RANDOM SPACE-FILLING IN ONE DIMENSION

by
Davip MANNION!

1. Introduction

We construct a model of a random car-parking procedure as follows.
Take the segments [0, 2] (x = 0) of the az-axis. If x < 1, this segment is con-
sidered to be a ‘“‘gap”. If # > 1, choose a random number ¢, € [0, 2 — 1]
(i.e. ¢; is a random variable, uniformly distributed over [0, 2 — 1]). We now
consider the unit interval [¢,, ¢, + 1] to be “covered” and so turn our atten-
tion to the remaining segments [0, ¢,], [, + 1, «]. If {, > 1, choose a random
number #, € [0,¢; — 1] and then regard the unit interval [f,, £, + 1] as “cov-
ered”. If £, < 1, then the segment [0, ;] is left ‘‘uncovered” and we regard
this segment as a ‘‘gap”. Similarly, if @ —¢ — 1 = 1, choose a random
number ¢, € [t;, + 1,2z — 1] and so “cover” the unit interval [ty ¢, + 1].
Ifx —t, — 1< 1, we regard the segment [¢, + 1, 2] as a “gap”. We continue
to “‘cover”, in this random way, all the remaining segments with unit intervals
until each such remaining segment is of length strictly less than one. Let n(x)
denote the number of unit intervals so placed on the segment, [0, ]. Note that
the possibility of overlapping of the unit intervals, either between themselves
or over the ends of the original segment [0, 2], has been excluded. We have
also made the convention that when one of the remaining segments, as yet
“uncovered”’, is of length equal to one, then in a deterministic way we regard
this segment as ‘‘covered’” at the next stage of the process.

AMBARTSUMIAN [1], BANKOVI [2], GRIFFITHS [3], NEY [4], RENYI [5],
RosBiNs and DvorRETZKY [6] and SMALLEY [7] have all studied this problem,
AMBARTSUMIAN, GRIFFITHS and SMALLEY reproducing some of the results
first proved by RENYI. RENYI has derived equations for both the expectation
and the variance of the random variable n(z), and he obtained an asymptotic
expression for the expectation, valid as x— co. It should be noted that
D. G. KeEnpALL has pointed out a mistake in RENYI's equation, 5. 4, for the
variance, which however does not affect any of his conclusions. It is RENYI's
work which is the most relevant to this present paper.

This paper is only part of work done to prove that, asymptotically,
the distribution of n(z) is normal. The proof was based on a study of the
moments of n(x). However RoBBINS and DvVORETZKY also claim to have
proved the asymptotic normality, and are about to publish their proof.”
(We have not, as yet, seen their work.) We shall therefore content ourselves

! University of Cambridge.
* Cf. the paper of RosBiNs and DvVORETZKY in this issue, pp. 209.
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here with a study of the second moment of n(z), which is, of course, of special
interest. The study of the higher moments is rather similar.

Results of a Monte Carlo experiment, which simulated the parking
procedure, will also be recorded.

2. Asymptotic behaviour of the variance of n(x)

The main result obtained by RENYI was that for any positive integer m

(1) E{n(x)} = cx + ¢ — 1 + O(1/x™) (x— o),
where E denotes expectation and
Y | S1 — et
6= ‘ exp ‘— 2 [ dt)ds ~z 0.74759 .
0 0

The computing of this estimate of the number ¢ was carried out by the Mathe-
matical Laboratory, University of Cambridge.

Put
(2) nx) =cx+c— 1+ r).
Since n( ) <z for x > 1, n(l) = 1, and n(x) = 0 for 0 < x < 1, we observe
that |r(z) | = 2forx 2> 1,and |r x)|<1for0$a:<l whence E | 7(z) ¥ <
<1 + x" for all x = 0. We then deduce from RENYI's result (1) that

E[n(r) — E{n(@)}]* = E[r(x) — E{r(@}F = Efr@)} +o(1)  (a->00).

It turns out that E{r(z)}? = 2(1 say, is much easier to deal with than
E{n(z)}>. We also write E{r(z }— R,(x). Denote by r(z|t) the number
7(x) (x = 1) conditional on ¢ being the first random number chosen in the
model described in the introduction. Then

rx +1]6) = r(t) + rx — 1) O<t<u),
where 7(t) and 7(x — t) are independent. It follows that for x > 0,

RBy(x + 1) = E{r(x + 1)}?

I

X

E{r(x + 1|0)}2dt —

1
x

oi—

X

E{r(t) 4 r(x — t)P?dt =

Il
] [ =
Ok__"

8 |

j [Ba(t) + By(0) Ry — 1))t .
0
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Thus
Ry(z) = (1 —c¢ — cx)? (=n<1)
Ry(1) = 4(1 — ¢)?
(3) Ryx+ 1) = EJ R,(t)dt + EJRIU) Ry(x —t)dt (@>0).
0 0

(3) is a much simplified and corrected version of RENYI's equation [1] for the
variance. Similarly it is easy to see that £,(.) satisfies

Ri(x)y=1—c—cx O=r<l1)
Ry(1) =201 —0)

X

(4) Rz +1) = EJ'RL(z)dt &> 0).
x
0

We see from these formulae that R,(x) (k = 1, 2) is continuously differenti-
able in the intervals (0 < x < 1), (1 <2< 2), (2 < & < ). There is a simple
jump discontinuity at x =1, with R, (1+) = R, (1) and

Bl ) =BT <) = (2 — 8% — (1 — 28" =5 > 0.

R, () is continuous but not differentiable at x = 2
Put

B, (s) — J =% R,(z) d (s> 0; k=1,2).
0
Ry(x) |<a¥ +1 (0 < z < o). Now

This integral exists since
1 s

e’ [@2 (s) — J ek, () dxr — e J e* R (z)dx =

— 2 f e—sx‘_if" f Ry(t) dt + J Ry(t) Byx — 1) dt].
0

Since
X x

= J Ry(t)dt + J'Rl(t) Bz —1) dt]

0 0 0

f_de‘”‘ do|

10 A Matematikai Kutaté Intézet Kozleményei I1X, A/1—2.
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is uniformly convergent for 0 < s < oo, we may differentiate the above
equation to obtain

1 oo X
~

e [diz(s) - J o= R (x) dx” _— QJ' ¢sx (Ix[ J Ry(t)dt +

0 ) 0 )

d

ds |

—;—JRl(t) B,(x —1) (lt].
0

The repeated integral on the right hand side is absolutely convergent, hence,
by Fubini’s theorem, we may invert the order of integration. Thus

d 11 _ —29u
e (es[d)z(s) — J e By(x) (l.l‘lj =——"" —203s).
ds

-,
Observing that exp (— 2 (g—dt

is an integrating fatcor for this equation,
¢

N
we see that

1 o

5]

s

l ~
c—i(; Ies[¢)2(s) — J e~ R,(x) dz

exp

1 o

: —t
= [ . ¢ [e—s"Rz(x) dx — 2 @%(s)] exp | — 2Ji—dt] g
S J

Denoting the right hand side of this equation by Y (s) and integrating both
sides from u to « (0 < u < w’)

1 w

[es[(%(s) —OJ =% Ry(x) dx] exp (— 2 [ ?t:dtl J: = j Y(s)ds.

N
1 oo

.

We then note that

. = et
lim e“'l@z(u’) — -f gHE B (a) dm] exp { —2 J e dt] =0,
u'—>eo 7
so that
1 - -
)

— e [¢2(u) - l e~ R.(x) dx] exp l— 2 J g;—t dtJ = J Y(s)ds.

0 u u
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(5) w2 Byfu) — [ e Ry dor] =
0

oo i
= [ (258 [ e Ry(x) dx 4 2 s> DY(s)) A(u, s)ds,
u 0

N

_ p—t
—2[}—6—@].
4 7

u

where A(u, s) = exp

Similarly
) 1 = 1
(6) wre'|D(u) — J e R (%) dx] = J 23( J == Rl(:r)daf] A(u, s)ds .
' 0 u
Put
s I
c(u) = J exp (»— 2J e dtJ ds .
t
Then ' '
c(u)=c+(2c~l)u+(%c—l)u‘~’+0('u3) (w{0).
Now v

1
u?e' [D,(u) — | e Ry(x)dx] = c(u) —c+ (1 —2¢c)u.
0

Thus, it is easy to see that
lim @,(u) = 0.
ulo

For small s the integrand on the right hand side of (5) is O(s), (when s > 0).
Thus
oo 1
lim w2 @y(u) = 2 [ {s | e~ Ry(x) da + s* PY(s)}
ulo 0 0
s

R
—2]1 3 dt]ds.
y t

exp

We note that the integrand here is strictly positive for s>0. Hence lim «*®,(u)—=
= cy(say), where 0 < ¢, < oo; in fact we have iy 0

¢, ~ 0.035672,

this estimate having been computed from the above formula by Mrs. M. O.
MutcH of the Mathematical Laboratory, University of Cambridge. I am parti-
cularly indebted to Mrs. MuTcH since the computing of ¢, proved to be a very
delicate matter, involving a great deal of patience and ingenuity.

10+
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3. Asymptotic behaviour of the variance of n(x) (continued)

We may not immediately deduce, from the fact that

u2 Dy(u) ~ ¢,y - (u 0),
that
R,(x) ~ c,x (x — o0).

We need some monotonicity property of R,(z). This we shall proceed to esta-
blish.
RENYT showed that for any positive integer m,

(1) Ry(z) = 0 [:—m (= co),
(8) Ri(x) =0 [xiJ Bess)

For 2 > 1 we may differentiate (3) to obtain

x Ri(x + 1) + Ry(x + 1) = 2 Ry(x) + 2(1 — ¢) Ry(x) + 2 Ry(x — 1)

(9) + 2§ B,(t) Ri(x —t)dt
0

X

where (f) denotes integration over ([0, z] — {1, 2}). Thus from (7) and (8)
we see tha.t, for any positive integer m,

' -

%R;(x + 1) = 2 Ry(x) —J Ry(t) dt + O(1/z™) (@ —> o).

0
Put

fla) = Ryw) — | Ry(t)dt
0

Then

f'(@) = @ By(2) (@ >2).
and f” will be continuous for # > 2. Thus

22 f'(x+ 1)

= 2(x + 1)

= f(x) 4 O(1/=™) (® —>o0).
Now

u i’ e R, (1) de = $ e ™ Ry(x)dx + (3 —4c)e ™ 4 (1 —c)
0 0
Also, for 2 < A < oo,

lim % § e~ R;(x)dz = lim u [ ¢=** By(x)dxx .
ulo 0 ulo A
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Thus
(11) lim % { e~ By(x)da = ¢,,

uld A
Let 0 < 2 < ¢,. Suppose that, for all z > 4,

Byx) < 2.
Then

lim ? =R () di = A
ulo A

This is impossible from (11); thus we may assert that for any 4 > 2, there
is an @ > A4 such that

Bi(x) > 2.
Denote the remainder term in (10) by A(z). Then

22 f'(x 4 1)
12 e 2T 0 = fla) -] hz) .
(12) 2@ 1+ 1) f(@) + h(x)
Let ¢ > 0. We may certainly choose 4, >1 such that, for all x > 4..

| b(z) | < €.
We now choose x;, such that

(i) z>4,+4,

(i) (x°_4)2[(ZO‘z)z{%—zs}—ze]—s>xg,
2@y — 1)L 22, 2

(i) Bixe+1)> 4.

Thus f’(x, +1) > 4 (x, + 1) > 0. From (iii) and (12) we see that

Thus, from (ii),
Ax
flaw) —e>=2 —2¢> 0.

Let us suppose that, for all « € [z, , + 1], f/(x) > 0. Then, for all x < [a,,
xy + 1],
f@) + h(x) > flx,) —e>0,

and so, for all « € [z, +1, 2, 4+ 2],
Jf=>0.

If f/(z) < 0 for some x > x, + 2, then f’(x) must (by continuity) vanish for
some such z, in which case we write

s=Tof {g:@ >a, -+ 2 f{x) =0}
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Then, from (12), f(z — 1) + A(z — 1) = 0. Yet since f’(x) >0 (z, < x < 2),
we also have
flx) 4 h(x) > flxy) —e>0 B w <,

which, in particular, implies that f(z — 1) 4 h(z — 1) > 0. This is a contra-
diction: we thus deduce that if f*(z) > 0, for all x € [z, , + 1], then f'(z) > 0
for all x = x,. We proceed to show that this is in fact the case. We recall that
f’(x) is positive at x, + 1, and if it is not positive throughout [z,, x, + 1]
then, by continuity, it must vanish at at least one point in this interval.

Suppose then that there is an @, (x, < @, < , + 1) such that f’(z,) = 0.
Then, from (12), f(z, — 1) + h(x; — 1) = 0. Also by the first mean-value theo-
rem, there is an x, (2, — 1 < 2, < @,) such that

Jxo) — flz, —
Ty — 27 + 1

2
l)zxf(xo)—s>l—2x°~2e;:-0,

f,(a"z) ==
Hence, from (12),
AN L2
flay —1) + h(axg — 1) > (»1£2~~-—1)4[M — 28’ :
2z, 2
Thus, from (ii),

— 2¢

— 2 2
b= %) (ﬁ —Be=D,

(g —1) — &> ——-
! ) 2z, 2

1t is now impossible for f’(z) to be positive throughout [z, — 1, ,], since other-
wise, by a repetition of the preceding argument, f’(x) would be positive for all
x = x, — 1, and we have assumed that f’(z;) =0 (and ; > 2, — 1). Thus
there is an x; (¥, — 1 < @, < @,) such that f’(x,) = 0, by continuity and the
fact that f’(x,) > 0. Then, from (12), fle; — 1) + h(x; — 1) = 0. Again, from
the first mean-value theorem, there is an z, (¥, —1 < 2, < x, — 1) such that

() :f(;r‘é:pﬂf, 1) S il — V) —a30.

Xy — Ty
Thus, from (12) and (ii),
S = 1>, — 1) — ] - e >

4

— 2 — e 3
< (g — 4) [(xo 2) A_x_”—2e} e
2(xy — 1) 2,
=
> (@, — 1P,

where z, — 1 > 4, > 1. But we see from the definition of f(z), and the fact

that 0 < Ry(2) < 2% (x = 1), that f(z) < 23 (x = 1). We thus have a contra-

diction, and we conclude that f’(z), and hence Rj(x), is positive for all x = =,.
Put

B(x) = R,(x) (z = 2,)

= Ry(a,) 0 <z <a)
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so that R is a monotonic increasing function on [0, o). Also, when s | 0,

¢y + 0(1) = > Py(s) =

— s By(@)d(— e=5) =
d
= sR,(0) 4 s ( e =dR(z) =
0
= 8R,(0) 4+ sfne—sxd(Rz(x) — R(x)) + s j?g—sde(x) =
0 0

=o(l) + s ( e~>*dR(x).
0

Thus, from KaramaTa’s Tauberian theorem ([8], Chapter V, Th. 4.3) we con-
clude that

R(x) ~cyx (x—o0),
and hence that
Ry(x) ~ cox (x — o0).
We also see, from (9), that
Ry(x) — Cy (x— o0).
It follows then that
D2[n(x)] ~ ¢y . (x— o0),

where it will be recalled that
¢, ~ 0.035672.

Note also that D*[n(x)] is ultimately an increasing function of z, since

D[n(x)] = Ry(x) — [Ry(x)]%,
and, from (7) and (8)

g— D*[n(x)] = Bi(x) — 2 B, (z) Bi(x) >, >0 (x — o).
x

In a rather similar piece of work (which we do not intend to publish)
we have proved that
My (x) = ofx*~1) (x— o)
and that

%) | ckak
M“”NL%Gf‘ (x— o0),
{(k=1,2, ...) where

M ,(x) = E[n(x) — E{n(z)}]".
It is then an immediate consequence of the moments convergence theorem

of FrRECHET and SHOHAT that
n(x) — cx

Ve

is asymptotically (2 — <o) normally distributed with mean zero and standard
deviation one.
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4. The ,,Monte Carlo”® experiment

A “Monte Carlo” experiment, simulating the parking procedure described
in the introduction, was performed by Edsac II, until recently the electronic
computer of the Mathematical Laboratory, University of Cambridge. The
machine’s “random” numbers were supplied by a pseudo-random-number
mechanism. This mechanism takes an assigned number (chosen from a ““table
of random numbers” and fed into the machine), raises it to a high power
and selects the middle portion of the number obtained as the first generated
“random” number. In this way also, the second generated ‘“random’number
is obtained from the first, the third from the second, and so on. We took
x = 1000 and 2000 runs were performed. The results are shown, in histogram
form, in Figure 1. The sample mean, m, and sample variance, s?, were respecti-
vely 747,447 and 38,5000. The shape of the histogram for n(1000) is very
nearly normal. Assuming that 7(1000) is, in fact, normal with mean 747,5
and variance s2, we calculated a value of #* from our observations, which were
grouped into 31 parts. We obtained

13s = 32,408.

Since the upper 5 per cent level for y* with 28 degrees of freedom is 41,337,
there is no significant evidence here for non-normality.

If we assume that »(1000) is normally distributed, we may inquire into
the question of whether our asymptotic formulae are, in practice, usable when
& = 1000. Let us assume then that #(1000) is normally distributed. Write u =
= E[7(1000)]. Then we have the following 95 per cent confidence interval
for u:

T47-17 < p < T47.72.

Since u* = 1000¢ + ¢ — 1 = 747,34 lies in the above interval, it is not unrea-
sonable to suppose that the approximate formula

E[n(x)]——=cx +c—1 (x = 1000)

is quite accurate, as the order of RENYI's remainder term would suggest.

Again, still supposing that »(1000) is normally distributed, we know
then that (n —1) s%/0? has a 2* distribution with » — 1 degrees of freedom, where
n = 2000 and o2 = D?[n(1000)]. Since n is large, we may suppose that

Valn —1) o — V2(n — 1) — 1

is normally distributed with zero mean and unit variance. This gives the follow-
ing 95 per cent confidence interval for o:

6,02 <o< 64]1.

However o* = V 1000¢, = 5,97, and so there is an indication that the uninvesti-

gated remainder term in the approximation o ~~ |e,x is not quite negligible
when a = 1000.

It is not surprising that so haphazard a method of space-filling should
lead to about a 25 per cent wastage of the space available, but it may be thought
curious that when x = 1000 the standard deviation of the number of cars
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accomodated should be less than one per cent of the expected number of cars.

The space filling process seems to have more rigidity than one would intuitively
ascribe to it.
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CJIVUANHOE 3ANOJIHEHUE UHTEPBAJIA
D. MANNION

Pe3iome

B pabore npoBoasATcs jajbHeiiliMe Hcciel0BaHUS Tpo0sieMbl CJlyyaii-
HOT0 3amoJIHeHUs1 MHTepBaJsa udyyaemoil A. RENYI u np. Tlycrb »(x) o3Hauaer
Yicsla MHTEPBAJIOB JUIMHBI 1 TpU CiIydailHOM 3aloJIHEHUM C TaKUMU HMHTEpBa-
JlaMM MHTepBaia JUIMHBl 2. ABTOp ToKa3sbiBaeT, uto D*(n(x)) MOHOTOHHO pacTer,
a DXn(x)) ~ csz, rme c3=0,035672. ..

B cBsi3u ¢ 9T0if acuMnTOTHYeCKO GopmyIioii B paboTe pa3obpaHbl pe3dylib-
TaThl OJHMX BBIUMCIEHMH, TpoBefeHHBIX 10 MeToxy MouTe-Kapno (xz = 1000,
2000 OMBITOB).
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