ON CLASSICAL OCCUPANCY PROBLEMS II
(Sequential Occupancy)

by
ANDRAs BEKESSY

1. Introduction. We consider, as in Part I [1], a random distribution
of balls in 7 cells, assuming that the balls are randomly and independently
dropped into the cells with the same probability 1/n. In Part I the number
of the balls was taken to be fixed, and the ‘“state” of the set of cells was
regarded a random variable. Suppose now that certain parameters, charac-
terising a ‘‘state” of cells, are fixed, while the random variable is the number
of balls necessary to reach that given state. Let be k& the number of cells.
which contain less than m +1 (m = 0,1, 2, ...) balls, and let be »(n, m, k)
the number of independent throws.

Most results concern the random variable »(n, 0, k) i.e. the number
of balls needed to obtain at least one ball in each, except k cells (k = 0, 1.
2,...). Probability distributions, moments and limiting distributions related
to »(n, 0, k) have been determined [2], [3]. D. J. NEWMANN and L. SHEPP
and later on P. Erp6s and A. RENYI have dealt with the expectation and
with the limiting distribution of »(n, m, 0) [4], [5].}

In the present paper two theorems on the limiting distribution of
v(n, m, k) are given.

2. Probability generating function. The first statement is that for
I < n the generating function

Z P{v(n, m, k) = N}.aN
N=0

can be expressed in the integral form

(1) n (n ; IJ J exp{nu(l _— L)} (1 — K (u))y"—*=1 (K (u))* H () du,
0

where
zm e m 1 -
H,(x) = y Kpu)= N H (u) =— | tmetd:s.
u
B ‘Letipj (j=1,2,...,n) denote the probability of a ball falling into the j-th

cell. Papers discussing »(n, m, k) under the more general assumption that the pj’s may
be different from each other, will be referred later.

133



134 BEKESSY

Proof. The probability of the event that after the N-th throw there
remain k -1 cells occupied by not more than m balls, while the N + 1-th
ball is falling into a cell, which contains m balls already, depends only on the
number of cells occupied by m and that occupied by less than m balls. Let
p(n, N,m, l,,l,) be the probability that after N throws there remain [, cells
having m and [, cells having less than m balls. This probability can be expressed
by the G-function (13, Part I); it is easy to see that the G-function of p(n, N,
m, l;, l,) defined as

N

< (nz S -
SFT SV m b bt

1

is equal to
e [1+ (z, — 1) Hy(2) + (2 — 1) K\, 4(2)]";
hence
= ¥ (nz)N
Y o(n, N, m,l;,[,) ———=
N%O 2( 1 l2) N

@

- e (1 — K, (2))" bt (K e (2))e (Ho(2))" -
ll! lz' (n - ll - l2)' e (1 m(z)) ( m 1(2)) ( m(z))

Since the probability ¢(n, N + 1, m, k) of the event
v(n,mk)y=N 41
is equal to

2 p(nyNym)llylz) * 'li,
n

Lt l=k+1
it follows from (2) that

(n2)N

(3) j g(n,N + 1,m, k) -
N=0

N!

o 1] (1 — K ()51 (K ()< Hp(2).

The function on the left-hand side of (3) being the Borel-transform of the
probability generating function, the latter can be written as

oo

(4) (n r 1J [6"2‘(1 — K)o (K pat) ) Hlet) e dt

so that the final result (1) now immediately follows.
Putting K,,(u) = v, integral (1) takes the form

v 1
(5) i [n ; 1] fv‘f(l — p)n—k=1 exp {num(v) 1 ~ %y}dv ;
0

where u,(v) is the inverse of v = K, (u).
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From (5) the expectations E{v(n, m, k)} and E{v*n, m, k)} are

1

{6a) 2 (2 ;AIA J Up(v) VK1 — v)r—k-1dp
0
and
1
(6b) n® nv;‘l J (um(v))?o*(1 — v~ —1dv — E{v(n, m, k)}
respectively.
3. The first limit theorem. If n — oo, m = const., k = const., then
P{M — logn — mloglog n — logl< x}—>
n m!
—exp{—e

holds.

Proof. Introducing the moment generating function by putting @ = e°
in (5), and taking for brevity # = n(1 — e=s/") the relation

oo

'z (i] L [" k 1, J oK1 — w)n—k-1edun(d) dy ~
n ks
0

(7)
Nf(k + 1 —s)

Ik + 1)

has to be proved for —1, < s < + 1, according to CURTISS’ theorem used
already in Part I.

The asymptotic behaviour of the integral (7) is determined by the
values taken up by the integrand in the close vicinity of » = + 0. Let us
divide the integral (7) in two parts:

exp {s log » 4+ m loglog n + log %J}
m!

oo

- 3 =
(8) .s:.‘+.f211+12v
0 0 ]

where 6 > 0 is some constant. In 7, the variable » cannot be smaller than
6 and 9 being bounded from above as n — oo, it follows

(9) Iy(n) < C(9) (1 — 9)",

where C(6) may depend on ¢ but not on 7.

In order to determine 7;, the behaviour of the function w,,(v) for v — -~ 0
has to be found. From the definition it is easy to get

1
(10) u,,(v) = log i + m loglog — — log m! + 7(v)
v v
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with #7(v) = o(1) for v - + 0. Hence putting v = nv we have from (7) and (8)

on
_ (logm™ P
(m!)ank+1—0 [ | n
0

n—k—1

dw -+

1

on

(lOg n)m:‘) J~ e (1 5 E]n_k_ll(l - logw md

(m!)® nk+1-¢ n
0

ePitniny 1] dw=1,+1,,

Since @ tends to s uniformly in —1/, < s < + 1/, for n — oo, Laplace’s
method applied to I;; gives

(log m)ms

(A1) Lo —(ml)sn"“ %

J wk se—w dw = a(k+1 ) es(logn+mloglogn— logm')
k+1
n

while the modulus of the term I, is not larger than

(log m)m? 5
(ml)? pk+1-¢ =)

with lim {(6) = 0, by the obvious inequality
-0

(12) i(l __ log wym®

logno .|
g en?d ]emx‘)logu/lognl + {e'lo_ 1 ! .

end —l\é}mﬁ

log n log n

Now, although the value of 6 must be kept constant while n — oo, it may
be taken arbitrarily small such that from (11) and (12) we obtain

(13) I,~1;; (n— o)

and the summarizing of the partial results (9), (11) and (13) leads to (7) we
wanted to prove.

4. The second limit theorem. If n — oo, m = const., f = const.,
0<B<1l), k=mnp then

(14) p{”(L"ﬁl’)‘)_—_§<x}_+VT1; [e_,.,z g
with -
(15) IE = nup(f),

D* = n(B(1 — B) (unm(B))* — un(B)) ,

where the function u,,(z) is the inverse of * = K,,(u) and un(x) is the derivative.

The quantity D? is positive, because it is the asymptotic value of the
variance D?{»(n, m, k)} for n — oo under the assumptions on k and m mentio-
ned above. This can be seen by deducing asymptotic expressions for
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E{v(n, m, k)} and E{»*(n, m, k)} (6a, 6b). Laplace’s method gives in the
present case (see [6])

EM%%M%=WWWHI—m%m+%mkﬂmmm+mWU

and
E{»*(n, m, k)} = n2u}(B) + 2 n(1 — B) u(B) um(B) +
+ 1 B(1 — B) up(B) um(B) — nuy(B) + O(1)
hence
D{v(n, m, k)} = E{»*} — (E{»})*> = n (1 — B) (un(P))* — nu,,(B) + O(1)
follows.

Introducing the moment generating function, the statement to be
proved will be

J' enSu(1 — K, ()Y 0-P=1(K ,(u)y" H () du ~

gx‘i)z n("_:l
D k|
0

(16)
Es &
] it W

"1 2}

where S = 1 — ¢=5/P. By the definition (15) of D we have
s
3 Ly S=_~_. + O(n-312
(17) D 3¢ (n=3F).
Putting

j(u) = ﬂl()g Km(u) =i (1 = ﬁ) log (l Tl Km('u)) ’

the moment generating function (16) can be rewritten as

(18) @ l J_ (" 5 l] J ensuiney _Hn®) g,

D 1 — K, (u)
It is easy to show that the function f’(u) is decreasing in 0 < u < oo, whereas
lim f'(u) = + oo, limf(u = —f such that for sufficiently large n there
u—->+0
exists a ‘“‘saddle pomt” b defined by
(19) Fo)=—5.
Equation (19) leads to
(20) A L

Kp(8) (1 — K,(0))

or to
(21) Ko)=p — En®VU—En®) g, o-1m,

H,,(b)
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— since § = O(n~'?), and since the factor K, (b) (1 — (b))/H ,,(b) is boun-
ded from above. This means that the point b lies in the cloqe vicinity of u,,(f).
Let us now write ¥(s/D) in the form

(22) YialDy = F..J,
where the two factors are
(23) F=)2an {n; 1] exp{nSb -+ nf(b)}
and

e H
(24) oJ =VHJ exp {nS(u — b) + nf (u) — nf(b)} m(®) du .

2% 1 — K, (u)

0
The calculations on F, leading to

(25) | F ~ f1R(1 — B)1V2 exp {—— -5} (n—> oo)

are rather elementary but somewhat cumbersome, so that it doe » not seem
to be superfluous to give some details. First, using Stirling’s formula to the

factor (n ; 1] and taking logarithms in (23) we obtain

» 1 — K, (b)l
log F' =lo 121 — B)12) + nbS — n lorl S I —
g A Bl s HE =
A Km(b)' :
— (1 — B)log|1 — 8 =m2) 4 53
(1 — p)log H_(b) (1)
and then, expanding the logarithms in powers of S up to 82, we have
log F = log (8=12(1 — p)'?) + nbS — S‘ﬁ A(b () —+
- 15— Ky o
- B 1— 2 §
1 m +
: ‘/3 (b))_ il =yt E l

With rega_rd to (20), the term (B — K (b))/H,,(b) in (26) may be replaced
by SK,(b) (1 — K, (b)/(H (b))%, and, since by (19) the quantity K, (b)
differs from p only by an O(n~12) term, the latter can be substituted to the
former in (26). Thus the expression (26) for F becomes

nS* ﬂ( == 1
H,,(b)?
Let us now consider the variable b. From (20) b is equal to

A /3 . SKm(b) (1 = Km(b))
H,,(b)

(27) log ¥ = log(8~12(1 — B)12) + nb S — + o(1).
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which can be expanded to give

(28) b= un(f) + 2L —F) ”S+0Fy
(H (b)) n
hawinor substituted g + O(n~12) for K, (b) and — (H,(b)) ' + O(n"1?) for
Un(B). Replacmg b in (2 7) by the right-hand expression of (28) and then S by
s/D §}2D%* + O(n—32), the asymptotic relation (25) now easily follows.
The integral ./ defined in (24) can be rewritten as

oo

(29) P ]/227! J engn(u) ; ilr;{(uzu) du ,

0 m
hence, Laplace’s method gives
(30) F e Hm(b) B 1 ﬂl/l(l == /3) 1/z (n— o0),

and from (25) and (30) we obtain

2 F-J~expl—+

Es f
DJ D 2

as stated in (16).

When applying Laplace’s method to J, care must be taken, because the
function ¢g,(u) = S(u — b) + f(u) — f(b) slightly depends on » through S and
b. The fact, however, that § = O(rn"12) and b = const. + O(n~12) makes
possible to carry out the routine estimating procedures.

5. Remark. The proof of the second theorem is now complete, it may be,
however, conjectured that the condition implied upon k is too strong; the
standardized variable »(n, m, k) tends to be normally distributed for n — oo,
I — oo even if only D — oo. In the simple special case m = 0 this can be
shown as follows.

For m = 0 the corresponding expressions will be (see (1), (5), (15))

Hyfu) = Kofu) = e=%,  uglo) = log = ;

v

(31) (D)ﬁ]’(nﬁ— T(k+1—n8) §—1— e

I'(k+ 1) F(n+1—nS)’

1 1
E:nlo'g-w D2=n——1—log—|, f=—;
p ]

— where now £ is not supposed to be constant.
By Stirling’s formula we have

(32) log ¥ % — (n + 1/2)logn — (k + 1/2) log k +

+ (k + 1/2 — nS) log (k — nS) — (n + 1/2 — nS) log (n — n8) + o(1) .
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If lim sup p < 1, then S = O(n'/?) and the calculations leading to

n—seo

8 Es ¢
log ¥|—|=— 4 —+o0(1
g (D B (1)
are obvious, however, if 8 —1, — since nS* = o(1) does not hold in that

case — we have to transform (32) by putting * =(1 — p)/8 in order to lend
it the form

£ \
logT(%):nS log%J,—l'(l _S_ﬁ*S)log[I— o
\

=g

— kp*log (1 — 8) 4 o(1).
Since now the estimates

n %8 =0(D1) =0o(l),

k ﬂ*:} S3 — 0(7114 ]/Z)

are valid, it will be enough to expand the logarithmic term containing
Bg*S|(1 — 8) up to (B* 8)}(1 — S)%. With rega.rd to

S

D 2D

D =O0m2p*), 8= (n—3/2 g*—3)

after some simple calculations we obtain

V! [ RN T * k/g* 1 LB*'S-; -
log ¥ (D] (1 — e—s/P) nlog —kp l+ 2 ek o(1)

Es 1 &2 1 . 1 kp*2s

=——— nlog— —k *' —— 4+ 0(l) =
D 2D2( P R (1)
Es 1 kp*2s?

=] — o(l),
- + o + o(1)

thus the normal limit distribution law holds, if only D? is asymptotically
equal to k f*2/2. In fact, for f — 1 the expression (31) of D? is asymptotically
equal to k B*?2.

(Received November 26, 1963)
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0 KJACCHYECKUX 3AJTAYAX 3AMNOJIHEHUS AYEEK II
(IMocnenoBaTebHble NMPo0IeMbl 3aN0JHEHHSA)

A. BEKESSY
Pe3iome

PaspirppiBaeM WAapUKK B 7 siueeK He3aBUCHMMO JIPYT OT Jpyra 4 OT COCTOs-
HHUil siyeeK. Ka)k/iplif IapuK MOXKeT MonacTb B KAKAYI0 s1UeiiKy ¢ BepOATHOCTbIO
1/n. Tlycts Gyner »(n, m, k) cnydaiiHas BeJMUYMHA — YKCIIO WIAPMKOB, pacnoso-
JKEHHBIX B siuefiKax, B TOT MOMEHT, KOIJa CHCTeMa siyeeK IepBblii pa3 NpUHM-
MAeT COCTOsIHME, B KOTOPOM XOTsi Obl 7 — k siueeK cojepikaT X0Tst 6bl 10 m + 1
IIapuKoB. PaccmoTpum mnpejiesibHOe pacrnipejesienne »(n,m, k), Korjga » Gesrpa-
HUYHO pacTér. CoryjacHo mepBoif Mpe/leIbHOI Teopeme, ecl n—> oo ; k; m KOH-
CTAaHTbI, TOr/1d

n,m,k
P L . log n — m log log n — log - <zt —>exp{—e*} ¥
n ' ~m! =0 u!
CorynacHo BTOpPOH IpejieJibHOI Teopeme, ecit n—- oo, k = nf3, f = KOHCTAHTA,
(0 < B < 1); m = KoHctauta (m = 0,1,2, ...) Torja

k e—Hx

P{vjn,m,k)~E< 1}—>L_ Jﬁ e~ "2 ¢

D V2~
rje
E = nu,(f)
D2 = n(B(1 — B) (um(B))* — um(B))
m. gn
w,,(B) — obdpatHasi pyHKuust Gynkumn g = N - e
n=0 u:
Um(B) — NpousBOHAS QYHKUME w,,(f).
E — accumnToTHYeCKOe 3HAYeHHe MaTeMATHYeCKOT0 OXHMIAHMSI BeJMUMHBI

v(n, m, k) a D* — acCUMITOTHYECKOe 3HAYEHHe JMCIepCMH ITOW BEJIMUMHBI CO-
TJ1IaCHO TIpejlelIbHOMY paclipejiesleHHI0, JaHHOMY BO BTOpOi TeopeMme.

BrilleynnoMsiHyThie TeOpeMbl SABJISIOTCS 0000LIEHUSIMH TeOpeM, H3BECTHBIX
B smTepatype [2], [3], [4], [5]. JlokasaTenbcTBA HCXOJAT U3 MHTETrPAJIHON (OPMBI
MpoKu3Bojsie QYHKIUMNH MOMEHTOB BeJIMYMHBI ¥(n, m, k) JIOKa3aHHOW BO BTOPOM
naparpage, 1 B HUX OCHOBHYIO POJib MrpaeT mMeToj Jlannaca.
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