undergo any significant changes (P > 0.05). Significant variation
of LLB signals by wavelength was also observed. D25 (F5 184.99) and A2575 (F5 151.36) were
the most sensitive parameters to wavelength, whereas the two ratios of D50/D75 (F 5 2.86) and
D25/D75 (F5 9.74) had the lowest response. Furthermore, all parameters showed no significant
interaction effects of factors (P > 0.05), except the ratio A50/A2575 (P < 0.05).

The relationship of measured backscattering signals and adulteration level was explored
using correlation analysis (Table 2). The parameters for the widths and areas of profile (D75,
D50, D25, A50, and A2575) had stronger correlation with adulteration level than their ratios
(D25/D75, D50/D75, and A50/A2575). The strongest correlations were observed for A50 and
A2575 at 635, 780, 808, 850, and 1,064 nm with absolute values of correlation coefficient up to
0.96. As a colloidal system with oil-in-water emulsion, the coconut drink contains fat droplets
which mainly scatter the light. In diluted samples, the reduction in concentration of fat can be
the reason for the change in light backscattering. This assumption is supported by Qin et al.
(2007), who observed a correlation of reduced scattering coefficient and fat content of milk
(Qin et al., 2007). Additionally, according to Mie’s scattering theory, the scattering intensity is
correlated to the refractive index ratio between scattering particles and liquids surrounding the
particles (Mie, 1908). In this work, the addition of water to coconut drink samples changed their
refractive indices, thus varying the light scattering.

Table 1. ANOVA F-values of LLB parameters

Factor LLB parameter Mean Square F P

Wavelength D75 319.65 100.61 <0.001
D50 691.59 138.13 <0.001
D25 2,606.53 184.99 <0.001

D50/D75 0.06 2.86 <0.05
D25/D75 0.95 9.74 <0.001

A50 625,015.05 118.63 <0.001
A2575 4,819,088.13 151.36 <0.001

A50/A2575 0.03 35.48 <0.001
Dilution D75 12.03 3.79 <0.05

D50 29.22 5.84 <0.001
D25 71.00 5.04 <0.001

D50/D75 0.01 0.69 0.60
D25/D75 0.07 0.70 0.60

A50 27,483.43 5.22 <0.001
A2575 201,112.93 6.32 <0.001

A50/A2575 0.00 0.54 0.71
Wavelength3 dilution D75 2.92 0.92 0.57

D50 4.95 0.99 0.49
D25 9.17 0.65 0.85

D50/D75 0.01 0.58 0.91
D25/D75 0.07 0.67 0.84

A50 5,130.78 0.97 0.51
A2575 31,400.86 0.99 0.49

A50/A2575 0.00 1.94 <0.05
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Based on the above findings, it can be concluded that LLB parameters had high responses to
adulteration and this proposed technique is promising for detecting adulteration in studied
coconut drink.

Detection of adulteration

In this work, the feasibility of LLB imaging for detection of adulteration in coconut drink was
investigated using the methods of LDA and PLS regression. LDA and PLS models were built
using LLB parameters of single wavelength (8 parameters per wavelength) and their combina-
tion of all six wavelengths (48 parameters). All models were trained using 80% randomly
selected data and validated using the remaining 20%. The quality of models was evaluated using
calculated metrics in validation.

For classification, Table 3 illustrates the average accuracy of LDA models. Based on the
result, LDA models of 635, 780, 808, 850, 1,064 nm achieved good accuracy of 80%. Meanwhile,
the LDA model of 532 nm performed with the lowest success rate of 60%. The highest classi-
fication power was observed for the LDA model of all wavelengths with the accuracy of 100%.
Regarding adulteration level quantification, the performance of PLS models is given in Table 4.
The number of latent variables (LV) varied in range of 2–3, which was determined at minimum
values of RMSE. In general, PLS models achieved R2 5 0.57 – 0.97 and RMSE5 0.309 – 1.651%.
The quality of a model is considered excellent when its coefficient of determination is greater
than 0.90 (Cuadrado et al., 2005). For single wavelength, the best performances of the PLS model

Table 3. Performance of LDA classification

Wavelength Classification accuracy

532 nm 60%
635 nm 80%
780 nm 80%
808 nm 80%
850 nm 80%
1,064 nm 80%
All wavelengths 100%

Table 2. Correlation coefficient of LLB parameters and adulteration level

LLB parameter

Wavelength

532 nm 635 nm 780 nm 808 nm 850 nm 1,064 nm

D75 �0.22 �0.8 �0.85 �0.61 �0.17 �0.47
D50 �0.25 �0.84 �0.75 �0.6 �0.63 �0.57
D25 �0.1 �0.77 �0.59 �0.6 �0.79 �0.78
A50 �0.3 �0.95 �0.96 �0.9 �0.62 �0.46
A2575 �0.08 �0.94 �0.90 �0.9 �0.91 �0.92
D50/D75 �0.06 0.22 0.16 �0.02 �0.44 0.11
D25/D75 0.18 0.49 0.03 �0.14 �0.45 0.2
A50/A2575 �0.71 �0.81 0.55 0.08 0.48 0.27
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were observed at 780 nm (R2 5 0.90, RMSE 5 0.458%) and 1,064 nm (R2 5 0.93, RMSE 5
0.545%). Meanwhile, the PLS model at 532 nm was not appropriate for determination of adul-
teration level due to its poor performance (R2 5 0.57, RMSE 5 1.651%). Similar to LDA
classification, the use of multispectral data with combination of all wavelengths resulted in an
increase of PLS model accuracy with R2 5 0.97 and RMSE 5 0.352%.

Our findings demonstrated that LLB imaging is capable of identifying adulteration by water
addition in coconut drink used in present study. The proposed technique achieved similar
performance with the mid-infrared spectroscopy (4,000–16,702 nm), applied by Sitorus et al.
(2022) for predicting adulteration level in water-adulterated coconut milk. Their PLS model
obtained high accuracy of prediction with R2 > 0.90 and RMSE <2% (Sitorus et al., 2022). For
adulteration detection in transparent and partially opaque products, application of LLB imaging
is very limited. Recently, a very first research was performed by Hencz et al. (2022) who
investigated the feasibility of LLB imaging in detecting adulterants in red and white
wines (Hencz et al., 2022). For detection of water dilution, their LDA models (success
rate ≤76.67%) obtained poorer accuracy than ours. Moreover, the prediction error of their
general linear model (20.39%) was much higher than that of our PLS models (<2%). The results
of this work suggest that the proposed method can be used for adulteration detection of coconut
drink.

CONCLUSION

The applicability of LLB imaging for detection of coconut drink adulteration was confirmed. The
results of LDA showed that the proposed technique was able to recognize the diluted
coconut drink used in the present work. All LDA models obtained high accuracy of discrimi-
nation with success rate up to 100%. LDA model produced no misclassification in combination
of all wavelengths. PLS models obtained high performance with R2 > 0.80 and RMSE
<1% using backscattering signals at single wavelengths of 635, 780, 808, 850 and 1,064 nm.
The quality of the PLS model was improved when signals of all wavelengths were used
(R2 5 0.97, RMSE 5 0.352%). Based on the results, we suggest multispectral measurement in
detection of adulteration with a combination of 532, 635, 780, 808, 850, 1,064 nm. However, our
work has a limitation since its findings are based on the measurement of a small sample from
one manufacturer. More studies are needed with larger samples to demonstrate the promising
application of the technique in real life.

Table 4. Performance of PLS models

Wavelength LV R2 RMSE (%)

532 nm 2 0.57 1.651
635 nm 2 0.81 0.309
780 nm 2 0.90 0.458
808 nm 2 0.81 0.479
850 nm 2 0.83 0.494
1,064 nm 2 0.93 0.545
All wavelengths 3 0.97 0.352
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