DIMENSION AND ENTROPY FOR A CLASS OF STOCHASTIC PROCESSES

by
Mars RUDEMO!

Introduction

In the following we shall give a definition of dimension and entropy
for a class of stochastic processes with the property that the sample functions
are step functions with probability one.

Dimension and entropy together give a measure of the uncertainty associ-
ated with a random variable, or in our case a stochastic process, see [1]and [9].

In § 1 we give some examples of stochastic processes, whose sample
functions a. s.2 are step functions — such a process is called a purely disconti-
nuous process, a PDP.

Some known properties of the dimension and the entropy for random
variables and vectors, needed in the following, are stated in § 2.

In § 3 we define dimension and entropy for a class of PDP : s regarded
on a finite interval (0, 7). As an example the dimension and entropy of a
Poisson process are calculated. The asymptotic 7-dependence of the dimen-
sion is studied in § 4 for ergodic Markov chains with a finite state space and
for renewal processes.

For vector processes the corresponding definitions are made in §5.
An example with Poisson processes is discussed.

Finally in § 6 we give a method of approximating by PDP : s stochastic
processes whose sample functions are a. s. continuous. Especially the Brownian
motion is discussed and the dimension of the approximating PDP is studied.

§ 1. Purely discontinuous processes

By a stochastic process we shall mean a one-parameter family of random
variables (measurable functions on a probability space), see [6]. The measure
of the probability space will always be assumed to be complete. The parameter
will be called time. We shall only consider processes on the interval [0, o).
The stochastic process is then written {X(¢): £ € [0, o)} or {X(f, w): ¢ € [0, o),
o € Q}. Here 2 is the space of elementary events. The sample function corre-
sponding to o is X(-, w).

A stochastic process is called a purely discontinuous process, a PDP,
if the sample functions a. s. are step functions, with a finite number of jumps
on every finite time interval. The time points corresponding to jumps will be
called points of jump.

! Goteborg.
*a. s. is used as short for “almost surely”, i.e. ,,with probability one’.
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If X() =X , X(t)), t € [0, o), where {Xt): t € [0, 0)}, ¢ =
— A4 [ % d.I‘G PDP S, then {X(t): t € [0,00)} is called a purely disconti-
nuous vector process.

General conditions for a process to be a PDP have been given by M.
Fisz, see [7].

Important types of PDP : s are found among Markov processes and rene-
wal processes.

A sufficient condition for a separable Markov process {X (t) t€
with stationary transition function p(¢, & 4) = P{X(s +1) € A| X(
to be a PDP is that

(1) linol p(t. & {&) =1
t—
uniformly in &, see [6], theorem VI. 2.4.
By a renewal process, see [10], we shall mean a process { X(¢) : ¢ € [0, )},

X(t) = maxmn,

=t
where 7, < 7, < 73 < ... arerandom variables taking values on the interval
[0,90) and such that 7,, T,—17;, T; — Ts, . . . areindependent and equidistributed.

Let P{zr, = 0} < 1. Then {X(t):¢ € [0,c)} is a PDP. For let a >0 be
chosen so that P{r; > a} >0 and let A, be the event that 7z, — 7,_; > 0.
In order to show that {X(¢) : ¢ € [0, =)} is a PDP we have only to prove that
P{lim 7, = oo} = 1. A sufficient condition for this relation is that

N—>eo

P{lim sup 4, } =1. But this equality follows from the Borel —Cantelli lemma since

SP{4,}=P{r,>a} 31=co.
=2

n=2

§ 2. Information theoretic background

If & is a discrete random variable taking the value 2, k. =1,2, ...,

with the probability p,, k = 1,2, ..., the entropy H (&) of & is defined by
Hy&) = — 3 pilog py,
k=1

if the series is convergent. The base of the logarithm i@ here arbitrary.

Let & be a real random variable, and put &™ = — [n &], where [x]is the
n

integral part of x. If H (£®) < co we put, according to A. RENYI, see [9],

(n)
d = d(&) = lim Zol&7)
n-= logn
provided that the limit exists, and call d the dimension of &. If further the
limit
H (&) = lim [H(§™) — dlog n]
NnN—>co
exists, it is called the d-dimensional entropy of &.
A random variable & is said to be the mixture with weights {¢,}, ¢, =0,
Y q, =1, of the variables {&,} if the distribution function of & is X' ¢, Fy,
K k
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where £ is the distribution function of &,, If & is a random variable, taking
the values {k} with probabilities {g,} and if the conditional distribution
of & given that NV = k is equal to the distribution of §,, than & is the mixture
of {&,} with weights {g,}.

If £ is the mixture of &, k =1, ... m, with weights ¢q,, k =1,

then
qu o8 = Hy(8™) < 291. o(£P) — X qlog gy
k

The first inequality follows from Jensens inequality applied to the convex
function x log @, and the second inequality follows from the fact that for
discrete variables the entropy of a mixture is always less than or equal to the
sum of the weighted average of the entropies of the components in the mixture
and the entropy of the mixing distribution, in this case {g,}, see [1]. Dividing
with log n and letting n pass to infinity we obtain

(2) (&) = 3q,d(&)
o

If the components in the mixture have pairwise orthogonal® and elementary*
distributions in the sense of [1] we further have, see [1],

(3) Hy(&) = 3 g Halé) — 3 qilog g,
k=1 k=1
where d, = d(&,).
Let  be a random vector, { = (&, ... &). We put
g — (&) &)
no n
If H (M) < co the dimension of { is defined by
(1)
d = d({) = lim - H, (&™) !
n-= logmn

if the limit exists. If further the limit
H 4() = lim [H({™) — dlog n]

N—>oo
exists, it is called the d-dimensional entropy of {. If { has an absolutely con-
tinuous distribution and if H ({®) < oo then according to [9]

(4) dl)=r,
and
(5) H(0) = — | f(x) log f(a) do

see [9] and [4]. Here f(x) is the density function of { and the integral is taken
over the entire r-space.

3 £and 7 have orthogonal distributions if there exist two disjoint Borel measurable
subsets # and F of the real line, such that P{§€F} = P{n€ F} = 1.

4The distribution of & is called elementary if it is the mixture of a finite discrete
distribution and an absolutely continuous distribution whose density function is piece-
wise continuous, only has discontinuities of the first kind and is zero outside a finite
interval.



76 RUDEMO

§ 3. Dimension and entropy for purely discontinuous processes

Let {X(¢, w) :t € [0, ), w € 2} be a PDP. We shall regard the process
on the interval 0 <¢ < 7. Let N(T) = N(T, w) be the number of jumps
on this interval. We will first show that N(7', -) is a random variable.

Lemma 1. N(T, -) s a measurable function.

Proof. Let {r;} be a countable set of points dense in the interval (0, 7).
As shown below there then exists a sequence {f,}, where f, for each n is a
Borel measurable function from the n-space to the set of nonnegative integers
< m, such that a.s.

Bm FLX (. 0) 5 55 Xt 0)) = N(T, w) .

N—> oo
The lemma then follows from the fact that the limit of an a.e. convergent
sequence of measurable functions is measurable.

The functions {f,} can be chosen in the following way. For fixed n,
let ¢ and ¢” be indices such that r;, and 7. are the left and right neighbours
of r; among r,, ..., 7, For the least and the largest of », ..., 7, only one
neighbour exists. If z,, ..., x, are given real numbers, we let A(z,, ..., x,)
be the set of those z; : s such that x; = x; or ; = x;» and let m(xy, ..., x,)
be the number of different real numbers in A(x,, ..., z,). Then we can put

Tl Zis sy D) =MDy = romni B =1z

If the number of jumps of X(., ®) is finite on-the interval (0, 7), an
event which has probability one, then for fixed o

F(X(ry, @), .., X(rp, ©)) = N(T, o)

for sufficiently large n.
QED.

Note. The slightly complicated structure of the f,, : s in the proofis caused
by the possibility that some of the 7;: s may coincide with points of jump
with probability greater than zero. If this were not the case, or if the sample
functions a.s. were right or left continuous, we could have chosen f,(z,, ..., x,)
to be equal to the number of different numbers among z,, . .., , minus one.

Let t,(w), ... tyey(w) be the points of jump on the interval (0, 7')
ordered such that 0 <f < ... <ty < T. For simplicity we define f,(w) =
= T if k > N(T, w). Then {¢,} become random variables according to

Lemma 2. {,,k = 1,2, ..., are measurable functions.

(Sketch of ) Proof. As the proof is rather similar to the proof of lemma 1,
we will only indicate how it can be carried through. Let {r;} be given as in
the proof of lemma 1. Given X(r;, w), i = 1, ..., n, it is possible to choose
P (w), k=1,2, ..., among the numbers r,, ..., r, such that a.s.

lim £M(w) = ,(w) .

N—>eco
The number ¢{*(®) can further be chosen in such a way that the choice only
depends on the mutual size relations among X(r;, w), ¢ =1, ..., n. Then
{t(-)} and therefore also {£,(-)} become measurable functions. QED.
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A similar proof, which is completely left out, is also valid for the following

Lemma 3. X(¢, +0, ), k=1, 2, ... are measurable functions.

From now on we will drop w in the notations for random variables and
stochastic processes.

If we disregard X(t,), X(%,), ..., a sample function of our process can,
on the interval (0, 7'), a.s. be described by the (2N(T) -+ 1)-tuple

ET)=(t - - s tnery, X(4+ 0), X(8, +0), ..., X(Enery + 0)) -

In case X(t), X(t,), ..., are essential for the description of the stochastic
process the procedure has to be modified. However, if we know that the
sample functions a.s. are continuous from the left, or if we know that they
a.s. are continuous from the right, then &(7') a.s. determines the sample
functions on the interval (0, 7).

Now &(7T') can be regarded as the mixture with weights

(6) gn(T) = P{N(T) ==n}, n=0,1, ...,
of the variables
() &lT)=( ---stn. X(+0), X(t,4-0), ..., X(t,+0)),n=0,1, ...,

where the (2n + 1)-tuple &,(7') has the conditional distribution of the points
of jump and the corresponding X-values, given that N(T) = n. If ¢,(T) > 0
this conditional distribution exists according to lemmata 1, 2, and 3. From
the definition of a PDP it follows that

%qn(T) =1.

If §,(T) has a dimension and an entropy we denote them

(8) dulT) =d(¢:(T))
and
(9) H;(T) = Hayn(éa(T)).

As &,4(T) and &,(T) for n # m take values in spaces of different dimensions
it is natural to regard the corresponding distributions as orthogonal. The
relations (2) and (3) then motivate the following definitions.

Definition 1. If &,(7) for each n has the dimension d,(7'), the dimension
of the process {X(t) : ¢ € [0, o)} regarded on the interval (0. T') is defined by

(10) d7 = d7(X) = 3 q(T) dn(T),
n=0
if the series is convergent.
Definition 2. If &,(7') for each n has the dimension d,(7') and the entropy

H,;(T) and if the series (10) converges, the d7-dimensional entropy of the
process {X(t) : ¢ € [0, o)} regarded on the interval (0, T') is defined by

(11) HT = H'(X) = 3 q,(T) HoT) — 3 q,(T)log 4,(T) ,
n=0 n=0

if the series are convergent.
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Note. In these definitions we treat the points of jump and the correspond-
ing process values in the same way (see the definition of £,(7')). It may i
some instances be more natural to have different ‘‘scales” of uncertainty for
time values and process values.

For later application we note that if
d.(T)=an +b,n=0,1,
then
(12) dT = am(T)+ b,

where m(T) is the average number of jumps on the interval (0, 7"),
T) = 2 n (],,(T) s
n=0

Example. Let {X({) :¢ € [0, o)} be a Poisson process with parameter

A, ie. X(0) = 0 and
[A(t — T)]"—m
P{IXt)=n|X(r)=m}="———""—e M- n>m,t>7.

(n —m)!
Let further the process be separable. As (1) is satisfied uniformly for &=
= 0,1, .. , the process is a PDP. We will now calculate its dimension and
entropy.

Regard the process on the interval (0,7'). The number of jumps on
this interval is a.s. X (7). We then have to determine the dimension and
entropy of the random vector (f,, ..., %, given that X(7T) = n. As before,
ty, - .., tnare the points of jump ordered in such a way that 0 < ¢, < ... ¢, < T.
Since the relation X(¢, + 0) = k& holds a.s. we need not take into account
the X-values at the points of jump when calculating the dimension and the
entropy. The distribution of (¢, ..., ¢,) is uniform in that region V of the
n-space where 0 <z, < ... <z, < T, {x;} being the coordinates, see [11]
p 86. The region V has the volume L'T”. According to (4) and (5) we have

n!
Ul = o vnbn) =10
and
™ i | n
Ho (G v sl = ilg dx ...drn:logi.

P g b "l
v

The dimension of the process is
— S aP{X(T)=n} = AT
n=0

The corresponding entropy is

A TP /e Ty @are"
W 3 ALY arg, S e-1T log e-iT| = [110 A|T
,é) n! gn! - ! n! ' &
Let {X,(t) :t € [0, o)}, i =1, ..., m, be stochastic processes. We say
that {X(¢) : ¢t € [0, o)} is the mixture with weights p;, i=1,...,m. p; >
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=0,2p; =1, of the processes {X,¢) : £ € [0,00)}, ¢ =1, ..., m, if there
is a random variable N, taking the value ¢ with the probability p;, and such
that if N = ¢, then X(¢) = X (¢) for all £ € [0, oo)

Theorem 1. Let {X t) :t€[0,0) }be the mixture wzth wezghts pit =1,
of the PDP:s {X(t):t € [0,00)}, ¢=1, ... m. Then {X(t):¢ € [O, 00} is
a PDP and

dT(X) = Sp,- dT(X)),
i=1

provided that the right member exists.

Proof. 1t is obvious that {X(¢) : ¢ € [0, 00)} is a- PDP. Let ¢n(T), &x(
and d,(T) be defined according to (6 ), (7) and (8) and let ¢)(T), t(‘)(T) and
d)(T) be the corresponding quantities for {X(t) : ¢ € [0, o)}, i = 1, N
Then &,(T) is the mixture with weights

(i)
r,-_ (T),i:l,...m,
qn(T)
of &(T), i =1, ... m. Since
2"1 q")
we have X r; = 1. From the relation (2), or rather from the corresponding

relation for random vectors, we have

m o
= 2 T dﬁ{)(T)
i=1
Therefore
dT(X)= 3 q.(T)d(T) = ZP 24"’ T)d(T )Z_\_ p:dT(X)) .
n i

QED

§ 4. Dimension for Markov chains and renewal processes.

Let {X(f):f € [0, o0)} be a Markov chain with stationary transition
function and finite state space, which, we assume, consists of the integers
. N. Put

pi(t) = P{X(t+s)=j| X(s) =1}, 4,j=1,... N.
As t — oo, p;(t) tends to a limit, see [6]. If this limit is independent of i,
lim p, (1) = P
t—>oo
the chain is said to be ergodic. Then irrespective of the initial distribution

lim P{X(1) = j} = P

and if the initial distribution is equal to { P}, the stationary distribution, then
for all ¢

(13) P =i} =P

fudon MIA
KONYVIARA
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Suppose that p;;(t) - d;;ast — 0, i.e. the condition (1) is satisfied. If {X(¢) :
€ [0, o0)} is sepa.rable then it is a PDP. Further, see [6], the transition 1nten-
sities
— lim pll( )
t—-0 1
exist.

Theorem 2. If {X(t) :¢t € [0, )} is a separable, ergodic Markov chain
with finite state space and stationary transition function, and if the transition
probabilities p,;(t) tend to o, ; as t—0, then the dimension dT(X) exists for
every T >0 and is a dszerentzable function of T such that

d
lim —d7(X)= S P,q; .
T 2 9

Ty

Here { P} is the stationary distribution and {q;} are the transition inlensities.
If the imitial distribution is equal to {P}, then

TX):(ZPiqi)T

for all T > 0.

Note. CHINTSCHIN (1953) showed for a finite stationary and ergodic
Markov chain with discrete parameter that the r-step entropy is r times the
onestep entropy. The later part of theorem 2 gives a corresponding property
for Markov chains with continuous parameter.

Proof. If £ and 7 are random variables or vectors, whose dimensions
exist,

max (d(£), d(n)) < d(§n) < d(§) + d(n) .

This follows easily from the corresponding property of the entropy. Therefore
dlty, ... 1) S d(E(T)) < dlt,, ... 1) + 3 dX(t 4+ 0)),
k=0

where ty = 0. As X({,+0), k=0, ...,n, are random variables taking a
finite number of values their dimensions are zero. Consequently

WEAT N =Bl v i+ 8 -

INOW (835t 55 tn) has an absolutely continuous distribution. In order to prove
that this is the case it is sufficient to show that if 0 <a, < b, <a, < ...
. < b, £T then

Plo,=1. = b,

' §

i=1...n|NT)=n}=<CJI b —a,),
i=1

where C is a constant independent of {a;} and {b;}. As before N(T') denotes
the number of jumps in the interval (0, 7). Now, if 0 <a < b
PIN(D) — N(a)=0|X{g) =} =P{X(H) =4, a 2t < b| X(a) = &} = e~ ¥+,

see [6]. Put
g = maxg;.
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Let A be a set in the Borel field generated by {X(¢) : 0 < ¢ < a}. Then
P{N() —N(@) = 1|4} = SP{N(d) —N(@) =1, X(a)=1i|4} =

i

= 2 P{N(b) — N(a) 21| X(a) =1} P{X(a) =i |4} =
= (1 — e %0-0)P{X(a) = i| 4} < (1 —e~%-9) 3 P{X(a) = ¢| 4},
J i

which gives
P{N(®) —N(@)=1|4} <q(b—a).

Consequently
1
= =1 ...0|NT)=n}< e N =
Pla,<t,<b,,1 : n|N(T) n}SP{N(T)zn}P{N(b')
1
B ARSI T U S — L.
@21, s Y

= Nlo) = 1}L]) P{N () — N(a;) 21|N(b) — N(a)21,j=

— ) e _— q” $ e
=1,...1 l}éP{N(T)zn},l:II(b' ).

As the distribution of (¢, ..., ¢,) is concentrated to a bounded set in

the n-space
Hi([t]; <. [t:]) < oo,
and according to (4)
AT =dlty, ... 4)=mn.

Then (12) shows that d7(X) = m(T), the average number of jumps on the
interval (0, 7). Let V(T') be the average number of jumps to j given that
X(0) = 7. Then according to [3], theorem II. 16. 2, V' ;,( - ) is differentiable and

}ifn_rn"j(T) = P;q;.
As
m(T) = ZP{X(0) =i} V,(T),
i
m(-) is differentiable and
lim m"(T) = 2 P{X(0) =i} P;q;= 2 Pjq;.
L] J

T—>oo

This proves the first part of the theorem. The second part now follows from
the fact that if the initial distribution is equal to the stationary distribution,
then according to stationarity (13)

m(T,+ Ty) = m(T) +m(Ty) ,
all 7, T5/>.0: QED.

6 A Matematikai Kutaté Intézet Kozleményei IX. A/1—2.
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Let 7, 7,, ... be nonnegative random variables such that 7,, 7, — 7,
Ty — Tgy - ». ATO 1ndependent and have the same distribution function F.
Then ¥ will be called the gap distribution function of the renewal process
{X(t) :t € [0, o)} where,
X(t) =maxn.

=t

If
= j:r(lF(x) < oo
0

we get the corresponding stationary renewal process by letting 7; have the

distribution function
b

F*(x) = lJ (1—F(y)ldy,
122

0
see [11].
Theorem. 3. If {X(f) :t € [0, o)} is a renewal process with absolutely
continuous gap distribution function F, then dT(X) exists for every T > 0 and

T
Jig &) _ 1
T-= T )7
where

= ( xdF(x)
0

. 1
If p = oo then — is to be interpreted as zero. If p < o the corresponding statio-

uary renewal process has the dimension

Gl
u

Proof. Knowledge of the points of jump ¢, <7, < ... <(, makes it possible
to determine the corresponding X-values and therefore

HE(T)) = dlls & v x5 8g)-

The condition that the gap distribution is absolutely continuous implies the
absolute continuity of the distribution of (¢, ...,7,) given that N(t) =
Indeed if 0 < 2, <, ... <z, < T we have

Pit, <, i=1,...0|NT) =n}t=

Xy Xy X5 b

1 . ,vn
i y) fy, — v Hs =) » o » I = By} [1 =
P{N(T)=n} J J J S [y, V(s — ) fly Yn—1) [
0 v ¥ Yn—1
_F(T—yn)]dyl d:l/”,
where f is the derivative of ¥, and differentiation with respect to @, @,, ..., @,

gives the desired result. In the stationary case the proof is similar.
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According to (4) one has
At Seuply) =M

(cf. the proof of theorem 2). Therefore d”(X) = m(T), the average number
of jumps on the interval (0, 7). Now

lim — _-y..J

T—e T w

see [10], and in the stationary case

for all T, see [11].
QED.

If the gap distribution function has moments of higher orders, one
can give a more detailed description of m(7"): s asymptotic behaviour, see
[10]. The same is true of the dimension d7.

§ 5. Dimension and entropy for purely discontinuous vector processes
Let {X(t):¢ € [0, o)} be a purely discontinuous vector process, i.c.
X0 = (X ), .. X)), 020 < &0,

where {X,(t) :t € [0, °)}, k=1, ..., r, are PDP : s. By N,(T') we denote the
number of jumps on the interval (0, 7') of the k : th PDP, k = 1, ..., r. Put

N(T) = (NT), . ... NAT)).
If n = (ny, ..., n,), where {n,} are nonnegative integers we put

gn(T) = P{N(T) = n}.

The points of jump of the k : th process are denoted ¢, < ¢;, < .... Measura-
bility questions are here treated in the same way asin § 3. For n = (n;, ..., n,)
we let

‘EH(T) = (tll’ .o "tlnl’tZIY b trn,, X1(+ O),
X,(t3 4+ 0), ... X,(trn, +0))

have the conditional distribution of the points of jump and the corresponding
X,-values, k =1, ..., r, given that N(T) = n. If the dimension and entropy

of £,(T) exist we denote them d,(7') and H, (7). If we change 5 into
n=0

oo

2

0 n,=0

4 8

ny,=0

n,
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we can use the definitions 1 and 2 literally to define the dimension
AT =d"(X)=d"(X;, ... X,)

and the d7-dimensional entropy
Y s HH X = B K vy

of {X(¢) : ¢t € [0, )} regarded on the interval (0, T').
With these definitions we find for example:
If {X,(¢) :¢€[0,)}, k=1, ...,r, are independent processes, then

B (K i vn v Kj== Zd(E)
k=1
and

HT™(X,;,...X,) = ngT(Xk),

if the respective right members exist. The proofs of these relations are straight-
forward computations from the definitions.

With » = 2, i.e. with two PDP : s, one can now define counterparts to
mutual information and conditional entropy for pairs of random wvariables.
For example, the conditional dimension and entropy of the process {X(¢) : ¢ €
€ [0, o)} regarded on the interval (0, 7') given the process {Y (f) : ¢ € [0, o)}
on the same interval are defined by

dT(X|Y)=d™(X, Y)—d¥(Y)
and
HT(X|Y) = HT(X, Y) — H'(Y),

if the right members exist, cf. § 4 of [1].

An example with Poisson processes. Let {X(f) :¢ € [0, 00)} and {Z(f) : ¢
€ [0, o)} be independent separable Poisson processes with parameters 4 and
p. Let Y (t) = X(t) + Z(t), for 0 < ¢t < oo. Then {Y(¢) : ¢ € [0, =)} becomes
a separable Poisson process with parameter 2 + u. We shall now calculate
d%X,¥Y), HUX,Y), d"(X]Y) sod HY(X|Y).

Let N,(T) and N(T') be the number of jumps of X(¢) and Y () on the
interval 0 < ¢ < T. For N(T) =n and N,(T) = n, we let

t = (o vouln)ity Ll o iy
and
=Ty s e T ) n TS TR wes L Ty

denote the points of jump of Y (-)and X(-). Then a.s. for every k, 1 < k < n,,
1, =1, for some [, 1 <! < n. The conditional distribution of 7 given ¢ is
finite with ( .

n
Therefore, cf. 'lche example of § 3 in this paper and also § 4 of [1],

possible outcomes, all of which have the same probability.

dit, ) =dt) ==n
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n]
”

From the definitions of dimension and entropy we then have

and

H(t,7) = Iog% -+ log

dT(X,Y) = 5 2"‘ PLX(T)=n5, T(T)=n}w,
=0

n n,=0

oo n Tﬂ i
HUX.Y) =2 = PIX@)=un, ¥({Fy=m} [log — +log f:” 5
P o |

n=0 n,=0
e n
— 3 2 P{X(T)=mn,, Y(T) = n}log P{X(T) =n,, Y(T) =mn},
n=0 n,=0
which after some calculations gives that
dT(X,¥)=(A+mT,
H'(X,Y)=(A+u)Tloge —ATlogA —uTlog u.
Asd™(Y)=(A+p) T and H™(Y)= (2 + ) T[log e — log (1 + p)],
see the example in § 3, one has that
dF(X|Y)=0,
HT(X|Y)=[(A+ p)log (A + p) — Alog A — plog u] T

As the conditional entropy in this case is zero-dimensional it ought
to be possible to calculate it without the use of the dimension concept. This

is also the case. Let namely 4 = {¢,, ...,t,} be a partition of the interval
O0,T),0<t<t,< ...<tp<T, and put
|4]= max (t,—ty),
1gign+1
where t, = 0 and ¢, ., = 7. Then if A(t,, ..., ¢,) is the conditional entropy
of the random vector (X(f), ..., X(t,)) given the random vector (i), - .-

.., Y(t,)) one can show that

Aty ... ty) = [(A+ p)log(2 + p) — Alog A — plogu] T + O(| 4)),
ie. hty,...,t,)>HT(X|Y) as |4|—>0.

§ 6. Approximation of continuous processes

Let {X(¢) : ¢ € [0, )} be a stochastic process, whose sample functions
a.s. are continuous. Further, suppose for simplicity, that P{X(0) = z,} = 1
for some z, — o < z,< o. We can then form an approximating PDP in
the following way. Put 7, = 0 and

T =I0f {80 > 0, | X)) — X(x,) | = e}, n=0,1, ... .
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If for some n we have | X(¢) — X(t,) | < eforallt > v, weput 7,4, = 754, =

= ... = oo_ Agthe sa.mple functions a.s. are continuous, {7,} become random

variables defined on a set of probability one and p0881bly taking the value

oo with positive probability. A detailed proof of this fact can be made with

the help of a sequence {r;} dense in (0, o), cf. the proofs of lemmata 1 and 2.
We put

Xfi=X(n). =t <a,n=0,15:

As P{z,—> oo} =1, X, (¢) is defined a.s. for 0 < ¢ < oo and {X,(¢):¢¢€
€[0, =)} becomes a PDP approximating the orlgmal process in the sense that

P{hm (sup | X, t) — X(@®)|)=0}=1.
Suppose that the dimension d7(X,) exists for every 7 > 0. We pu

LX) = lim =

T>e

if the limit exists. The asymptotic properties of d (X) as ¢ tends to zero can
then be used to characterize the original process.

If {X(¢) :t € [0,o°)} has independent and stationary increments (for
these concepts see [6]), the sequence {7,} constitutes a renewal process. If the
gap distribution function F is absolutely continuous we have according to
theorem 3

dfEy==,
14
where
= {o xdF (x) .
0

For by the calculation of the dimension of the process {X,(¢) :¢ € [0, o)} we
need not take account of the values of the process as {X(7)), ..., X(7,)} for
every n is a random vector taking a finite number of values.

Example. Let {X(¢) :t € [0,°0)} be a separable Brownian motion
process. According to [5]

‘Te“ dF(x) =

0

i
cosh J27e’

where /' is the gap distribution function. Therefore

= lim]— - ——_Y—_— &
* A0 dj cosh J2ie B

and
1

&

d(X) =

2
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This result can compared with JacLoms result

m=t1afl)

€
T g2 &2

see [8] page 107. H, is the KoLMocorov ¢-entropy for the Brownian motion
process on the interval (0, 1), when the sample functions are considered as
elements of L0, 1).

Acknowledgements

For stimulating discussions on the subject of this paper I thank Professor
Harald Bergstrom. I also want to express my thanks to I. Csiszdr and Jan
Petersson for valuable remarks and to StatensTekniska Forskningsgrad, from
which I held a research fellowship during most of the time spent on the work
on the subject of this paper.

(Received September 17, 1963)

REFERENCES

[1] Bararoni, J. and RENvI, A.: »Zum Begriff der Entropie«. (German translation
from Hungarian in Arbeiten zur Informationstheorie,1, Berlin, 1957, pp. 117—134.)

[2] CHiNTscHIN, A. J.: »Der Begriff der Entropie in der Wahrscheinlichkeitsrechnung.«
(German translation from Russian in Arbeiten zur Informationstheorie, I, Berlin,
1957, pp. 7—25.)

[3] Cuung, K. L.: Markov chains with stationary transition probabilities. Berlin, Gét-
tingen, Heidelberg, 1960.

[4] CsiszAr, I.: ,,Some remarks on the dimension and entropy of random variables’.
Acta Math. Acad. Sci. Hung., 12 (1961), 399—408.

[6] DArLING and SIEGERT: ,,The first passage problem for a continuous Markov pro-
cess”. Ann. Math. Statist., 24 (1953), 624—639.

[6] Doos, J. L.: Stochastic processes. New York, 1953.

[7) Fisz, M.: ,,Characterization of sample functions of stochastic processes by some
absolute probabilities.”” Proceedings of the Fourth Berkeley Symposium on Mathe-
matical Statistics and Probability, Vol. 2 (1561) 143—151.

[8] KorLmocorow, A. N.: ,Theorie der Nachrichteniibermittlung’. (German trans-
lation from Russian in Arbeiten zur Informationstheorie, 1, Berlin, 1957, pp.
91—116).

[9] RENyI, A.: ,,On the dimension and entropy of probability distributions.” Aecta.
Math. Acad. Sci. Hung., 10 (1959), 193—215.

{10] SmrtH, C.: ,,Renewal theory and its ramifications”. J. Roy. Statist. Soc., Ser. B,
20 (1958), 243 —282.
[11] TaxAcs, L.: Stochastic processes. London, 1960.



	9. kötet / 1-2.sz.�������������������������
	RUDEMO, M.: Dimension and entropy for a class of stochastic processes����������������������������������������������������������������������������

	Oldalszámok������������������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������


