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Introduction 

Consider an m X n m a t r i x in which each row consists of a p e r m u t a t i o n 
of the integers 1 ,2 , . . . , n . Such matr ices will be called A-matrices ( they 
really should have been called mxn / / -matr ices , but where there is no d a n g e r 
of confusion we omit the mxn). Corresponding to such a matr ix R we d e f i n e 
an oriented g r a p h on the vert ices 1 ,2 , . . . , n , in which t h e r e is an edge o r i en t ed 
f rom i t o j (notat ion: г —>• j) provided i precedes j in a ma jo r i ty of t h e rows 
of R If i precedes j as o f t e n as j precedes г t h e vertices г a n d j are n o t joined 
by an edge. I t has been known for some t ime [1] t h a t eve ry directed g r a p h 
in which every pair of ver t ices are joined b y a t most one oriented edge c a n be 
realized as a g raph associated with some / / -matr ix in t h i s manner. T h e pr in-
cipal objec t of this paper is t o obtain re la t ive ly sharp e s t ima tes for the smal les t 
number /и (те) such t h a t every oriented g r a p h on n vert ices corresponds t o some 
m X n ma t r i x of the t ype described. 

This as well as some related p rob l ems which we will t reat ar ise f rom 
questions concerning me thods of combining individual t ransi t ive preferences 
on a set of a l ternat ives b y means of m a j o r i t y decisions. Thus we m a y th ink 
of the rows of the ma t r ix R as represen t ing orderings b y individual voters , 
of a set of те candidates 1 ,2 , . . . , n in order of preference. Al though each 
voter t h u s expresses a set of t rans i t ive preferences, t h e major i ty opinion 
need no t be t ransi t ive a n d indeed we will p rove tha t e v e r y preference p a t t e r n 
(ties pe rmi t t ed ) may be achieved by no m o r e than cx те/log те voters, {cx a f ixed 
constant) , i.e. m(n) ^ cx те/log n. On t he o t h e r hand it w a s shown in a re la t ive ly 
simple w a y b y S T E A R N S [2] t ha t some preference p a t t e r n s on те cand ida te s 
cannot be schieved b y c2 те/log те vo te rs (where c2 is ano the r f ixed posi t ive 
constant) so t h a t m(n) > c2 те/ log те. 

In § 1 we consider t h e following problem: W h a t is the largest n u m b e r 
f(n) such t h a t every or iented graph on те vertices in which every p a i r of dis-
tinct ver t ices is jointed b y a directed edge has a t l eas t one subgraph of f(n) 
vertices in which the or ienta t ion is t rans i t ive , i.e. in which i - > ) a n d /—>- к 
implies i - > k. Our resu l t here is t h a t /(те) ^ 2[log2 те] + 1 . S T E A R N S has 
shown t h a t /(те) ^ [log2 те] -f-1. 

In § 2 we will develop some l e m m a s concerning oriented g r a p h s which 
can he represented by 2Хте / /-matrices. I n the voting terminology t h i s means 
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t ha t we s t u d y t he preference pat terns of candidates t h a t can be achieved by 
a pair of v o t e r s — we will call them a couple . The point in considering such 
pairs of vo t e r s is tha t by balancing the i r t ransi t ive preferences in a cer ta in 
way the pa i r of voters can achieve a preference be tween certain pa i rs of 
candidates in t h e manner in which these pai rs are to b e preferred b y t he 
majori ty, wh i l e with respect t o all other pa i r s the preferences of the couple 
cancel one a n o t h e r . 

In § 3 w e relate the g r a p h theoretic lemmas of § 2 t o the problem of 
est imating m(v ) and ob ta in the result 

cx n/log n > m(n) > с2 n/log n . 

We conclude w i t h a number of unsolved problems . 

§ 1 -

The p r o b l e m discussed a n d partially solved here is independent of o u r 
main problem t h e estimation of m(n). By a complete or ien ted graph or comp-
lete paired comparison we m e a n a graph in which every pa i r of vertices is 
joined by one or iented edge. As mentioned in the in t roduct ion , S T E A R N S h a s 
proved t h a t e v e r y such g r a p h o n n vertices con ta ins a subgraph on [log2 /г] + 1 
vertices on w h i c h the o r ien ta t ion is t r ans i t ive . For the sake of completeness 
we sketch t h e re levant a r g u m e n t : Consider a complete or ien ted graph on v 
vertices. Le t w(i) be the n u m b e r of edges o r i en t ed away f r o m vertex i. Relabel 
t h e vertices so t h a t w(l) ^ w(2) ^ . . . ^ w(n). Since e v e r y pair of ver t ices 

" In 
contributes 1 t o 2J w(i) we h a v e 2 w(i) — 

s t ruc t a t r a n s i t i v e chain of [log2n] -f- 1 vertices place ver tex 1 
a t the beginning of the cha in and use induc t ion to f ind in the subgraph 

n — 1 
of ve r t i ces which are joined to 1 b y edges oriented avay from 1, a 

n ] 
so that w(l ) > . To coii-

2 

t ransi t ive subse t of l o g ; 
,n — I 

1 ver t ices . These t o g e t h e r with the v e r -

t e x 1 form t h e required se t . 
To obta in a lower b o u n d tor the l a rges t transit ive s e t in some com-

p le te oriented g r a p h on n ver t ices , assume t h a t every such graph has a 
t ransi t ive subse t of к e lements . Now such a transi t ive s u b s e t must be one 

tn\ 
of ! subsets of к of the ver t ices , and a n y one of these subsets in o rde r 

t o be t ransi t ive, can be o r d e r e d in k\ ways . Having f ixed t he t rans i t ive 
subse t (including i t s order) we observe tha t such a transitive subse t can a p p e a r 

in exactly complete d i rec ted g raphs , since the comple te g raph is 

de te rmined b v t h e or ienta t ions on its " edges , 
'•2 2 

been fixed. F ina l ly , since each of the o r ien ted graphs ha s a t r ans i t ive 
subgraph of к ver t ices we h a v e 

of which have a l readv 

n 

к, к ! 2^ > 2^-> 
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and using 
n 

A nkjk ! we are lead t o 

log 2 
which completes the proof of 

Theorem 1. 
[ l o g 2 n ] + 1 Af{n) A 2[ log a n] + 1 . 

We remark t h a t / (7 ) = 3. T h a t / (7) ^ 3 follows from the l e f t hand 
side of t he inequal i ty above while / ( 7 ) A 3 is o b t a i n e d by considering the 
directed g raph on 1, 2, . . ., 7 in which i —y j iff the n u m b e r г — / is a quadra t ic 
residue (mod 7). We would like to call the a t ten t ion of the reader t o t he fact 
t h a t we have been u n a b l e to disprove t h e conjecture t h a t fin) = [log2?i] -j- 1. 
In par t icu lar we c a n n o t decide i f / ( 1 5 ) = 4. 

I n what follows G will denote a directed g r a p h in n vertices, n o t neces-
sarily complete, i.e. each pair of ver t ices is joined b y at most one directed 
edge. The graph H will be called b ipa r t i t e and unidirected if the vertices of 
H can be split in to t w o disjoint subsets A and В (one of which can he empty) 
such t h a t every ve r t ex of A is joined t o every ve r t ex of В in t h e direction 
f r o m A to В and no o ther edges exist in H . Suppose the vert ices of A are 
ay ak and those of В are by, b2, . . . ,b{ ik 1 = p). A and В will be called 
t he levels of our s u b g r a p h (A t he t o p level, В t h e lower level). 

L e m m a 1. A bipartite and unidirected graph H can be represented by a 
2 x p R-matrix. 

Proof. Consider t h e matr ix 

The graph induced by this m a t r i x has edges directed f rom each vertex 
in A to each ver tex in B. However there are no edges joining vert ices of A 
to ver t ices of A (or ver t ices of В to vert ices of B) since for i, j < k, a , precedes 
ü j in one row and follows i t in t he o ther . 

Next , if a g r a p h H can be decomposed in to dis joint b ipa r t i t e and un-
directed graphs i t will be called bilevel. 

L e m m a 1 can be generalized t o yield 

L e m m a 2. A bilevel graph H with n vertices can be represented by a 2 x n 
R-matrix. 

Proof. If the t o p level of H consists of t h e disjoint sets of vertices 
Ay, A2, ..., Au and t h e lower level of the corresponding sets By, B2, .... B„ 
and if A, = {а,д, a,2, . . . } , B, = {btl,bi2 . . . } t h e n the requi red matr ix 
has f i r s t row consisting of the e lements of Ay in some order followed by those 
of By in some order . These are followed by the e lements of A2 in some order 
and t h e elements of B2 in some order , etc. In t h e second row we have f irst 
the elements of An in the reverse order to t h a t which they h a d in the first 
row, followed by t h e elements of Bn again in reverse order. T h e n come the 
e lements of An_у followed by those of Bn l again in t h e order opposi te to tha t 

§ 2 . 
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in which they appeared in t he f i r s t row. We cont inue in th is way up to t he 
e lements of A1 in t he reverse o rde r to t ha t in t h e first , row, followed f inal ly 
b y t he elements of Bl in reverse o rde r . I t is easily seen tha t th i s ma t r i x induces 
t h e required g r a p h . 

We proceed t o prove 

L e m m a 3 . I f G is a directed graph with n vertices and e edges with 

"2 log n n-
< e 9 

n" 
where > 1 

22r+4 2 2 r + 1 2 0 r + l 

then G contains a bipartite unidirected graph with levels A and В having [ \n ] 

and 
log те 

vertices respectively, and in which the valences of the vertices of 
2 0 r + 1 

A in the graph G do not exceed 16те/2г. 
Proof. Consider f irst the ver t ices of G (if any) of valence a t least 16те/2г. 

I f the i r number is x then we m u s t clearly h a v e x-16«/2 r 9 2те2/22г+1 or 
x 9 те/2r+4. Thus t he number of edges containing two such ver t ices does not 

exceed 9 те2/22r+9. Hence if we omit all these edges there remain more 

t h a n те2/22r+5 edges a t least one endpoint of which has va lence < 16те/2г. 
Deno te the ver t ices of valence < 16те/2г (in G) b y vv v2, . . ., vt and let their 
va lences be yi,y2, . . .,yt. Clearly 

a n d 
ra(l — 2-<r+4>) 9t 9 n 

> ?/, > 
W i t h o u t loss of general i ty we m a y assume t h a t 

2 » i > 
j f t 2 2 r + s 

where y\ is the n u m b e r of edges directed away f r o m те,-. Le t Jc(k ^ 1) be an 
inde te rmina te for t h e time being. A 4-tuple of vert ices will be said to belong 
t o Vi (1 9 i 9 t) if every ver tex of the 4-tuple is adjoined t o те, b y an edge 

d i rec ted away f r o m те,. There are exac t ly j J 4- tuples belonging t o те,. Denote 

by 8 t he system of 4-tuples belonging to one of t h e те, (1 9 i 9 t) (if a 4-tupIe 

belongs to exact ly r v's it occurs in S r-times). Clearly S has 2 
1 

elements. 

Now 
( 

2 
i = i 

will be a minimum if all the y\ a re equal and if t is as large as 

possible. This is achieved by le t t ing t = n and y\ = 
2 2 r + 6 

. T h u s 

те 
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Now the to t a l n u m b e r of A-tuples t h a t can he chosen from n po in t s 

1' 7Ь 1 71^ 7b 
< — so tha t the same A-tuple m u s t occur in S a t least  

к ) к \ 2 < 2 ' + 7 > * 
t imes. I f к = [ — a s imple computa t ion shows t h a t t h e same A-tuple 

[ 2 0 r + _ l J 
will occur a t least []<n] t imes, or there will be a t least [ vert ices form a set 

A each connected to each ver t ices of a set В which has — e l e m e n t s . 
2 0 r + 1 

Note t h a t t he set A was chosen f rom t h e vertices whose valences did no t 
exceed 16тг/2г so the lemma is proved. 

We nex t prove the crucial 

vhere 
L e m m a 4 . Let n > na. I f G is a directed graph with n vertices and e edges 

n-

2 2 r + 3 
< e ^ 

2 2 r - l 
and r < lOloglogft 

then G contains a bilevel graph of at least 
n log n 

edges. 
(r + 1) 2 r + 1 5 

Proof. Firs t we omit all edges connect ing vertices wi th valences a t 

least 16тг/2Г. As before the n u m b e r of o m i t t e d edges is a t most - Hence 

we are left with at least 
n-

22rT 

1 

2 -

1 

28 
> 

2 - 1 

edges and by L em ma 3 we have a b ipar t i t e unidirected subgraph (A,, B,) 
wi th levels A, and Bx previously described. Since the ver t ices of Ax have 
valence < 16ft/2r and those of B, have valence ^ n — 1 and since 
r < 10 < loglog n the n u m b e r of edges inc ident to Ал [ j B, is at most 

1 6 i n , , \ 2 0 ft3/2 

Г log ft < -
2r 2r 

We remove these edges a n d there still remain 

и-

2 — Ï 

20 ft3/2 

2 2 r ; 4 

edges, provided n > n0 . L e m m a 3 can therefore be used aga in and we ob ta in 
a b ipar t i t e unidirected g r a p h (A2. B2) wi th levels A2 a n d B 2 of the requi red 
type . (In the b ipar t i te g raphs (A,. B,) it is no t necessarily assumed t h a t t h e 
edges go f r o m A, to B,, the i r direction m a y depend on i). Now we r e p e a t 
t he procedure and omit t he edges incident t o A2 U B2 . I f we repea t this 

9 A Matematikai Kutató Intézet Közleményei IX. A/l—2. 
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procedure 
fn, 

20 • 2Г1 6 
t i m e s we are left w i t h a graph wh ich has at least 

ya n-

, 2 r 4 

20m3/2 

2r 2 0 - 2 r 
> 

2 2r + 

edges. We can therefore a p p l y Lemma 3 once more a n d t h u s obtain a bilevel 
graph with t h e components (A,, B,) 

of at least 
f m 

20 - 2 r 
Уп 

fn  

20 • 2 Г т 6 

log n 

2 0 r + 1 

1 

> 
n log n 

( r + l ) 2 r + 15 

edges and t h e proof of t h e lemma is complete . 

L e m m a 5 . Let G be a connected directed graph of m vertices. Then G has a 

bilevel subgraph of — — - edges. 
4 

Proof. W e prove f i r s t t h a t if T is a directed t ree t h e n it can be decom-
posed into f o u r bilevel g r a p h s . For this pu rpose consider f i r s t the corresponding 
undirected t r e e T*. Let x1 b e an vertex of T*. Number I all edges of T* which 
can be r eached from xl in a n odd number of steps. N u m b e r I I all edges which 
can be r eached from x1 in a n even number of steps. T h e edges labelled I form 
a union of d i s jo in t stars (a s t a r is a tree in which all b u t o n e vertex has va lency 
1) which can be split in to t w o bilevel g r a p h s and similarly for the edges label-
led II. The l emma now fol lows by considering for G a spanning tree T, i.e. a 
t ree whose edges are a s u b s e t of the edges of G and which contains all the 
vertices of G. Such a t ree clearly has n — 1 edges. 

L e m m a 6 . Let G be a directed graph of e edges. Then G contains a bilevel 

f ë 
graph of at least •— edges. 

8 
Proof. A graph G of e edges must h a v e at least [ f 2e ] vertices. Consider 

t he connected components G, of G having и, vertices, i = 1, 2, . . ., k. 
u . i 

Now b y Lemma 5, e ach G, contains a bilevel g r a p h of ' — edges. 

so tha t G con ta ins a bilevel g raph of 

2 
U> - 1 > Уё 

edges. 
We aj*e now ready t o p rove our ma in result, n a m e l y t h a t every prefer -

ence pa t t e rn on n candida tes can he achieved by n o t more than c, «/log n 
voters. For t h i s purpose i t will suffice, b y L e m m a 2, to show t h a t the d i rec ted 
g raph G corresponding t o t h e preference pa t t e rn can be decomposed in to 
edge-disjoint bilevel g raphs 6 + G2, . . . , Gt, t h e set of whose vertices is iden-
tical with t h e set of vert ices of G, and t < ca nl(2 log n). 
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We are going to define the graphs 

G, and G« 2 1 « 
log те 

by induction. We will pu t G(i> = G — Gx U G2 U . . . U Gj (i.e. we obtain 
G(,) by omitting from G the edges of Gv G2, ..., Gj). Gx is one of the bilevel 
subgraphs of G having the maximun number of edges and if Gu . . ., G are 
already defined then G,+ 1 is one of the hilevel subgraphs of G(i) having the 
maximum number of edges. Denote by e, the number of edges of Let r 
run through the integers r = 0, 1, . . ., [10 loglog те]. Denote by ir the smallest 
integer for which 

те2 

22r+] 

We shall prove that for r f i [10 loglog те] 

( 1 ) » r + 1 г" < 2 1 3 - - + 1 

2 r + 1 log те 

I f eir + 
2 2 r i : 

then i r +1 ir = 0 and (1) is satisfied thus we can assume 

n1 n-
e.j > . Let ir < j < ir+, then e, > and hence bv Lemma 4 G ( j ) 

' 2 2 r + 3 — 2 2 r + 3 

contains a bilevel subgraph of at least 
n log те 

( r + 1 ) 2 r + 1 5 

edges and hence by the maximality property of G ; 

те log те 
( 2 ) ei - ej+1 ^ 

( r - f - 1 ) 2 r + 1 5 

(2) immediately implies (1). 
From (1) we obtain that by the removal of at most 

^ r . . 2 1 5 те ~ r + 1 
2 ( v + i — V ) < - — 

O r̂̂ pOloglogn] log » r = 0 

216 те 
log те 

hilevel graphs G,-, i + i < 2 1 6 те 

log те 
we obtain a 

G«> = G - U G j , ] £ г £ 

where G(í) has fewer than 
те2 те2 

< 
2 2 0 loglog л ( ] 0 g n ) 1 3 

edges. 

9 * 

2le те 
log и 
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To complete t he main result we need to show t h a t a graph wi th this m a n y 

edges is the union of о j——— edge — disjoint bilevel graphs and this is an 
[log n) 

almost immedia t e consequence of Lemma 6. 
As a l ready s ta ted t he proof of m(n) > c2 «/log n is relat ively simple bu t 

we include i t for completeness. Since each voter can vo te in n ! ways the number 
of dist inct ways in which m voters can vote is (n\)m. 

The n u m b e r of preference p a t t e r n s on n candidates is (since ties are 

p e r m i t t e d ) 3 ^ ) . I f all t h e s e p a t t e r n s c a n be a c h i e v e d w e m u s t h a v e (n !)m > 3^21 

f rom which t h e required resul t follows by a simple computa t ion . 
One might conjecture t h a t t h a t m(n) log m/n tends t o a l imit but th is 

conjecture is clearly well beyond t he methods used in this paper . We cannot 

even prove t h a t lim m(n) log n\n > . 
n-»-» 2 

Still ano the r problem suggested b y the present considerations is to obtain 
good est imates for the largest n u m b e r s = s(e) such t h a t every o rd inary graph 
of e edges conta ins a bilevel (undirected) graph of s edges. By more complicated 
arguments t h a n those used here we can prove s > c\e log e. 

(Received November 25, 1963) 
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ПРЕДСТАВЛЕНИЕ У П О Р Я Д О Ч Е Н Н Ы Х ГРАФОВ СИСТЕМАМИ 
П Е Р Е С Т А Н О В О К 

Р. ERDŐS и L. MOSER 

Резюме 

Рассматриваем матрицу с п стольбцами и с m строками, к а ж д а я строка 
которой — перестановка чисел 1 , 2 , . . . , » . . С этой матрицей мы соединим 
упорядоченный граф следующим образом: вершины графа будут числа 
1 , 2 , . . . , п. Если в большинстве строк матрицы i предшествует тогда 
граф содержит ребро упорядоченное от i до Если i предшествует j в столь-
ких же строках, в скольких j предшествует i, тогда г и j не соединяются. 
Пусть т(п) обозначает наименьшее число, такое, что из матриц с т(п) строч-
ками представимы таким образом все графы с « вершинами, в которых каж-
дая пара вершин соединенна не более одной вершиной S T E A R N S [2] доказал, 
что т(п) > c 2 « / l o g « . 

Главный результат настоящей работы доказательство неравенства 

т(п) < c1 «/log п 

(с\ и с2 положительные константы1). 


	9. kötet / 1-2.sz.�������������������������
	ERDŐS, P. - MOSER, L.: Ont he representation of directed graphs as unions of orderings���������������������������������������������������������������������������������������������

	Oldalszámok������������������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������


