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Introduction

In this paper we present some results concerning certain special PC -
classes.1

In § 1 we enumerate notations, definitions and some wellknown results
to be used in the paper.

In § 2 we expose a generalization of a theorem of KLEENE [5]. KLEENE's
theorem asserts the following. Let X' be a set of sentences in the first order
predicate calculus over a language L containing only finitely many predicate
and function symbols and suppose that X satisfies the following conditions:
(a) X contains its all consequences, (b) X' is recursively enumerable with
respect to a natural Godel numbering. In this case the theory X' is | finitely
axiomatizable using additional predicate symbols” i.e. we can give a formula
F in an enlarged language L” O L, such that for any formula G of the original
language L @ is derivable from F# if and only if G € L. The derivability notion
used here is based upon a usual formal system of the first order predicate
calculus; the identity symbol is treated as the other predicate symbols.

A first step in strengthening KLEENE’s theorem would be to require
from the class of the L-reducts of all models of ¥ to be identical with the
class of all models of X" in the language L. This strong form is not true, only
the weaker statement that an # exists such that the infinite relational systems
of the two mentioned classes are the same.

We make also a second step in the generalization essential for the appli-
cations, namely allow X' to contain denumerable infinitely many additional
symbols besides the finitely many symbols of L. Our requirement that X' is
recursively enumerable has to have the meaning that X' is recursively enumer-
able under a natural Godel numbering based upon an enumeration of the
additional symbols, in which the number of arguments of the i-th predicate
is a recursive function of 7. In this way we shall introduce the class PC,.. of
classes of relational systems as follows. K € PC,,.. if K is the class of the
L-reducts of the models of a recursively enumerable set X' of sentences of an
enlarged language L’. The recursive enumeration mentioned in this definition
is based upon an enumeration of the symbols of L’ as above.

So we can formulate our generalization of KLEENE’s theorem as follows
(Theorem 1 in § 2). If L, 7s a finite language, K is a class of relational systems

1See [6] and § 1 of the present paper for a definition of PC and PC 4-class.
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of Ly, and K € PC,.. then K= ¢ PC where K= is the class of the infinite
systems of K.

In later sections there will be applications of this theorem.

Our proof is based upon the same idea as KLEENE’s proof, namely we
treat formulae as elements which are able to form values of the individual
variables by the help of a Gédel numbering. The main point in the construction
of the above F is a reproduction of the inductive semantical definition of the
notion of a sequence of elements satisfying a formula in a relational system.

A trivial example shows that the conclusion K= ¢ PC of the theorem
cannot be improved in general to K € PC, even if we require X' to be a recursive
set of sentences of L. However we do not know whether the similar improve-
ments in Corollary 3, 5, 5%, 9 hold. Our conjecture is that they do not hold.

The main work in KrLEENE [5] is devoted to a strictly constructive
treatment. KLEENE proves also a variant of the mentioned theorem for the
intuitionistic predicate calculus. Naturally our proof is of no constructive
character, consequently our theorem does not imply KLEENE’s results in a
striet sense.

Our proof technically differs from KLEENE's one. We use ROBINSON's
system as described in [4] to deal with recursive functions and predicates
and thus we need to adjoin only eight new symbols to L, to get L.

In § 3 we introduce the following construction of relational systems.
Let L be a language containing only predicate symbols and no function
symbols. Let 2 be a relational system, F(x) a formula of the coxrespondmg
language containing no free variable except 2. Let us denote by A || F(x
the subsystem ¥ of 9 whose domain is the set of those elements of the domam
of A which satisfy the formula F(z) in 9. We consider A || F(x) as defined
only if the latter set is not empty, i.e. if (3x) F(x) holds in . We put for a
class K of systems K || F(z) = {U || F(x) : A € K}. We prove (Theorem 2
(a)in § 3) that it K € PC, then K || F(x) € PC, for any formula F(z) of the
corresponding language provided that K || #(x) is defined. Further we prove
(Theorem 2 (b)) that if K ¢ PC, then K || F(z) € PC,,.. So we obtain
(Corollary 3) that if K ¢ PC, then (K || #(z))~ € PC (using Theorem 1 of § 2).

In § 4 we prove by using Theorem 2 (a), that if K € PC, then H(K) €
¢ PC, (where H(K) denotes the class of the homomorphic images of the
systems of K) (Corollary 4’). The question whether this is true is left open in
TaArskI [7] We have also the result that K ¢ PC implies (H (K))~ ¢ PC
(Corollary 57).

Let K € EC, (or K € PC,). The main content of § 4 is to give an
axiomatization X for the class H(K) using additional function symbols so
that each formula of X' is in some normal form (Theorem 7). This normal
form is established in such a way, that any set of sentences having this normal
form is ,,preserved’” under homomorphism in a natural sense (see more preci-
sely Theorem 6).

In the whole section we consider the more general notion of F-homo-
morphism instead of (simple) homomorphism. This notion is defined in
KEisLEr [2].

In § 5 we deal with endomorphisms. The relational system 2 is said
to be an endomorphic image of B if 9 is a subsytem of B and at the same
time also a homomorphic image of B, End(K) will denote the class of all
endomorphic images of the systems of K. We state that if K ¢ PC, then
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End(K) € PC, and if K ¢ PC then (End(K))= ¢ PC (Corollaries 8 and 9).
The proofs are very similar to those of Corollaries 4 and 5 and are omitted.
Next an analogon of LyNpoN's theorem on homomorphisms is proved con-
cerning endomorphisms and thus we obtain the corollary, that a first order
sentence is preserved under endomorphism if and only if it is equivalent to a

n

sentence of the form A (F} A F?) where F} is a positive sentence, F? is a
i-1

universal sentence for each ¢ (Corollary 11).

§ 1. Preliminaries

We shall distinguish between sets and classes but we shall consider
also classes of classes as a third type. We shall use the usual set theoretical
notations. We mention only that if 4 and B are sets then 48 denotes the set
of all (unary) functions on 4 into B, 24 denotes the set of all (unary) functions
on A with possible values 0 and 1, A" (where 7= is a natural number) denotes
the set of ordered n-tuples of elements of 4. We identify a (unary) function
@ with the set all ordered pairs (a, ¢ (¢)) where « is an element for which
¢(a) is defined, g(a) being the value of ¢ at the argument a. We make similar
conventions for functions of more variables. If ¢ € A2 then we write sometimes
g: A— B. If 9: A— B, y: B—C then ypogp denotes the composition of ¢
and vy, i.e. yop(a) = p(p(a)) for a € 4. If ¢ is a one-to-one function, ¢~?
denotes its inverse.

The following well known set theoretical lemma is applied in § 4.

Lemma 1. Let A be a set, let o be a function defined on A so that o(z) for
x € A is a finie set. If X is an arbitrary finite subset of A (i.e. X € Al®l) let
B(X) be a set of unary functions defined on X (the elements of §(X) are the
,,good” functions defined on X) and if ¢ € p(X) then e(x) € a(z) for x € X,
(i.e. the good functions take values only from a fixed finite set o(x) for each
argument x € 4). Now suppose (a) for arbitrary X € Al°l, B(X) is not empty,
(b) if X CY € Al°l, ec B(Y) then €M X € B(X) (i.e. the restriction of a
good function is a good one too). Under these hypotheses then there is a function
0 on A such that for each X € Al*1 § N X € B(X). (i.e. there exists a function
defined on the whole set 4 whose restriction to each finite subset is a good
function).

We shall mean by @ language L a set of certain symbols certain of which
are predicate symbols, the otbers are function symbols. Notations P € L and
f € L will always imply that P is a predicate symbol and f is a function symbol
of L. To each P€L and f€L there is associated a natural number »(P) = 0 and
v(f) =0 and Pand f are said to be a »(P)-ary predicate symbol and a »(f)-ary func-
tion symbol respectively. If »(f) = 0 then fisan (individual ) constant. A relational
system or more briefly a system 2 of the language L is a pair (4, 4) of a non
empty set 4 and a function 4 defined on L such that A(P)is a »(P)-ary relation
on the set 4 (i.e. an element of 24" 2) and A(f) is a »(f)-ary function on 4
with values from 4 (i.e. an element of A4 for any P, f € L. A is said to be

2 The relations are usually considered as truth functions. That will be consistent
with our convention if we identify the truth value true and false with 1 and 0 resp.
We write R(a,, ..., a,) instead of R(a,, ..., a,) = 0 for a relation R(z,, ..., z,).

11 A Matematikai Kutaté Intézet Kozleményei 1X. A/1-2.
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the domain of A and denoted by | A | and we write Py, fo for A(P) and A(f)
respectively. If »(f) = 0 then fy is identified with an element of 4. The class
of all systems of L is denoted by S(L). We say that the system U is infinite
if the set | | is infinite. For a class K of systems let K= denote the subclass
of K consisting of all infinite systems of K. Sometimes we shall use notations
of the form (4; R, ..., ¢, ...) to denote a system ¥ such that | A | = 4 and
RBR=Py ... 9=fy, ... where P, ...,f, ... are given uniquely by the
context.

We define the first order logic with equality associated with L in the
well known way by fixing denumerable many (individual) variables v, vy, . . .,
the propositional connectives — (negation), A (and), \/ (or), — (implies), <
(equivalence), the quantifiers (Jx) (existential quantifier), (x) (universal
quantifier) where « is a variable; and the identity symbol =. In § 2 we shall
consider only —, A, (z) as primitive symbols, the other logical operations
will be used as abbreviations in the well known way. The terms and formulae
of L are defined in the usual way; a prime formula of L is a formula of the form
Py, ... . typ)ort, =t (P € L; t,, ..., 1, are terms). The use of P(z,, .., tn)
and f(t,, ..., t,) always implies n = »(P) and n = »(f) respectively. The set of
all formulae of L and the set of the formulae of L not containing any free
variables (the sentences of L) are denoted by F(L) and F,(L) respectively.
A formula is open if it contains no quantifier. If # is a formula C/(F) denotes
the universal closure of F, i.e. the formula obtained by prefixing to # uni-
versal quantifiers (z;) for each free variable z; of F in some order. If X' is a
set of formulae, so Cl(X) = {CI(F): F € X).

If F(xy, ..., %,) (briefly F) is a formula, #(2y, ..., ®,) (briefly ¢) is a
term, z,, ..., x, are distinct (free) variables or constants, then F(t,, ..., t,)
and {(t;, ..., t,) denote the formula and the term respectively arising from
F and ¢ by substituting the term ¢; for z; for each ¢ =1, ..., n. We write

| . | 2.
(1) ixl,——.”,anF or |ZLF
Jtl""’tn l,l
and
|
(2) ‘Tl’_’—xn t or If’t
ltl,...,tn 3[1.
fot Flf, . . -, ) and iy <5 En) Tespectively:.

Let 2, ..., @, be distinct variables, let every free variable of ¥ and

t occur among &, ..., T,. We write
| .

(3) A ‘ﬁ_ﬁ F or A5 F

Ay ee e, Ay in
for the statement that the elements «a,. ..., a, of | A | satisfy the formula F
in the system 9 wnder the correspondence v, — a,, ..., xn—> a, and

i .,
(4) g | B @, o of|%i

Gsyssin 35 O |a;

to denote the value of ¢t in U under the correspondence x,—> a,, ..., Tn—> Qp.
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The use of the notations (4) and (3) will always imply that our conditions
hold-for! it @ oy T

If F is a sentence, we write
(5) o F

for the statement that 9 satisfies F or F holds in 2 or U is a model of F. We
assume that the notion of satisfaction as used in (3) and (5) is known. We
mention only that the interpretation of the identity symbol = is always
the real identity = in the case of relational systems. However we shall need
occassionally so called pseudosystems. Roughly speaking a pseudosystem
A differs from a system only in that the realization = of the identity symbol
is not necessarily the real identity. More precisely a pseudosystem U of L is a
pair (A4, A) where A4 is a set (4 = | A |), 4 is a mapping of L U {=} such
that A(P) (= Py) and A(f) (= fo) for P, f € L are as before and A(=) denoted
by =g is a binary relation on . In the case of pseudosystems we must modify
the notation of satisfaction in the natural way. We shall use the notations
(3), (4), (5) in connection with a pseudosystem 9 in the appropriate sense.

Let X' be a set of sentences of L (or an axiom system of L). Let My (X)) denote
the class of all models of X' in the language L, i.e. M(X) = {2 : A € & (L),
A F for every F € X}. We write My (F) instead of My({F}). If K =
= My(X) then we write K € EC,; if in addition X' = {F} then K € EC.

Let L, L” be two languages, L c L’, let A be a system or pseudosystem
of L. Let | L denote the uniquely determined system or pseudosystem 8 of L
such that |8 | = | A |, Py = Py, fe =fy for any P,f€ L and =y = =g
in the case of pseudosystems. Let K’ |L = {% |L: %A € K} for a class K’ ¢
c G(L’). If in addition K’ ¢ EC, then K = K’ |L € PC, (or K is a PC,-
class), and if K’ € EC then K € PC.

If Kc @ (L) then Ti(K) denotes the set of sentences of L holding
in every system of K; Th() = Th({}).

A sentence /' is a consequence of the set X' of sentences or of the sen-
tence G (notation: X' |~ F, G |- F resp.) if every model of X or of ¢ is a model
of F'.The set of all consequences of X'is denoted by Cn(X). If #, G are formulae
and Cl(F < @) is identically true, i.e. it is true in every system of the corres-
ponding language then /' and G are said to be equivalent and we write # ~ @.
Besides we shall use the sign ~ to denote the real equivalence, i.e. if 4 and
B are statements (having truth values) 4 ~ B will mean that 4 and B have
the same truth value.

We shall denote languages by L; relational systems or pseudosystems
by 2, B,:formulae by E, F, G, H, I', @, ¥; sets of formulae by X, O; predicate
symbols by M, N, P, @), R; function symbols by f, g, h, I; functions by ¢,
v, € 0,7, sets by 4, B,U,V, W, X, Z; variables by v, w, , y, 2; terms by
t, u; classes of relational systems by K; natural numbers by ¢, j, &, I, m, n, s.
All these notations can occur with indices or superscripts having similar
meaning. In § 2 and § 3 we shall use several bold type letters to denote vari-
ables to emphasize their correspondence with certain elements.

Let U be a pseudosystem of L. =y is said to be a congruence relation on
A if =g is an equivalence relation and for any P,f € L the closures of the
formulas

Ty YA oo A Za == Y= (Plity, « v 2n) — Pl ...,:1/,1))
A R B e T ) R 3 7R

11
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hold in A, (z, ..., %n, ¥, - .., yn being distinct variables). In this case we
define the factor system B = /=y in the well known way as follows. B
is a relational system of L, | % | is the set of all equivalence classes a/==q for-
med by elements a of | 2 | with respect to the equivalence relation =y and if
P,f € L then Pg, fy are defined by

P?B(“l/:ﬂ’ glee ’a'n/=9[)NP5lI(al’ BES "an)
f?«B(al/=QIs i -7an/=?1) :f(al’ =il "an)/=21'

Lemma 2. If U is a pseudosystem of L, A savisfies all sentences of the set
Y Fo(L) and =g s a congruence relation on A then /=y € My(X).

A formula is said to be in prenex normal form (pnf) if it is of the following
form:

(6) (@)« o {00) A) o 5 » Wit} o oo (@) () Wieain) o« « (B0,,) P

where @ contains no quantifier. It can happen that for some ¢ =1, ... =
ki —k;_y=0 i.e. no universal quantifier occurs between (Jy; ;) and (Iy,),
or that » = 0 i.e. no existential quantifier occurs in the prefix. To every
formula F there exists a formula G of the same language so that (¢ contains
the same free variables as F, G ~ F and @ is in pnf. Let H be a sentence in
pnfi.e. of the form (6). We define an open formula H* in an enlarged language

L¥ as follows. Let f be new function symbols for ¢ = 1, ..., n with »(ff) = k;
Let
b S

i @yse - 0 20)

Lemma 3. If U is a system or pseudosystem of L then U — H if and only
if there exists a system or pseudosystem W* of L* for which A* |- CU(H*) and
A* |L = A. That is the well known procedure of introducing the Skolem
functions.

It A, B € SL) then A is said to be a subsystem of ¥ if and only
if || c |B|, Py < Py and fy C f for any P, f € L. In this case we write
A < B. The class of all subsystems of a system % is denoted by S(®B) and we
put S(K)= U S(%B). If 4 is a non empty subset of | B | and for any a,, ...,

BEK
ven e Al € EL we have fy(a,, ..., a,) € 4 then B[A] denotes the unique

subsystem A of B for which || = 4. We shall consider B[A4] holding
defined only if our conditions.

If %A, € S@L) and A, < Ay, for n < w then U A, is the system B
for which e

1B|= U |¥,]|, Ps= U Py,, foa= U fu,
n<w n<w

n<ew
for any P, f € L.

Let A, B € S(L). A is an elemeniary subsystem of B(A < B), or B is
an elementary extension of A if A c B and for any F € F(L) and a,, ...,
vsaptin € 19 |
Zip

a;

Lol oy
a

A

Let N be a predicate symbol. We shall abbreviate (z) (N(z) — F) as
(x)y F and (3x) (N(z) A F) as (x)y F. FN is said to be the relativized of F
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to N and FN arises from F by replacing each quantifier (x) by (x)y and
(3z) by (F2)y-

Lemma 4. If A € ©(L), F € Fy(L), {x: Ny(x)} = B and A[B] is defined
then A[B] F if and only if A |- FN.

We shall need the possibility of replacing functions by predicates in
the following form. We associate a new predlcate symbol Qf with each function
symbol f € L with »(Qf) = »(f) + 1. Let L denote the language consisting
of the predicate symbols of L and of the predicate symbols Qf for all f € i
Now let 9 € &(L). The system ¥ of L is defined by the following conditions:
|UA|=|U|,Pg = Py for P€L,(Q)x @y, - .., Cn Cnyy) ~ fulay, ..., a0) =
= @Gn4y for any ay, ..., 80 @nyy € |A ]|, f€L Lot K= {%: A ¢ K}. Let
now F e, (L). Let F denote the formula obtained from ¥ by ,replacing”
each f € L by Qf in a well known way such that % |- ¥ is equivalent to
A | F.If X is a set of sentences of L, we define X' as the set of the formulae

F for F ¢ X and of the formulae
(@) ... (®n) Oy &) (Y2, - - -, T WA (QI (@ oo oy By 2) > 2= 7))

for every f € L.
Lemma 5. My (2) = Mg(2).
Lemma 6. If for a K c ©(L) we have either K¢ EC, or K ¢ EC or

K € PCyor K € PC then the same holds for K. In order to obtain the desired
axiom system for proving Lemma 6 we need only replace each pzu‘t =y, .

, T, y) of the corresponding formulae by f(z,, ..., Tn) =

Let %, B € &(L). The mapping ¢ of | B | onto | U | is saad to be a homo-
morphism of B onto Y, if for any P, fELa.ndal, ooy @€ | B | Pulay, .., an)
implies Py(p(a,), ..., p(an)) and ¢(fu(a,, .. = fa(p(ay), ..., p(a,)). In
this case U is a homomorphic image of B, in nota.tlon A € H(B). We write
also H(K) for U H().

BEK

€
A sentence F is universal if # = Cl(®) where @ contains no quantifier.
F is positive if F does not contain —, —, «—. It is trivial and well
known that universal sentences are preserved under taking subsystems and
positive sentences are preserved under homomorphism. Pos(Y) denotes the
set of all positive consequences of .
In § 5 we shall need a theorem of LyNDoN [6].

Lemma 7. (Theorem of Lyxpox). If X C F,L), K= MyL) and
A € My (Pos(2)) then there exists an W for which A < A and A € H(K).

In the following we briefly describe the notion of wlirapower and strong
limit ultrapower to be used in § 5. These notions are special cases of important
recent constructions in the theory of models. For more details we refer to
[1] and [3].

Let % € S(L), 4= |A|, I be a non empty set, D be an ultrafilter
on I (i.e. a maximal dual ideal of the Boolean algebra of all subsets of I).
For any function ¢,y € A7 we write ¢ ~~p o if and only if {i € I: ¢(?) =
=(?)} € D.~p is an equivalence relation on the set 47. For each ¢ € A7 let
¢/D={y:p~~py} the equivalence class of ¢ with respect to ~~p. We define
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ApL = {¢/D : ¢ € A'}. We define the system U}, of L as follows. Let | A}, | = A4J,
P‘J[llz((pl/D’ ) (pn/D) 2 {ZE b - I)‘JI((pl(’[)? R ) (Pn(l))} ED

Jab(@1/D, ..., 9u/D) = fol@y, ..., @)D .

Now we define an auxiliary notion to make easier the definition of strong
limit ultrapower. Let ¢, denote the constant function of A’ which takes the
value @ € A for each ¢ 6 I, let 4, denote the set {oa/D a € A}. It is well
known that ALH[4;p] is an elementary subsystem of 9% and it is isomorphic
to A by the mapping c,/D — a. Let AUPl = (A, — 4, p) U 4 and let d’D
(briefly d) be the onto mapplng d : AP s AL for which d(¢/D) = @D it
p € Al and ¢/D¢ 4;p and d(a) =c,/D for a € A. We define the system
UUDY of L such that d4P is an 1somorphlsm from Y/Pl onto AL. Consequently
we have A < /DI,

Lemma 8. If A, B € S(L) and U satisfies every universal sentence holding
in B then A is isomorphic to a subsystem A’ of BI'P) for some I and D as before.

That is well known and is an immediate consequence of Theorem 1.15
of [1].

Now let A € &(L), let I, be a non empty set, D, an ultrafilter on I,
for n < w. We define by induction

(8) 9Io =
(9) Wi =H WSl (n=101,,..)
Lemma 9. A< U ¥, .

Let A, B € @(L')],«()x be a mapping from | ¥ |into | A |. Let of, denote
the mapping of B into AL (4= ||, B =|%B |) such that

b(¢/D) = (a0 @)/ D for any ¢ € B!

(we note that in this case a o ¢ € A7) Further we define «l//P]: BUID] . AU/D]
such that

and

d4P o all:Pl = af, o diP

We see that ol//Pl(a) = a(a) for a € B, in other words a < ali/P],
Now we put

By, =B
B, 11 = BLIn/Dal

ao =a
sy = alinDal

in addition to (8) and (9).
Lemma 10. If o is a homomorphism of B onto U then U o, is a homo-
morphism of U B, onfo U A,. n<e

n<ow n<w
We shall use the following
Lemma 11. Compactness Theorem. If X' C §,(L) and F € Cn(X) then
there is a finite subset X of X for which F € Cn(X,).
We suppose the notion of (general) recursive function, (general) recursive
predicate of the natural numbers, recursive or recursively enumerable set of
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natural numbers to be known. The following axiom system called Robinson’s
system (see KLEENE [4], p. 197) will be used in § 2. It contains the constants
0,1 and the binary function symbols -4, -. Let the set of the letter be L°,

@ () e+l=y+1>z=y)

(z) (4 0 =)

@@Wee+y+D)=+y) +1)
(B)J (@) (m2xz+4+1=0)

() (x+0=0)

@@ @ y+1)=x-y+2)

() 3y) y+1=ave=0)

If k is a natural number, lg will denote the corresponding numeral, i.e. 1f
k=0 then k=0, and £+ 1= (k)+ 1. In the following lemma |-(g) F
will mean that the sentence F is derivable from (R) in a usual formal system
of the first order predicate calculus with equality axioms.

Lemma 12. (a) For each recursive predicate R(x,, . . ., x,) there is a formula
Fl(z,, ..., x,) of L such that for any natural numbers ky, ..., ky,
R(kl, v @ ® k )N|'_(R)F(k], ...,@ )
—IR(IL'I,..., ) ["‘(R)_|F( Y.y e 0w n)

(b) If specially R(x,, ...,x,) 98 @@y, ..., 2T, 1) = T, for a number
theoretic function ¢ then in addition to (a) we have for any natural numbers

kly ""kn_l and kn =P (kl’ T kn_l)
}’—(R)(x)(F(]_Cl’"-7]_“n—19x)"+x=kn)

(¢) For each natural number n
n—1))

n—
where x < y is an abbreviation of (3z) ((z +1) + 2 = y) (see [4] Corollary
of Theorem 32 (p. 296) for (a), Theorem 32 (p. 295) for (b) and *166 (p. 197)
or its proof for (c)).

o) e<n—>@z=0ve=1v.. . va=

§ 2. A generalization of a theorem of Kleene

For the sake of simplicity we assume in the following definition that L
contains only predicate symbols and no function symbol.

Definition. The language L is said to be recursive by the enumeration
u = (P;)icw of all predicate symbols of L if »(¢) = »(P;) is a recursive function
of 1.

We define the Godel number Nu,(F) = Nu(F) of formulae F of L by
induction on the number of logical Operatlons contained in F.

(i) If F =v;,=v; (i,j < o) then let
Nu(F)= 21-3i.5/
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(i) If F = P;(vi, ..., ti,) then let
r(i) .
Nu(F)=2'- II pit,®
k=1

(iii) If # = — @G then let
Nu(F) = 23 - 3Nu(@)

(iv) If ¥ = F, A F, then let
Nu(F) = 24 3Nu(Fy) . 5Nu(F,)
(v) If F = (v;) G then let
Nu(F) = 25 . 3t 5Nu(G)

We remark that only —, A, (v;) are considered as primitive operations, the
others will be used as abbreviations. A set X' < §,(L) is said to be recursively
enumerable by u if { Nu,(F): F € X} is recursively enumerable.

We define the class PCyr. of classes of relational systems as follows.
Let K ¢ (L), L contain no function symbol.

Definition. K ¢ PCy. if and only if there exist a language L’ recursive
by an enumeration uand a set X' < F (L") such that L c L” and X is recursively
enumerable by p and K = Mg(2) | L.

Theorem 1. If L, s a finite language, K < ©(L,) and K € PCy. then
K= ¢ PC (K= being the class of infinite systems of K).

Proof. According to the hypothesis we have the language L o L, the
enumeration (P;);<, of all predicate symbols of L, the set X' of sentences
of L and the recursive predicate R(n, m) such that »(¢) = »(P,) is a recursive
function of ¢, K = M.(2) |L, and n = Nu(F) for some F ¢ X if and only
if there exists a natural number m for which £(n, m) holds. We may assume
that the predicate symbols of L, are P, ..., P, _,. The language L, is defined
as the set of the predicate symbols P. ..., P, ; and of the following addi-
tional symbols:

0, 1 constants

,+ binary function symbols
unary predicate symbol
binary function symbol
unary function symbol
binary predicate symbol

st

Let us consider the relativization of Robinson’s theory to the predicate
N (see § 1), i.e. the following sentences

N(0)

N(1)

(vo) (vy) (N(ve) AN(v) = N(vy + vy))
(vg) (v (N(Uo) AN(v)) = N(v, bl))
(Vo)y ()N (o F+ 1 =0 + 1>, =10)
(Vo)n (v 4 0 = 1))

3 p; denotes the ¢-th prime number (p, = 2, p, = 3, ...)
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o)y (AN (1 =0,V 0,=0)

Let RN denote the conjunction of these formulae.
Let us consider the following number theoretical predicates:

Neg(n, m) n = Nu(— D), m = Nu(PD) NEG(n, m)
for some @ ¢ F(L)
Conj(n, my, m,) n = Nu(®, AN D), m; = Nu(D,) CONJ(n, my, m,)
my, = Nu(®D,) for some D, D, € F(L)
Quant(n, m, i) n = Nu((v;)®), m = Nu(P) QUANT(n, m, i)
for some @ ¢ F¥(L)
Eq(n) n = Nu(v;, = v;,) for some j,, j, EQ(n)
Pim(n, i) n= Nu(Pdlo, - .., Vi) PRIM (n.i)
for some j, ..., jiy—1
EQ(’”, j! I‘) n = NZI(UJ'“ = L‘j,)a EQ(n:j’ k)
k=0 or k=1, and j =7,
Prim(n, 1, j, k) n = Nu(Pyv;, ..., vjy) PRIM(n.1,j, k)
0<k=r(@—17j=j
Pr(n, 7) n = Nu(Pyvy, ..., v—1) PR(n, 1)
k< Sy(k. i)
k < r(2) 8, (k, i)
k = r(q) Sy(k, i)
k = lh(n) n = Nu(®P) and the maximal Sy(k, n)

natural number ¢ for which v; is a
a free variable of @ is lh(n) — 1

% = max(j, k) MAX(@,j, k)
R(n, m) RE(n, m)

Lemma 13. The number theoretical predicates listed above are all recursive.

That is trivial by the definition of Nu(®) and by our hypothesis that
r(?) is recursive. If n is a natural number then n denotes the corresponding
numeral (formal term of L;) (see § 1).

Lemma 14. Let R(z,, ..., x,) be a recursive number theoretic predicate.
Then there exists a formula FN(z,, ..., x,) of the language L° c L, such that
for every model A of RN and for any natural numbers ky, . .., kn, R(ky, ..., ky)
is true if and only if A — FN(k,, ..., k).

Proof. Our assertion is a direct consequence of Lemma 12(a). The desired
formula FN can be obtained by relativizing the formula F of Lemma 12 to N.
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The formula FN to each of the predicates listed before Lemma 1 is
denoted by the corresponding notation standing on the right side of the
above list.

Lemma 15. For every model N of RN and for arbitrary natural numbers

Ns s 8

(1) A Gn (S n)>(F=0vi=1v...vj=n—1))
(2) A (k)y (Sy(k,3) >(k=0vE=1V...VEk=r@G—1))
(3) A (k) (MAX(k, s, i) — k = max (s 7))

Proof. (1) follows from Lemma 12(¢), (3) from Lemma 12(b), (2) follows
from Lemma 12(b) and (c) if we specialize

(4) 8y(k, @) = 3J)n (So(k. ) A B (0, )

where R (7,7) is a formula representing j = r(?) asintended to get in Lemma 1
(b) i.e. we have

() A RBY(4, j) ~j=r()
and
(6) A b (B)n (BY (@, k) > k= rl)

for natural numbers 7, j.
For S,(k, i) defined by (4) we must show (2), furthermore also

(7) A Sy(k, 7)) ~ k < r(3)

i.e. that S(k, 1) satisfies Lemma 14 too.

From (5) and Lemma 14 for S (k, j) it follows easily that k < 7(¢) implies
A — S,(k, 7). Conversely if A |— S,(k, ?) then from (4) and (6) it follows that
A — Sy(k, r(2)) i.e. k < r(¢), consequently (7) is proved. (2) follows from (4),
(6) and (1) similarly.

Now we give a finite axiom system 2} for which we shall prove

(8) K- =My(2)]|L,
We use the abreviations m; = Nu(Pi(vy, ..., v@-1)) (¢=0,1,...);
ey = Nu(vy = v;)

Al RN

A2 1(0)=0

A3 (a) N(l(a))

A4 (a)(x) (3b)(U(b) =Ua)+ 1 A (J)n(So(j Ua)) —
— h(a,j) = h(b,j)) A i(b,(a)) =x)

A5 (a)(b) {[l(a) =1Ub) A (j)n (S, Ua))— h(a.j) = h(b,j))]
—a=>b}

A6 (a)(l(a) =2 (M(eo, a)— h(a,0) = h(a,1))
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AT /{ (a) (@) = 1) — (M (m,, @) — P (h(a,0), ..., h(a, i) —1)]

A8 (n ) ( )(b){[ EQ(n) A Sa(l(a), 2) A Sy(U(b), 2) A
(F)n ((EQn,j, k) A Sy(j, la@)) A (k=1V k=2))—
—>h(b,h) = h(a, j) )]—»(M n, a) — M(m, b))}
A9 (n)y (m)y () (@) (b) {[PRIM(n,3) A PR(m,i) A S,(U(a),i) A
A Sa(l(b), 8) A ()n (B)n (PRIM (n, 3,5, k) A So(j, la)) A
A S,(k, l))—> h(b, k) = h(a,j))] —>(M(n, a) — M(m, b))}
A 10 (m)y (M) (a) [NEG(n,m) A Sy(l(a), n) —
— (M(n, a) — — M(m, a))]
A1l (n)y (my)y (My)y (@) [CONJ (n,my, my) A Sy(l(a), n) —
— (M (n, a) «—>(M m,, a) A M(m,,a))]
Al12 (m)y (m)y (1 [QUANTn m, z) A Sy(l(a), n
—[M(n, @) — (b) ({MAX((b), l(a), i) A
k)N((—qk_z A So(k, l(a ))—>h(b k) = h(a, k))} —>
—>M(m, b))]]
A13 (n)y (m)y(RE(n, m)— M(n.0))
I. Proof of
9) M. (Z)|L,DK"

Let %, € K=, ie. let | ¥, | be infinite and Ay = A |L, for A € My(2)
We have to define 2, such that

(10) A € MLI(ZI)
and
(11) V=1L

Let B be a subset of 4 of power w and let Ny (a) be true if and only if a € B.
Let 0y, 1y, be two elements of B, 4o, g, bina.ry functions on 4 =
= | Uy | so that B = (4; Oy, 1y, 4, "a,) [B] is defined and isomorphic
to (w; 0,1, 4, - ) where the latter is the system of the natural numbers with
the usual constants and operations. We may and shall suppose that %8 is
ldentlcal with (w; 0,1, +, +). If a,b€ 4 and a¢w or b¢w then a 44, b,
‘o, b can be defined arbitrarily, e.g. @ 4o, b = a9, b =
We establish a one-to-one mapping ¢ of 4 — {0} onto the set of all
finite sequences (with at least one element) of 4. Let Iy, (0) = 0 and Iy, (a) =
= the length of ¢(a) (= the number of elements of the sequence ¢(a)) for
a€ 4 — {0}. We say that a represents the sequence ¢(a).
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If p(a) = (a,, ..., as_,) and k € w, k < s then let hy (a, k) = a,. Other-
wise let Ay (a, b) = 0.
Let @ be an arbitrary formula of L, n = Nu(®D), a € A4, l(a) = lh(n),
p(a) = (aq, ..., a,_4). We define
Mo, (n,a) ~ A

|
Yo - - Vinm—1

Aoy o« o ’alh(n)—l

Specially if @ = 0 and @ is a closed formula
1119[1(72, 0) ~ N — (0]

In all other cases 2,y € A My (z,y) may be arbitrary, e.g. My, (x, y) = 0.

Considering (11) ; has been completely defined.

We have to verify that 9, satisfies the axioms 41— A13. This verifica-
tion is straightforward. We give only a sketch of it. We make advantage
of the fact that the special formulae listed before Lemma 13 take the same
truth value as the corresponding number theoretic predicates for natural
number arguments (i.e. for elements @ of A4 satisfying Ny (a)).

Al is true because the system of the natural numbers with the usual
operations satisfies the axioms of Robinson’s theory (and see Lemma 4 in
§ 1). A4 expresses that for every sequence (a, ..., a, ;) represented by a
and every element z there is a b € 4 representing (a,, ..., a, ;, ). A5 expres-
ses that there is only one element of A4 representing a given sequence.

Now let us observe the definition of Mg (n, a). A6, AT are obvious.
A9 expresses that Pi(v;, .. ., vi,_) takes the same truth value for a sequence
(@g, ..., @s_;) represented by e which is taken by Pv,, ..., v,—,) for
the sequence (a,, ..., a;,,_,) represented by b. A8 is similar for the identity.
A10,A11 express the meaning of the negation and conjunction. Let n = Nu(®),
acd, ly (a) = lh(n). A12 expresses that a sequence (a,,. . .,a, ;) represented
by a satisfies the formula (v;)®@ if and only if for every b ¢(b) satisfies @ provided
that the following hold: ¢(b) = (b, ..., by_,), 8" = max(s, i) and b; = a; if
j<s and j == 4. A13 expresses that the sentences F for which there exists
an m with R(Nw(F), m)i.e. the sentences of X' are true in .

We have proved (10) and (11), consequently also (9), qu. e.d.

II. Proof of

(12) MLx(El) ! LO - K~
Let %€ My (2), U=, | L, | U, | = A. A4 is trivially infinite because the
values of the numerals in 9, must be different.

In order to prove (12) we must construct a system 2 € (L) for which

(13) AL, =%
and
(14) A ML (2)

Let us denote the set of the values of the numerals in ; by B. B is a
(possibly proper) subset of {a: Ng,(a)} From the fact that in 2 Al holds it
follows that B = (4; 0y, Lo, 4o, o) [B] is defined and isomorphic to
(w; 0,1, +, -). We may and shall suppose that 9 is identical with the latter
system.
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Lemma 16. For every natural number n > 0 and every sequence (a,,
@y, ...y @n_y) Of m elements of A (possibly the empty sequence) there is exactly
one element a of A for which ly(a) =n and hyla, k) = a, for k< n. Let
[y ay, - .., @p_;] denote this a.

Proof. First we show the existence of a by induction on n. If n = 0
then @ = 0 is suitable by A2. Let n > 1 and let us assume that a € 4, ly (a) =
=mn — 1, hy,(a, k) = a;, for k <n — 1. Using A4 (,substituting” a,_, for z)
we obtain b € A for which Iy (b) = n, hy (b,n — 1) = a,_, and

= ab . . : :
(15) Uy [ === () (S04, L) — h(a.j) = k(D ))
By Lemma 14 U, |— S0, — 1), ...,8,(n— 2,2 — 1) consequently (15)

implies ko, (b, k) = hy, (@, k) = a; for k <n — 1 qu. e.d. Secondly we prove
the unicity. Suppose a,b € A4; ly,(a) = ly,(b) = n € w, hy,(a, k) = hy (b, k)
for k< n — 1. a = b will follow by 9 |- A6 if we show that

(a, b

A : (J)n (So(J, ) — h(a, ) = (b, j))

’

But that is a consequence of Lemma 15 (1) and of our hypothesis.
To define A we give (P;)y for ¢ > n,as follows. For any a,, ..., a,;_; € 4
let

(16) (Pyu (@, - - ., ar(i)—-]) ~ My, (my,[ay, ..., ar(i)—l])

We remark that by A, - A7 (16) holds also for ¢ < m,. Similarly we have
by A, — A6 that

(17) Ay :al’\“:'[?(l(eo»[aoval])

Lemma 17. If @ € F(L), n = Nu(®P), a,, ...,a,_, € A, lh(n) < S then

(18) e AL T ST T S g
|a0,a1, R
Proof. The proof proceeds by induction on the number of the logical
operators (i.e. —, A, (z)) occurring in @.
1. Let first @ be v;, = v;, or Py(v, ..., ;). We consider only the
second case. The first one can be treated similarly using A8 and (17) instead
of A9 and (16).

Let a = [ag .+, 8.4) b=1[a;, ..., 8,,,),m=m; By Lemma 14
we have
(19) U, PRIM (n, i), PR (m, i), 8,(s, 1), Sa(rtd), i
further
(20) U, = PRIM (n, 3, j, k) for k < r(3)

and
(21) U, — — PRIM (n,4,5, k) for j<s.jij
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By using Lemma 15 (1) and (2), (20) and (21) we obtain

2 G (R (S, G ) A St 9)

— (PRIM (n,i,j, k) — h(b, k) = h(a, j)))

A

From this and (19) and 2, |- A8 it follows
a b

(22) QIl (M(ﬁa a) e Z‘[(@, b))

Applying (16) gives

(Pi)i’l(aju’ vy ajr(d)—x) s ﬂlg{l(m) b)
This and (22) imply

(Pl)‘)l (aj,,, ey ajr(i)—;) alinc ]l[‘ztl(”’ a’)

which is exactly (18) as was to be shown.

2. Let @ = P or @ = ¥, AYP,. These induction cases can be treated
by using ¥, |~ A10, Al1l. Put m = Nu(¥) or m; = Nu(¥,) and m, = Nu(¥,).
Let us observe that by Lemma 14 we have 9, - NEG(n, m) or A, - CONJ(n,
my, m,) and in both cases A;  S,(ly, (@), n).

3. Let ® = (v;) ¥, m = Nu ¥. To fix the notations we suppose 7 > s.
The other case ¢ <s can be treated without essential change. Let a = [a,,. ..

st i e
(a) First we suppose

Wy Wiy o ot vt D
(23) ) (e Ao T M ot U7
o R,

We have to show
(24) My, (n,a)
By U, - Al12 and A, - QUANT (n, m, i), S4(s, n) it is sufficient to prove that

(25) ¥,

% (b) [(MAX (I(b), I(@), ) A (k) (— k=1 A Sy(k, U(a)))—
— h(b, k) = h(a, k)) — M(m, b)]

Let b € 4 and suppose

a,b

(26) A, b—MAX (Ub), (@), 7)

5

and

|
27 w22

(B)y ((— k=i A Sy(k, (@) — h(b, k) = h(a, k)

’

(26) implies by Lemma 15 (3)
lo,(b) = max (s,2) = s.

From Lemma 16 and (27) and A, - Sy(k, s) for k < s it follows that b =
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= [ag .., _4, 05, ..., a;] for some al, ...,a; € A. From (23) we infer

(4 v ey U;
02 Sie ey sy v o001y

A =
Ay oo 0y gq5 000y A

This and the induction hypothesis for ¥ imply M o (m, b) consequently we
have proved (25).

(b) Secondly we suppose (24) and prove (23).

By 2%, - QUANT (n, m, 7), Sy(s, n) and A12 we have now (25). Let a; be
an arbitrary element of 4, al, ..., a; , be elements of 4 (these latter are
unessential) and b = [a,, ..., a,_y, a;, ..., a;]. By Lemma 14 we have (26)
and by Lemma 15 (1) we have (27). From (26), (27) and (25) it follows
My (m, b) which implies
(28) R S TR

sy o:o o3 By w1053 BF

by the induction hypothesis. In other words, for arbitrary aj € 4 (28) holds.
But this means exactly that (23) holds.

So we have finished the proof of Lemma 17.

Now we prove (14). Let F ¢ X, n = Nu(F). According to our hypothesis
we have a natural number m for which Z(n, m) holds. By Lemma 3 this
implies 2, — RE(n, m) hence by using 9, |—-A13 we obtain My (n, 0). Con-
sequently by Lemma 17 we have % |- . We have thus shown (14), and
sonsequently also (12).

(9) and (12) give (8), hence K~ ¢ PC.

So we have finished the proof of Theorem 1.

We give a counterexample showing that the conclusion K= ¢ PC
cannot be improved in general to K ¢ PC. Let L, be the empty set. The
systems of L, can be identified with sets. The formulae of L, contain only
the identity symbol besides variables and the logical operations. We can
construct a sentence F, € FyL,) for any n» € w such that A € My (F,)
is equivalent to A=~n (n ={0,1, ...,n — 1}). Let H be a recursive but
not primitive recursive set of natural numbers == 0. Consider X' = {— F,:
n € H}. Then X' c §y(L,), X is recursive and furthermore the set of the
natural numbers n such that » € K = My (2) is identical with & — H (the
complement of H).

Let F be a formula of an arbitrary language L( o L,). It is trivial
that the set of all # such that n € My(F) |L, is primitive recursive. Hence
if K € PC held then @ — H would be primitive recursive, that is not true.

§ 3. An operation on relational systems

We suppose that the language L contains only predicate symbols and
no function symbol.

Let 2 be a relational system of L, F(z) a formula of L with the single
free variable . We define ¥ || F(z) as the subsystem B of % such that | ¥ | is

the set of those elements a of || which satisfy F(z)in 9, i.e. A !i F(x).
a

Since we do not allow relational systems with empty domain, we consider
A || F(x) as defined only if A | (Iz) F(x).
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This construction has a rather general character, as it will turn out in
§§ 4 and 5 in which we apply it together with Theorem 2.
We define for a class K of relational systems

K || F(z) = (A || F(z): A K}

Theorem 2(a). If L is an arbitrary language, F(x) € F(L) with the single
Jfree variable x, K = My(X) for some X' < (L) and (Iz) F(x) is a consequence
of X then

(1) K | F(x) € PCs
(b) If in addition L is finite, and X' is a one element set then
(2) K H 6 Pcdrec

Proof. We prove the theorem by constructing an axiom system X’
in a language L” o L such that

(3) K || Fl2) = Mu(Z) | L

We shall see that if the hypothesis of (b) holds, then L’ and 2” will satisfy
the further requirements of (b).

We suppose that F(x) is a prime formula, say Q(z). To reduce the general
case to this we have to ad]om a new unary predicate symbol @ to L and to
add the axiom (z) (Q(z) — F(x))to 2. Let the resultmg language and axiom
system be L, and X resp. Obv1ously we have K || F(z 2) || @x)) | L
and so we ol)taln (1) r (2) if we apply the same to Ll, 21 Q(z)

We may assume that each formula H € X has the following prenex
normal form

(4) (2g) - - - (®x,) (391) « - o @ 42) - (2w) (der) (i sd} s » ~(xk,.+,) @

where @ is an open formula of L. For each H € X we introduce distinct new
function symbols f', ..., fi corresponding to the variables y,, ..., ¥yn
bound by existential qu(mtlfler% in H; with offi") =8 =1, .., %) By

adjoining every fH to L for each H ¢ X we obtain the enlarged language L.
We associate an open formula H* of L, with each H € X by putting

T @i o505 Big)

Let 7' be a prime formula of L,. 7' is said to be a free prime formula
(briefly fpr) if (i) each variable of 7' occurs in only one argument place of 7'
and (ii) the argument places of 7' are occupied by v,, ..., v,_; in that natural
order in which these argument places follow each other from left to right
in 7. It is obvious how to give a rigorous inductive definition for the notion
of the free prime formula. At any rate the following lemma is evident.

Lemma 18. 70 each prime formula T of L, there is a unique fpr T, such
that we get T from T, by substituting a variable of T for each variable v; of T,
Moreover, this latter sustitution s uniquely determined.

We associate a predicate symbol PT with each fpr 7 with the following
stipulations. The symbols PT are different from each other for different fpr-s,
and they are different from the predicate symbols of L with the following
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exception: if 7' is a prime formula of L, i.e. of the form v, = v, or P(v,, ..., v,_,)
for P € L then let PT be identical with = or P respectively. We put v(PT)
to be the number of the variables in 7.

Let L’ = {PT : Tis an fpr} — {=}. Obviously we have L c L.

Now we define ¥ for each open formula ¥ of L, as follows. Let first ¥
be a prime formula of L;. By Lemma 18 ¥ arises from a unique fpr ¥, by well

A T . . |5, 01, 5w
determined substitutions for variables of ¥, ie. ¥= |21 ' m-1 gy,
lxo:xv s ®m—y
where x, ..., x,_, are variables. Let ¥ be the formula P¥s(x,, 2;, . . ., T, ,)

If ¥is an a.rbltra.ry open formula of L, then ¥ is obtained from ¥ by replac-
ing each prime formula part @ in ‘P by @.

We remark that ¥ has the same variables as ¥ and if ¥ € §(L) then
¥=¥,

Let I be the set of the following open formulae

Vo = Uy
Yoty => th =Yg
1 l(vozvl/\z’lzvz)_*”o:”z

(05 =Va AOI=Vngq N « o o A Ung =005 ) L(0y55 . « s Vn—q) =P 0p,« o csV33)
for arbitrary P € L

Lot J*={H*: He X} Ul
Let X be the set of all formulae | * " B where F ¢ X* & =t Do
B 5w I
are distinet variables, ¢;, ..., 7, are terms of L Let 2, = (¥ :P.€ Z,} and
Z, = ClY(Z)).
Let ¢ be a term of L;, « be a variable not occurring in ¢t. We define the
formula. £, by

(5) E, = C1(Q(t) > (Fx) (x = 1))
Finally we put
2'=2 U {E,:t is a term of L;} U {(z) Q(x)}

For L’ and 2” so defined we shall prove (3).

We remark that if the hypothesis of (b) holds then in virtue of the
,,effectiveness” of our construction we trivially have an enumeration u =

= (P;)i<w of all predlcate symbols of L” for which »(P;) is a primitive recursive

functlon of 7 and {Nu (F):F ¢ X’} is a primitive recursive set of natural
numbers. Thus (3) will imply (2).

I. Proof of K || Q(z) € My (2") | L

Let % € K || @(x). We have to show

(6) Ae My () |L
We have a system 8B € K = Mg(2) for which % < B and
(7) |A|=A4A={a:a€ B=|9B| @u(a)}

12 A Matematikai Kutaté Intézet Koézleményei 1X. A/1—2.
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We define the system B, € &(L,). Let | B, | = B, Py, = Py for any P € L.
Let H € X of the form (4). Smce B H, by Lemma 3in § 1 we have a
BH ¢ G(L,) for which B = BH |L and SBH — CI(H*).

Let (ff)p, = (ff)gafor i =1, ...,n and for each H € 2. So we have
(8) B, |L =% and B, |- Cl(H*) for every H € X
We define the system %’ of L’ by putting | A" | = 4 and
Ui Ui
(9) (PTyow (@g, - + s @) ~ By —privomelp
s e ey

for any fpr 7T and ay, ..., a,_; € A. If we replace T by P(v,, ..., v,,) for
P €L in (8) we obtain

, Py (@gs - + +18nmg) ~ Pig (0, - - .1 Gpsy) ~ Pal@g, . .., Gn_y)
ie.
(10) W L=9
Now we show
(11) A € M (L)

If @ is an arbitrary open formula of L,, a,, ..., a,_, are elements of 4
then
(12) A’ i b o B B, iﬂ)’,' Gkl e e S O

| G0 % 510gq 7 A

That is a direct consequence of (9) and the definition of @.
Let ¥ € 2. We show

(13) B, - CUYP)

Now we have ¥ = %‘LAI"ILI F where F — H* for some H € Y or Fe€l.
0y * =% Si—1

In the first case (13) follows from (8), in the second one (13) follows from the
trivial fact that 9B, - CU(F).

Now let E € X,, i.e. E = Cl(¥) for some ¥ ¢ X,. It follows from (12)
and (13) that A" |— E.

Secondly let £ = E, of the form (5). We prove ) g ) 1 -1 T R 1
be all the distinct variables of and @y, -..5a, €A. We have to show

— (dx) x —t) Suppose o | Zi L Q(z). This implies by (12) %1 Q(t

I

—‘t, consequently by (7) 7 € 4. But tr1v1a11y

i

ie. Q% 7) where 7 = B,

2L DR g =1t and so again by (12) we have U’
-ral,.. S0 A T

je. |t L (3z) x = ¢ and that had to be shown.
a;

AN N e

B,

Finally we have trivially A’ - (2) Q(x).
Thus we have shown (11), (10) and (11) gives (6) qu. e.d.
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IL. Proof of K || Q(z) ¢ My (2") |L

Let
(14) A € Mp(X)
(15) U= |L
We have to construct a B for which
(16) B e K= M2
(17) Ac B
and if |[H|=4,|B|=B
(18) A={a:ac B Qyla))

We associate a new constant ¢, with each a € 4. We suppose that
c, ¢ L, and ¢, 5~ ¢, if @, = a,. Let A, = {c,: a € A}. We define the auxiliary
language L{* = L, U 4,. Let B, be the set of all closed terms of L{}, i.e. which
contain no variable.

We define the pseudosystem B, of L, as follows. Let | B, | = B,. Let

by, ...,bn€ By, let cq, ..., cq,, be all the different elements of A4, occuring
in some of the b;-s, t; = L TRALAL Y biforé =1, ..., n. 4 isa term of L,.
R )
Now we define '
(19) by = g, by ~ W S Tt g
Qy, s Am—y
| Yos s Um—1 a
(20) Pg (b, ..., b,) ~ A | ——== P(¢,, )
Qo -+ -y Ap—y
for P ¢ L and
(21) Jo.y oo b)) =15 o o4 8)
for f € L,.
Using similar notations (19), (20), (21) imply that
(22) B, xl""’x"gpwg[' Yo 3 VUny ([T - %y (DJ
105h,; 17 [ R

for any open formula @ of L.

Now we put B, = B, |L, consequently B, is a pseudosystem of L.
We prove that B, is a pseudomodel of X.

Let H € 2. By Lemma 3 it is sufficient to show

(23) B, | CI(H*)
for proving B, |- H. We have to show that if b, ..., b, are arbitrary
elements of B, then
(24) B, [T Pas pv
B onon Bl

(we suppose H to be of the form (4)).

12%
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Let ¢4, ..., Cq,_, denote all the different elements of 4, occurring in
some of by, ..., bg,,,, let us replace each c, by v; in each b; and let ¢, ...,
s Ui be theresulting terms of L,. Let ¥ be xl’ <22 Tk frx For proving
Ko i
(045 i 15 wifficiant 16 Show by (92) dhiak 8L 00s s B Bok Hhiabiteie
@y == o5 Vg

since ¥ € X, and consequently CI/(¥) € 2” and so we have (14). So we have
proved (24) and (23).

Moreover we assert that =g, is a congruence relation on 8,. We have to
show that B, |- Cl(®) for D€l where I was defined above (equality axioms).
This follows simila.rly as before from the fact that if @ € I,¢,, ..., ¢, are terms

of L, then Cl t A £ €.

Let B be the factor system B,/=g, . By Lemma 2 and from that what
we have just proved it follows (16).

Let A, denote the set of the equivalence classes c,/=g, = [a] (a € 4).
We assert that the subsystem 8[4,] is isomorphic to A by the natural mapp-

Vo, ¥ Yo, Uy

ing [a] — a. Indeed we have [a,] = [a;] ~ ¢, =g, Cqy ~ A’ |—L vy =0, ~
@, Ay
Vg ¥ 2 e
~ A ‘ 2 71 9y =10, ~ @, = a,, hence the given mapping is one-to-one and
| %02 %1
moreover
Pyiag([@ol, - - -5 [@n—y]) ~ Pl[@o], - - -, [@r—1]) ~ Ps,(Cq, - - s Ca, ) ~
R/ a— Yoy s 55 Vg
W |l Py, V)~ WL Py, e, Uy ~
T — — [ AR
~ Py(@y; . - osBr—q) ~ Pylay, ...,a,—,) as desired.

We can identify B[A’] with A, hence we can consider Y as a subsystem
of B.

To complete the proof we have only to show that 4 = X if X denotes
{b: Qp(b)}. Being A a model of (z) Q(x) and at the same time a subsystem of
B we have 4 ¢ X.Toprove 4 5 Xlet b € X. Then b = i(c,,, - . vs Cap )] =
where £(vg, ..., 0n_4) 18 a term of L,. It follows from (12) and Qg () that

o200l Qlelvg, - s Vad))

- IS -

(25) oA’

But E, € X’ (see (5)), consequently A’ |- E, hence (25) implies

Yiss o wwi Bipc
S BL(3%) = Oy o s Paq) s
R S

2[’

Let a € A for which

s Oh s ®

o |2

Bigs: o = =55 O

i e )
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By definition this is equivalent to ¢, =g, t(cq,, - . ., Ca,,) i.6. b = [c,] =a € 4.
Thus we have proved (16), (17), (18) qu. e.d.
Corollary 3. If K € PC and (Jx) F(x) holds in all systems of K then

we have
(x| F(x))~ €PC

Proof. By Theorem 1 and Theorem 2 (b).

Now we want to glve an example of a class K ¢ EC and a formula
F(z) such that K || F(z) ¢ EC,. Our example is a slight modification of the
one given by LYNDON [3] for showing that K ¢ EC does not imply H(K) ¢
€ EC,. Let the language L consist of the predicate symbols P, @, R with
v(P) = »(Q) = 1,»(R) = 2. Let H be the conjunction of the following formulae

() (Q(x) > — P(x))
(26) (Jx) (y) (P(x) A (P(y)—>x=1y))
(27) () (P(x) > R(x, x))

(28) (@) (P(x) > (y) (B, y) > (32) (R(x. 2) A RB(y, 2) A Q)

Let K = My(H).
We assert that K || Q(x) consists of the relational systems A for which

A - (z) Q)

A (x) 4 P(z)

and there exists an infinite sequence z,, 2, ..., 2, ... such that
By (2, i, 2n) for each n = 2,3,

Let first B € K, A = B || Q(z). Then there exists exactly one element
xz, of |B | = B for which Pgy(x ) 1s true. Let us replace x, for & and y in
(28). Then (27) and (28) say that there exists a 2, € 4 = |2 | such that

(29) Ry(z), 2,) and Qgy(2)

hence 2z, € 4.

Taking x, for x, z, for y in (28) we see by (29) that there exist a z, € 4
with Bg(x,, 25), Bg(2, 25).

Continuing in this manner we get the sequence 2,2, ... such that
Ry(2n, 2ny,) and RBg(z,, 2,) hold for each n» = 1.

Secondly let 9 satisfy (*). We choose a new element x,¢ 4 = | U |
and define | B | = 4 U {x,}. We define Py(z) to be true in B if and only if
J:—xo, Ry(z,y)ifandonlyife =y =2y, orz =z and y =2, 0r x = 2,_,

and y = 2, for some n; Qwu(x) if and only if x € 4. It can easily be checked
that B |- H and A =B || Q(x)

Now we show that K || Q(z) ¢ EC,. It is sufficient to exhibit a system
A such that A does not satisfy (*) but an ultrapower 2}, of 2 does satisfy (*).

Let | 2 | = 4 be the set of the distinct elements z;, for natural numbers
i, k with ¢, k > 1, ¢ < k and let P, @, R be defined in A as follows.

Qo) is identically true

Py(x) is identically false

Ro(2i, 2;) is true if and only if £ =1 and j =14 + 1.
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It can be seen that 2 does not satisfy (¥*).

Let I be the set of the positive integers, D be a non principal ultrafilter
on I. We can write the elements of A} as (z,, @,, ...)/D. Let us put z; =
= {®ys - v x5 Bita Bibs Bhiaas - )| D. Then Relz 4 %) 18 always true, ie. U7
satisfies (*) que.d.

§ 4. Homomorphisms

Let F be an arbitrary set of formulae of the language L, let 9, 6 be sys-
tems of L, ¢ be a mapping of |8 |= B onto | | = 4.

Definition. ¢ is said to be an F-homomorphism of B onto U if for every
F ¢ F and arbitrary elements by, ..., b, of B

LIURRRIE smpies A Dol i P
a5 o), - ., ¢(by)

This notion is due to KE1sLER [2]. KRISLER requires F to have some specia
properties (to be a Generalized Atomic set of formulae) but we do not need
such restrictions. Moreover we can and shall suppose without any loss of
generality that v, = v, is an element of F, because for any mapping ¢ of B
b, = b, implies @(b,) = ¢(b,).

In the described case U is said to be an F-homomorphic image of 5

BeK

The notion of (simple) homomorphism is a special case of that of F-
homomorphism. In order to see this we have to take F to be the set of all
formulae of the form v, =y, P(vy, - -5 ¥n—q) and f(®g; -« .y Vny) = vy for
B fel.

Corollary 4. If KC &(L), FCF(L) and K € EC ,then Hg(K) € PC,.

Corollary 5. If Lis a finite language. F is an arbitrary recursively enumerable
set of formulae of L, K C (L) and K € EC then (Hr(K))~ ¢ PC .

Corollary 4’. If K ¢ PC, or K ¢ EC, then H(K) € PC,.
Corollary 5. If K ¢ PC or K € EC then (H(K))~ € PC.

Proofs. Corollary 4’ can be derived from Corollary 4 as follows. We
consider the class K’ < &(L’) for some L’ > L such that K’ ¢ EC, and
K =K’ |L. Let F be the set of the formulae v, = v,, P(vy, . . ., 0n_y), f(0g, . ..
cevy Uny) =v, for any P, f € L. Then trivially H(K) = Hg(K’) |L € PC,.

Corollary 5” can be proved similarly by the help of Corollary 5.

Now we are going to prove Corollaries 4 and 5 at the same time.

By assumption we have XC (L) such that K = Mg(Y). In case of
Corollary 5 X consists of a single formula. Let us associate a new predicate
symbol P with each P ¢ L and a new function symbol f* with each f € L.
We take »(P*) = »(P), »(f*) = »(f). Besides we take the new unary function
symbol A and unary predicate symbol 4. Let L’ be the language which we
get by adjoining every P*, f* and 4 and % to L.

Let us define F* for an arbitrary formula # of L as the formula resulting
from F by substituting P* and f* for any P, f € L in F. FA denotes the
relativized of F to A (see Lemma 4 in § 1.)

B
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Now we define the set X7 as the collection of the following sentences:

(1) () A(h(x))
(2) (x) (A(x) - Ty) (hy) = )
(3) (@) ... (20) [FH(zy, ..., xp) > FAh(zy), ..., h(z,))]
for each F(zj, ..., %) € F
G for each G € X
(4) (@) -« - () ((Aley) A ... & Afzp)) = A(f(2y; < o -5 25)))

for each f¢€ L

Now we shall use the notations introduced before Lemma 5. We assert
that

(5) Hr(K —(ML ') || () | L
I. First let A € Hg(K) ie. B € K and ¢ be an F-homomorphism of
B onto A. We define the system %’ of L’ by as follows. Let |8’ | = |8 | = B,

(PT)g = Pg, (fT)y = fo for any P, f € L and hg = ¢. Let further 4” be a
subset of B of the same power as | 2 | and we define the relations and functions
Py, fo such that if a,, ..., a, € 47 then fy(a,, ..., a,) € 4’ and the sub-
system (B’ |L) [4’] is isomorphic to . Finally we require Ay (a) ~a € 4’
for any a€ B. 1t can be attained by an “‘exchange’ procedure that (%B’|L)[4"]
is identical with 2. Now it is trivial to verify that B’ ¢ My(2”) and A =
= (B || 4(z)) L. =

II. Secondly let B’ € My(2"), A, = (z)) L. Since the formulae
of the form of (4) are in 27, 9(1 = 9[ € G(L) for a unique U € S(L). We define
B € (L) Py = (P")y, fo = (f")p for P, f€L.
Then hg will be an F—homomorphism of B onto A and B € K. Thus we have
shown (5). ekl

By Lemma 5 (§ 1) (5) implies Hg(K) = (Mg (X (z)) | L.

Let us now conmder the case of Corollary 4. Usmg Theorem 2 (a) we
get Hi(K) ¢ PC, and by Lemma 6 of § 1 Hg(K) ¢ PC, qu.ed.

In case of Corollary 5 L’ is a finite language and 2” is obviously a recur-
sively enumerable set of formulae (it is irrelevant which enumeration of the
symbols of E is chosen) Consequently by Theorem 1 (ML(Z" )°° € PCie.

(Mo (2")- = |L where F is a formula of a language L’ 5L".
Further we have (ML (x))~ € PC by Coro]lary 3., hence

(HF(K))“'~(HF )~ = (M(2) || A(z)) | L)~ =
= ((Mu(F) || A@2)) | L)~ = (Mw(F) || A())~ |LEPC

and by Lemma 6 (Hg(K))~ € PC qu.e.d.

The contents of the next Theorems 6 and 7 are roughly speaking the
following. For any class K, Hg(K) is closed under F-homomorphisms. If more-
over K € EC, then we know from Corollary 4 that Hg(K) can be ‘‘axiomat-
ized” in an enlarged language. These two facts make the question natural
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whether there exists an axiomatization of Hg(K) in an enlarged language
whose every formula is in some normalform such that every set of sentences
in this normalform is ‘“preserved’” under F-homomorphism in a natural sense
explained below (Theorem 6).

We answer this question positively by introducing a type of sentence
(see Hg-sentence below), which type has the desired property (Theorem 6)
and by proving that the axiomatization in question can be given using only
Hg-sentences (Theorem 7). Thus Theorem 7 is analogous in some sense to
Ly~NDON’s theorem or to it’s generalization given by KE1sLER [2].

Let us consider a formula @ of the form \/ /\ F;; where F;; ¢ F. We
i=1 1
consider a set L; of function symbols not occurrmgjln L. Let us consider the
set 7'° of the terms having the form x or f(,, ..., z,) where f € L, and a,
@, ..., T, are variables. We replace the variables of @ by terms of 7°! so we
obtain a formula ¥ in the language L’ =L U L,. We call a formula CI(¥)
for a ¥ so obtained an Hg-sentence over L.

Theorem 6. Every set O of Hg-sentences over L is ,,preserved” under F-
homomorphism, i.e. if A, B € SL), A€ He(B) and B € M (0O) |L then
A€ My (0) |L.

Proof. Let B =B’ |L, B’ € M (0), ¢ be an F-homomorphism of
B onto A. We have to construct 9’ such that

(7) A € ML (0)
and
(8) A=U|L.

Let || =4, |B|= B. We choose an element a € B to each element
a € A such that p(@) = a (by the axiom of choice) and define fo (a,, . .., a,) =
= ¢(fw (@, ..., @,)). Thus A is defined, considering also (8). From this defi-
nition it follows at once that

A | - /
pl]nt ) gt ot

B s oo Gy oy Wim

(9)

for an arbitrary term ¢ of T'°.
Let G € ©. For the formula G we keep the notations used in the defini-
tion of Hg-formula.

o,

To show (7) we must prove, that

(10) g [T Tm
\ iz v+

for any elements a,, ..., a, of 4. By hypothesis we have
fi >

(11) e LIS K

i P .,um

4 Before the replacing we must possibly change the bound variables of -@ to
avoid collisions. We shall consider that to have been peformed in all cases if necessary
without any mentioning.
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¥ has the form \/ /\ F¥ where F¥; arises from F;; by substituting some terms of

i=
T° for the free vanables of Fy;.
From (11) we infer that for some 7, 1 < i, < n

(12) e R R
B 55958
for every j (j =1, , M),
Let us choose an mdex j. By hypothesis
A s il
?:)f = _1_1_ Fiof
T
where £, ..., ¢ € T°.
Let
(13) s %‘x" Ll ¥
s B s O
(12) can be written as
g | Y- Yk Pos
Ty oininia T

Since ¢ is an F-homomorphism and F;; € F, we have

loj

| i oo Y »
toj *
S
This and (9) and (13) imply
g [F1 e ¥m P,
G i

Applying this for j =1, ..., m; we obtain

|z e m s

%’i = /\ Flo]

jQys - . am J=

which implies (10) qu. e.d.
Theorem 7. If K = M) for some X < §F,(L), and F < F(L) then

there is anm axiom system X, in a language L', consisting of He-sentences over
L such that

(14) He(K) — Mu(2") | L

Proof. We assume of each formula H of X' to be in prenex normal form
as in (4) in § 3 and we introduce the Skolem functions (function symbols)
fA ..., f7 and the formula H* as in § 3. Further we bring each formula
- F for F €F, into prenex normal form, i.e.

(15) g Bl s o o (00 ) (O8) - < AWn) < o [BR) VR

Let z,, ..., z be all the different free variables of #. We introduce the function
symbols ¢f, ..., gF each ¢F having k; 4 I variables and we define F** as
the result of substituting ¢/ (x,, ..., %,,.; 2, ..., %) for y; for each i in I
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Adjoining every fH, gF (H ¢ X, F ¢ F) to L we obtain the language L,. A term
t of L, is a free term if (i) each variable occurs in ¢ at only one argument place
and (ii) the variables v, ..., v, _, occupy the argument places of ¢ in their
natural order from left to right. We state the following trivial lemma.

Lemma 19. To each term t of L, there is a unique free term t, such that
{ comes from t, by substituting certain variables for the variables of t,. The latter
substitution is also uniquely determined.

Now we associate a new function symbol h! with each free term ¢ of
L,, such that »(2') is the number of the variables in ¢, A! is different from
each function symbol of L, and for different free terms ¢,, ¢, A't, h'z are different.
We define t for an arbitrary term ¢ of L,. Let £, be as in Lemma 8, and let
P Al - to- Then let { = hlo (z,, ..., x,_;). We define the language

B B
L’ as the extension of L by the symbols A!. Before defining the desired axiom
system X7 we must give some preliminary definitions.

We define the set I similarly as in § 3 except we now must take the
function symbols of L into consideration too.

Let I be the set of the following formulae (the equality axioms for the
language L)

Vg = Uj
Vo = v, —> 0, = v,

(Vg =0, A 0y =0y) >0 =1,

fop sty K oo B By =20 o) =2 (P0G, 2o 00 Bpg) 5w Pl « o0 ¥ )
Wy = 0n ) zas R B =0 a) =00 » wwyUsea) =T @0y o o 5)

for every P,f € L.
Let 2* = {H*: H¢c 2} UI. If E is an open formula of L, then let
T

Subst(Z) denote the set of all formulae | v % g where b5 555 bn OT€ terms
B ool
of L. If X is a set of formulae we pult- Subst(X) = U Subst(E). Let @ =

EeX
= Subst(2*). :

Let Z denote the set of all ordered pairs (#, @) such that # ¢ F and
G € Subst(F**),

Now we define for each (¥, G) € Z a formula ¥ € F(L’). By hypo-
thesis

(16) G| B0 TS BB s
bis oz o tBags Wis 555 Wy
for some terms ¢, ..., ¢, . ; ¥, ..., %, of L;. (We suppose — F to be of the
form (15)). We put
- T
(1‘) TF,G = i—i F
gy = <y

where u; was defined above.
Let Pr(L,) denote the set of all prime formulae of L;, let U be an arbitrary
subset of Pr(L;). We consider functions & € 2V to fix valuations of the prime
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formulae T € U, i.e. we associate the truth value &(7") with each T € U.
Let E be an arbitrary open formula of L,, and let us suppose that each prime
formula occurring in £ as a part is an element of U. Then the valuation e
associates with £ a fix truth value if we consider the propositional connectives
as operations on truth values in the well known way. This truth value will
be denoted by &é(E); for T € U &(T') is the same as &(T). Note that & (E) is defined
only if E satisfies our condition. Let X be the subset of 2V consisting of those
functions ¢ for which é(£) =1 for every £ € O provided that é(E) is defined.

Now let U, V be arbitrary finite subsets of Pr(L;) and Z respectively.
We define the formula @y y € F(L’) by

(18) Pyv=V A ¥rg
€Xy ({':('GG)EV

Finally we define X” as the set of all formulae Cl(®@y v) for all U, V as
before.

I. Proof of Hy(K) < Mp(X") |L.

Let A € S(L), B € K, ¢ be a homomorphism of B onto A. We must
construct a system 9’ such that

(19) A" € My (2Y)
and A=A |L

From Lemma 3 we can easily infer that there exists a system 8, of L;
such that we have

(20) B | =8
(21) B, |- CUH™)
(22) B, - Cl(F** v F)
for any H € X, F € F.
We choose an element @ from | B | = B for every element a of | A | = 4

such that @ = ¢(a) (by using the axiom of choice).
Let A" be the uniquely determined system of L” such that %" |L = U and

Vi ey U
(W) (@, .- 1) = @ [931 T oo U
A e
for any free term ¢ of L, and elements a,, ..., a, of A. From this definition
we infer easily that
| Wi - w;
(23) A U= g ‘581 e W7
a; a;

for arbitrary term u of L.

In order to prove (19) let U, V as before (18) and z,, ..., z,, be all the
different variables occurring in @y y or in some prime formula 7 of U. We
have to show

(24) ) g

for arbitrary elements a,, ..., a, of A.
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Let W be the set of all formulae £ of @, each prime formula component
of which is an element of U. (In other words, for which £ (E) is defined for
e €2V) Let EcW. Then E € Subst(H*) for some H € X' or E €Subst(l).
In the first case we infer from (21) that

(25) B, LE.
!“i

In the second case (25) holds trivially.
We define ¢, € 2V by the following condition

X
i

By (25) &(#) =1 for each K € W consequently

&(T) =1~ %,

(26) go € Xy
Now let (F,G) € V, G be of the form (16). By (22) we have

Zi & el

F|.
T |

(27) B, By (ST

a;

Let us observe the definition of @y y under (18).
To prove (24) let us suppose &(G) = 0. Then by (27)

(28) B if&' il s F].

a; \|uy, ..., %
Let b, = B, lkﬁ uw, for k=1, ...,1. Now (28) can be written in the
a;
form 9B, v ® B oor which is the same (see (20))
—
B |l
LB ey by

& hersrsa By

Using that ¢ is an F-homomorphism of Bonto A we infer U F*
| @(by), - -, 9(b)

For

(29) o=
Using (23) we have

(30) (b)) = U |ZL .
Observing (17) we infer from (29) and (30)
|,
(31) gL
La

L
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To sum up we have proved that &,(G) = 0 implies (31), consequently we have

’ ' X;
Wit A v,
iai (F,0ev '
2(G)=0

and taking (26) into account so we have shown (24) qu.e.d.
II. Proof of Hg(K) o> Mg (2") | L.
Let A" € My(2"), A= A’ |L. We must construct a system B with

(32) BeK
(33) A € He(B)

We define new different constants ¢, to every element a € 4, let A4,
denote the set of all c,-s. Adjoining the elements of 4; to L, we obtain the
language L{ =L, U 4,. We define B, the set of those terms of L{* which
contain no variable.

Let Pr(L{*) be the set of the prime formulae of L{* which contain no
variable.

Sl

Let Subst” X (X < §(L,)) denote the set of all formulae Ky s 3w
iy - s bl
for E€ X, t;, ..., ty, being terms of L{ containing no variables and z,, ..., Z,,

being all the free variables of £. Each element of Subst’ X is a closed formula
of L. Let Z’ be the set of all ordered pairs (#, G’) where F ¢ F and @’ €
€ Subst’ F** and let O’ = Subst’ 6.

The fact that A’ is a model of 2’ can be formulated as follows. (Let us
observe our definition of X”.)

Lemma 20. For any finite sets U’, V' of Pr(L{}) and Z’ respectively there
exists a function & € 2V such that

(i) e(E’) = 1 for each B’ € O’ if ¢(E’) is defined,
(ii) if (F,G’) € V’ and &(G’) = 0 then

21y« 009 ? F)
Upy oo ey U,

Xy

QII

a;

where we use the following conventions: ¢, ...,c,, are all the distinct
constants of 4, occurring in some formula 77 of U’, @, .. ., @,, are different

Cav -1 %m @’ and — F and G have the forms (15) and (16)

@yl uilin i
respectively. Further we use the notation &(£’) analogously as before.

Let us apply Lemma 1 of § 1 with the following distribution of the
roles. Let the set 4 be Pr(L{*) U Z’ and call a function ¢ on the finite set
U'UV’ (U < PrL{), V' < Z’)a“good” function (i.e. e € S(U’ U V")) if &
satisfies (i) and (ii) of Lemma 20. Let o(z) = 2 = {0, 1} if = € Pr(L{}) and
c(x) = {0} if € Z’ (We remark that ¢ (z) for z € Z’ is irrelevant). One can
easily see that Lemma 20 says exactly that the hypotheses of Lemma 1 hold.
So we can state by Lemma 1

variables, G =
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Lemma 21. There exists a function & € 2P"Li*) such that

(i) for each E’ € O’ we have ’E(E’) =1
(ii) if F € F, G’ € Subst’ F** and 3(G’) = 0 then

LA LTRL
@ X | Uy o 05Uy
where ¢,, ...,c,, are all the different constants of 4, occurring in
G, x, ..., x, are different variables, G = -cl'iG’ and — F and G have
7

the forms (15) and (16) resp.
Let us define a pseudosystem B,, of the language L, by the following
conditions.

|%B,|= B
B, = b, redlh =h)=1
Pg,(by, .., by) ~O(P(dy, ..., b)) =1
fu.by, .., b)) =f(by, ..., by)

for arbitrary P,f € L, and b,, ..., b, € B;. We infer easily from this defini-
tion, that

(34)

D~ 0

|
”"q)l:l
ll bi

for any open formula @ of L,.

If we take specially @ € X* then

-;—:L ® ¢ O’ and so by Lemma 21 (i)
1 0;

and (34) we have
b

i

B,

for arbitrary b;-s from B, i.e.
(35) %, 1 CU®)

We define B, = B, |L. By (35) and Lemma 3 (taking @ = H* for H ¢ X)
we see that 9B, satisfies all sentences of X. If we apply (35) to @ € I we can
infer that =g, is a congruence relation on %, Let B = B,/=g,. Now we
have by Lemma 2 (32) as desired.

We define the mapping y: B, — 4 by

2 [ e
36 by =9’ |=L | {2%p
(36) wo) = | 2E| |
where c,,, ..., c,, are all the different constants of 4, occurring in b.
¥ is onto since y(c,) = a.
We prove that
' Bty nainis @
(37) B, |- —LF
oy, .. .5
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implies
(38) €A 207 o

pby)- - (b))
for arbitrary F € F, z;, ..., z, being all the distinct free variables of F and
by « .., b; elements of B,.

Let us assume (37). Let c,, ..., ¢, be all the different constants of

4, occurring in some of b, ..., b; x,, ..., @, different variables, u, = il b,
for k=1, ..., 1. By (36), (38) is equivalent to !
(39) § e F]

@ || Uy ...,

Suppose that (39) is not true.
Let G be an arbitrary formula of Subst (F**) as under (16) with the

stipulation that the terms u,, ..., u, are the same which we have just defined.
By Lemma 21 (ii) we infer from our supposition that 6(G’) =1 where
G =T 0 Tm g oang Tniqs - -, T, are the additional distinet variables
Chss 0 G
of G and @nyys - --» A, are arbitrary elements of ¢'. This means exactly
that
Ty o 320 -+ 5 2 ) g
Bir's 23 Dt S0 250
or by (34)
%, Tiy -y V320 - 2k
Dis sy s Bys iy
for arbitrary elements by, ..., b,  of B,. This can be expressed by
%, 2 s B CUF*)
3545 O
0 ?

and by Lemma 3 we have 9B, 2 2® | F what contradicts our hypo-

O]
thesis (37). So we have proved thalt (37) implies (38) indeed.

We need also that b, =g, b, implies y(b;) = y(b,). But that is contained
in our last assertion because we have supposed that v, = v, is a formula of F.

Now let ¢ be the mapping ¢: |8 | = B— 4 defined by g¢(b/ =g,) =
= y(b) (b € B,). From that we have proved above it follows that the latter
equality defines ¢ uniquely. ‘

Finally we see that ¢ is an F-homomorphism of B onto 9, consequently
we have proved also (33) qu.e.d.

By I, IT we have shown (14). It is trivial from the definition of X” that
each formula of 2 is an Hg-sentence over L. Qu. e.d.
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§ 5. Endomorphisms

If A is a homomorphic image of B by the homomorphism ¢ and at the
same time 9 is a subsystem of % then we say that U is an endomorphic image
of B and ¢ is an endomorphism of B onto A. We denote the set of all endo-
morphic images of B by End(B), i.e. End(B) =H(B) N S(B) and we put
End(K) = U End(%).

BEK

Corollary 8. If K ¢ PC, or K ¢ EC, then End(K) € PC,.

Corollary 9. If K ¢ PC or K € EC then (End(K))~ ¢ PC.

The proof of these statements is similar to the proof of Corollaries 4, 5.

Now we want to prove a theorem, which has the same relation to the
endomorphisms as LYNDON’s theorem to homomorphisms. In the proof we
use LYNDON's theorem as stated in § 1 and a simple ‘‘ascending chain” con-
struction, i.e. we get the desired relational system as the union of some
sequence of systems, each of which is elementary subsystem of the next in the
sequence. That is the principal tool in the proof of many model theoretic
theorems. We can described this part of the proof most easily by using ultra-
powers and limit ultrapowers and we shall apply some notations and well
known results stated in § 1.

Theorem 10. (i) Let X' < (L), K = My(Y) Let X be the set of the sentences
F,v F, such that F, v F, ¢ Cn(X), F, is a positive sentence and F, i3 a uni-
versal one. Then we have

Th(End(K)) = Cn(X")

(i1) Moreover, if A € My(L”) then there exists a N’ such that A < A’ and
A’ € End(K).®

Proof. To prove Cn(X”) ¢ Th(End(K)) it is sufficient to show X’ c
< Th(End(K)). To this end let F, be a positive sentence, ¥, a universal one,
F \VF,c Cn(Y), BeK, Ac End(B). We have to show A |- F,\ F,. We
have B |- F,V F,, hence B |- F, or B |- F,.

In the first case A € H(B) implies B | F, in the second one A € S(B)
implies B |- F,, consequently A |- F,\/ F, at any rate.

Instead of Th(End(K)) — Cn(X”) we prove the stronger assertion (ii).
Let us suppose

(1) A€ My(2")

We may and shall assume Cn(X) = 2. Let O be the set of sentences ~ 1 G
for which — G € Th(A) and @ is universal. Let 2, = 2 U 6. We assert,
that the positive consequence of 2| are satisfied by 2, i.e.

(2) Pos(Z))  Th().

To prove that, let F, ¢ Pos(X,) and suppose on the contrary that F, ¢ Th().

The Compactness Theorem (Lemma 11) implies the existence of finite
subsets V,, V, of X'and @ respectively such that F,isa consequenceof V, U V,.
Let the conjunction of the formulae of V, and V, be G, and G, resp. G, is equi-

5 This stronger statement is a consequence of (i) and Corollary 8 by a familiar
application of the Compactness Theorem; it is derivable also from the fact that End(K)
is closed under ultraproduct and limit ultrapowers and from (i).
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valent to a formula — F, where F, is universal. We have G; A o F, |- F,
i.e.G, - F,V F,, hence by G, € X wehave F,\ F, ¢ Yand thus F,\V F, € 2.
We have — F, € Th(Y), F, ¢ Th(2), consequently F,\/ F, ¢ Th(2) and that
contradicts our hypothesis (1). Thus we have proved (2).

By Ly~ponN’s theorem (Lemma 7) we infer from (2) that there exist
systems %Aj, B, and a homomorphism ¢, of B, onto A such that A < A},
B, € M(2}). We assert that every universal formula G satisfied by B, is
satisfied by 2} too. In the contrary case — G would be satisfied by U hence
— G € O and so by B, € ML(O) B, - — G what is contradiction. Now by
Lemma 8 there exists a non empty set 7 and an ultrafilter D on I so that
A3 is isomorphic to a subsystem A, of BIPl. Let us define by induction

U4y = (Ap) D] (n=0,1,...)
Wiy = AL1O (n=0,1,...)
B4, = BLPI (n=0,1,...)
Pn+1= (pr[t”Dl (n=101;%.
and we put
A'=1U%
n<w
A= U A,
n<ow
§Bl S U %n
n<w
= U
n<w

Then by Lemma 10 ¢’ is a homomorphism of %’ onto A”, by Lemma 9
A< A” and B’ € My(L). A is trivially a subsystem of B’ and A’ is iso-
morphic to A”. Consequently there exists a system B” isomorphic to B’ for
which A” € H(B”) and the same time A” C B”. Thus we have A” € End(B")
and B”" € My (L) and A < A" qu.ed.

Corollary 11. If F is a sentence which is preserved under endomorphism
(that is B |— F and A € End(B) imply A |~ F), then F is equivalent to a
sentence

A FivF;

i=1

where Fi is positive and F} is universal for each ¢ =1, ..., n. The proof
proceeds in a well known way by Theorem 10.

We remark that the notion of endomorphism can be generalized ana-
logously as we did with the notion of homomorphism by introducing the
F-homomorphism. The analogon of Theorem 10 for the generalized case can
be proved in a similar way, using results of KrIsLEr [2].

(Received December 6, 1963)

13 A Matematikai Kutaté Intézet Kozleményei 1X. A/1—-2.
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0 KJIACCAX PC, TEOPUH MOJIEJIEHA
M. MAKKAT
Pe3iome

Conepranue Teopempl 1 craTbu: GecKOHeYHble CHCTEMBI OTHOLIEHHH Kilacca
PC, Ha/l KOHEeYHBIM $I3BIKOM, TIjle 9TOT KJacc Y/0BJIeTBOPSIET OlpejiesIeHHbIM
(0ueBH/IHBIM) «KOHCTPYKTMBHBIM» YCJIOBUSAM, 00pasytoT Takye Kiacc PC. Naiee
onpejesisieTCsl Ollepalysi, OIpejeJsiomast JJsl cucTeMbl OTHoWweHuit A u dop-
MyJsl F(x) copepykalleil eJMHCTBEHHOTO CBOOOJHOTO IlepeMeHHOr0, CUCTeMy
oTHowenuit A || F(x), sBiasiomeiicss yacTbio 0T A U OCHOBHOE MHOYKECTBO KOTO-
pOii COCTOMT TOYHO M3 TeX 3JIeMeHTOB |2 [, KOTOpble Y10BJIETBOPAIOT GopmyJie
F(x) na . JloxasbiBaeTcsi, YTO cUcTeMbl OTHOMIeHUH 9 || F'(x), monydyeHHble IS
cucrem oTHowenuit A xinacca K€EC, u ans guxcupoBaHHOit Gopmyiisl F(x),
obpasytor kiacc PCy (npu ycnoBuu, yro (Ja) F(x) cnpaBeamso B K) (Teopema
2a). Hanee, ecit K €EC, Torga 0ecKoHeuyHble CHCTeMbl OTHOIIEHUH TOJILKO, 4TO
ompefieJleHHOr o Kiacca ofpasyioT kiace PC (cieictsue 3). B kauectBe mpume-
HeHus1 JloKasbiBaercs, yro ecan K €PC,, Toria romomopdHbie 00pasel CHCTeMbl
K o6pasytor kyace PC,(cieactsue 4), kpome Toro ecm K € PC, 10 GecKoHeuHble
cucremsl 3T0ro0 Knacca PC,4 o6pasyior kiace PC (Cnexcrue 5). CornacHo ogHomy
Bapuanty ciuejactsun 4 Hg(K) nonyuaeTcsi HEKOTOPbIM ClleLMasIbHBIM 00pa3om
B KauecTBe KJjacca PCy ecoin K € EC, (Teopema 7). (He(K) — knacc F — romo-
mopdHbIX 00pa3oB ceictem M3 K, cm. Hampumep [2]). HakoHel, 0THOCHTEJbHO
3H0MOPGU3MOB JI0KA3bIBAETCS aHAiIOr Teopembl LYNDON-a [6] ¢ mogoOHBIMU
cnepctBusamu (Teopema 10, crexctBue 11).



	9. kötet / 1-2.sz.�������������������������
	MAKKAI, M.: On PCd-classes int he theory of models���������������������������������������������������������

	Oldalszámok������������������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������
	171����������
	172����������
	173����������
	174����������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������
	185����������
	186����������
	187����������
	188����������
	189����������
	190����������
	191����������
	192����������
	193����������
	194����������


