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Introduction 

In th is pape r we p resen t some resul ts concerning cer ta in special P C .-
classes.1 

In § 1 we enumerate nota t ions , def in i t ions and some wellknown resul ts 
t o be used in t h e paper. 

In § 2 we expose a general izat ion of a theorem of K L E E N E [5]. K L E E N E ' S 

theorem asser ts the following. Le t E he a set of sentences in the f i rs t order 
predicate calculus over a language L conta ining only f in i te ly many predica te 
and funct ion symbols and suppose t h a t E satisfies the following condit ions: 
(a) E conta ins i ts all consequences, (b) E is recursively enumerable witli 
respect to a na tu r a l Gödel number ing . In th i s case the t h e o r y E is „ f in i t e ly 
axiomatizable using addi t ional predicate symbols" i.e. we can give a fo rmula 
F in an enlarged language L' ZD L, such t h a t for any formula G of the original 
language L G is derivable f r o m F if and on ly if G £ E. The der ivabi l i ty not ion 
used here is based upon a usual formal sys tem of the f i r s t order p red ica te 
calculus; t h e iden t i ty symbol is t reated as t h e other p red ica te symbols. 

A f i r s t s tep in s t reng then ing K L E E N E ' S theorem would be to r equ i re 
f rom the class of the L - reducts of all models of F to be identical with t he 
class of all models of E in t h e language L. This strong f o r m is not t rue, on ly 
t h e weaker s t a t emen t t h a t a n F exists such t h a t the infinite relat ional sys tems 
of the two ment ioned classes are the same. 

We m a k e also a second s tep in the generalization essential for the appl i -
cations, n a m e l y allow E t o contain denumerab le inf ini tely man}' addi t ional 
symbols besides the f ini te ly m a n y symbols of L. Our r equ i r emen t t h a t E is 
recursively enumerable has t o have the mean ing tha t E is recursively enumer-
able under a na tu ra l Gödel numbering based upon an enumera t ion of t h e 
additional symbols , in which t h e number of arguments of t h e г-th predica te 
is a recursive funct ion of i. I n this way we shall introduce t h e class PC / ) r e c of 
classes of relat ional systems as follows. К £ РСЛгес. if К is t he class of t h e 
L-reducts of t h e models of a recursively enumerable set E of sentences of an 
enlarged language L'. The recurs ive enumera t ion ment ioned in this defini t ion 
is based upon an enumera t ion of the symbols of L' as above . 

So we can formulate o u r generalization of K L E E N E ' S t heorem as follows 
(Theorem 1 in § 2). I f L0 is a finite language, К is a class of relational systems 

1 See [6] anil § 1 of the present paper for a definition of PC and PC^-elass. 
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of L0, and К Ç PC4rcc then Ç P C where K°° is the class of the infinite 
systems of K . 

In la te r sections the re will be applications of this theorem. 
Our proof is based upon the same idea as K L E E N E ' S proof, namely we 

treat formulae as elements which are able to form values of the individual 
variables b y t he help of a Gödel numbering. The main poin t in the construction 
of the above F is a reproduction of the inductive semantical definition of the 
notion of a sequence of elements satisfying a formula in a relational system. 

A t r iv ia l example shows tha t the conclusion K~ Ç P C of the theorem 
cannot be improved in general to К £ PC, even if we require 27 to be a recursive 
set of sentences of L. However we do no t know whether t he similar improve-
ments in Corollary 3, 5, 5 ' , 9 hold. Our conjecture is t h a t they do not hold. 

The main work in K L E E N E [5] is devoted to a strictly constructive 
t rea tment . K L E E N E proves also a var iant of the mentioned theorem for t he 
intuitionistic predicate calculus. Natural ly our proof is of no constructive 
character, consequently our theorem does no t imply K L E E N E ' S results in a 
strict sense. 

Our proof technically differs f rom K L E E N E ' S one. W e use R O B I N S O N ' S 

system as described in [4] to deal with recursive funct ions and predicates 
and thus we need to adjo in only eight new symbols to L„ to get L. 

In § 3 we introduce the following construction of relational systems. 
Let L he a language containing only predicate symbols and no funct ion 
symbols. Le t 31 be a relational system, F(x) a formula of the corresponding 
language containing no f ree variable except x. Let us denote by 21 || F(x) 
the subsystem iß of 21 whose domain is t he set of those elements of the domain 
of 21 which satisfy the formula F(x) in 21. We consider 21 || F(x) as def ined 
onlv if t he la t te r set is n o t emptv, i.e. if (Зж) F(x) holds in 21. We p u t for a 
class К of systems К || F(x) = {21 l| F(x) : 21 £ K}. We prove (Theorem 2 
(a) in § 3) t h a t if К Ç Р С 4 then К || F(x) € PC^ for any formula F(x) of t he 
corresponding language provided tha t К || F(x) is defined. Further we prove 
(Theorem 2(b ) ) that if К £ PC, then К j| F(x) € Р С ^ е с . So we ob ta in 
(Corollary 3) t ha t if К £ PC , then (K j| F(x))°° € PC (using Theorem 1 of § 2). 

In § 4 we prove by using Theorem 2 (a), t ha t if К £ PC^ then H ( K ) Ç 
£ P C j (where H(K) denotes the class of the homomorphic images of t he 
systems of K) (Corollary 4'). The question whether this is t r u e is left open in 
TARSKI[7] We have also t he result t h a t К £ PC implies (H (K))~ € P C 
(Corollary 5 ' ) . 

Let К ( EC2 (or К Ç P C / . The main content of § 4 is to give an 
axiomatization 27 for the class H(K) using additional funct ion symbols so 
that each formula of 27 is in some normal form (Theorem 7). This no rma l 
form is established in such a way, tha t a n y set of sentences having this normal 
form is „preserved" under homomorphism in a natural sense (see more preci-
sely Theorem 6). 

In t h e whole section we consider t he more general notion of F-homo-
morphism instead of (simple) homomorphism. This not ion is defined in 
K E I S L E R [ 2 ] . 

In § 5 we deal with endomorphisms. The relational system 21 is said 
to be an endomorphic image of 93 if 2Í is a subsytem of 23 and at the same 
time also a homomorphic image of 23, End(K) will denote the class of all 
endomorphic images of t h e systems of K. We state t h a t if К £ РСИ t hen 
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End (K) € PCA and if К £ PC t h e n (End(K))~ £ P C (Corollaries 8 and 9). 
The p roofs are very similar to those of Corollaries 4 and 5 and are omi t ted . 
Nex t a n analogon of L Y N D O N ' S t h e o r e m on homomorphisms is p roved con-
cerning endomorphisms and thus we obtain the corollary, t h a t a. f i r s t order 
sentence is preserved unde r endomorphism if and on ly if i t is equivalent to a 

n 
sentence of the fo rm Д ( F f л Ff ) where Ff is a posit ive sentence, Ff is a 

i = l 
universa l sentence for each г (Corollary 11). 

§ 1. Preliminaries 

W e shall dis t inguish between sets and classes b u t we shall consider 
also classes of classes as a third t y p e . We shall use t h e usual set theoret ical 
no ta t ions . We ment ion only tha t if A and В are sets then AB denotes the set 
of all (unary) funct ions on A into В. 2A denotes t h e set of all (unary) funct ions 
on A w i th possible va lues 0 and 1, A" (where я is a na tu ra l number ) denotes 
the set of ordered я - tup les of e lements of A. We iden t i fy a (unary) funct ion 
(p wi th t h e set all o rdered pairs (a, cp (a)) where a is an element for which 
93(a) is def ined, 93(a) being the value of 99 a t the a r g u m e n t a. We make similar 
convent ions for func t ions of more variables. If 99 £ AB then we wri te sometimes 
90 : A В . If 99: A — В , 99: B-+C t hen 93099 denotes t he composit ion of 99 

and 99, i.e. 93099(a) = 93(99(0)) for a £ A. If 99 is a one-to-one funct ion , 9 9 " 1  

denotes i t s inverse. 
T h e following well known set theoretical l emma is applied in § 4. 
L e m m a 1 . Let A be a set, let a be a function defined on A so that o(x) for 

a; £ A is a finite set. I f X is an arbitrary finite subset of A (i.e. X £ /l'°d) let 

ß ( X ) be a set of unary functions defined on X ( the elements of ß ( X ) are the 
„good" funct ions d e f i n e d on X) and if e £ ß(X) then e(x) £ a(x) for x £ X, 
(i.e. t h e good funct ions take values on ly from a f i xed f in i te set o(x) for each 
a r g u m e n t x £ A). Now suppose (a) for arbitrary X £ ß(X) is not empty, 
(b) if X C T € AM, e£ ß(Y) then e h X £ ß(X) (i.e. t h e r e s t r i c t i on of a 
good func t ion is a good one too). Under these hypotheses then there is a function 

ô on A such that for each X £ Al°A b h X £ ß(X). (i.e. t h e r e ex i s t s a f u n c t i o n 
de f ined on the whole set A whose restriction to each f in i te subset is a good 
func t ion ) . 

W e shall mean b y a language L a set of cer ta in symbols certain of which 
are predicate symbols, t h e others a r e function symbols. Nota t ions P £ L and 
/ £ L will always imp ly tha t P is a predicate symbol a n d / i s a func t ion symbol 
of L. T o each f £ L a n d / £ L there is associated a n a t u r a l number v(P) i> 0 and 
v ( f ) 2 i 0 a n d F a n d / a re said to be a r(.P)-ary predicate symbol and a r( / )-ary func-
t ion symbol respectively. If v(/) = 0 t h e n / i s an (individual) constant. A relational 

system or more br ief ly a system 91 of t h e language L is a pair (A, A) of a non 
e m p t y set A and a func t ion zl def ined on L such t h a t A(P) is a v(P)-ary relation 
on t h e set A (i.e. an element of 2aHP) 2) and A ( f ) is a v(f)-ary func t ion on A 

with values f rom A (i.e. an element of AArW for a n y P, f £ L. A is said to be 

2 The relations are usually considered as truth functions. That will be consistent 
with our convention if we identify the t ru th value true and false with 1 and 0 resp. 
We write B(a„ . . ., an) instead of R(alt . . ., an) = 0 for a relation R(xlt . . ., xn). 

H A Matematikai Kutató Intézet Közleményei IX. A/l—2-
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the domain of 21 and denoted by | 2( | and we write Р,л, /<>t for A(P) and A(f ) 
respectively. If v ( f ) = 0 t h e n / M is identified with an element of A. The class 
of all systems of L is denoted by <8(L). We say tha t the system 21 is infinite 
if the set | 21 | is infinite. For a class К of systems let K~ denote the subclass 
of К consisting of all infinite systems of K. Sometimes we shall use notations 
of the form (A; R, . .., cp, . . . ) to denote a system 21 such tha t | 21 | = A and 
R — Pa[, . . . cp = / M , . . . where P, . . . , / , . . . are given uniquely by the 
context. 

We define the first order logic with equality associated with L in the 
we] 1 known way by fixing denumerable many (individual) variables vn, vv . . 
t he propositional connectives —i (negation), л (and), V (or), —*• (implies), 
(equivalence), the quantifiers (3x) (existential quantifier), (x) (universal 
quantifier) where i is a variable; and the identi ty symbol In § 2 we shall 
consider only n , A , ( ï ) as primitive symbols, the other logical operations 
will be used as abbreviations in the well known way. The terms and formulae 
of L are defined in the usual way; a prime formula of h is a formula of the form 
Hh> •••> UP)) o r = t2 (P £ L; t v . . . , tv(p) a r e t e r m s ) . T h e u s e o f P(tv . . , t n ) 
and f(tv .. ., tn) always implies n = v(P) and n = v ( f ) respectively. The set of 
all formulae of L and the set of the formulae of L not containing any free 
variables (the sentences of L) are denoted by 5(L) and $0(L) respectively. 
A formula is open if it contains no quantifier. If F is a formula Cl(F) denotes 
the universal closure of F, i.e. the formula obtained by prefixing to F uni-
versal quantifiers (x,) for each free variable x, of F in some order. If E is a 
s e t of f o r m u l a e , so Cl(E) = {Cl(F) : F £ E). 

If F(xj, ...,xn) (br ief ly F) is a f o r m u l a , t(xv ...,xn) (b r ie f ly t) is a 
term, xv .. ., xn are distinct (free) variables or constants, then F(tv . . ., tn) 
and t(tv . . . , ( „ ) denote the formula and the te rm respectively arising from 
F and t by substituting the te rm t, for x, for each i = 1 n. We write 

( 1 ) 

and 

( 2 ) 

X2 , . • • > xn F or L Í L 

h , . . ., tn 

F or 

X^ , . . ., Xn 
t or i ü í 

h,. ••An 

t or i ü í 

for F(tv . . . , ( „ ) and t(tv . . . , ( „ ) respectively. 
Let Xj, . . ., xn be distinct variables, let every free variable of F and 

t occur among xv . .., xn. We write 

(3) 21 
x l t . . . , x n F or

 ri F 

; tj 

for the s tatement tha t the elements n, an of | 21 | satisfy the formula F 

in the system 21 under the correspondence x, —> av . . . , x„ -> an and 

(4) 21 - . , X n 

« 1 , • . , a n 

or 21 \—t 

to denote the value of t in 21 under the correspondence 
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The use of the notations (4) and (3) will always imply tha t our conditions 
hold for F, t, xv . . ., xn. 

If F is a sentence, we write 
(5) 211— F 

for the statement t h a t 21 satisfies F or F holds in 21 or 21 is a model of F. We 
assume tha t the notion of satisfaction as used in (3) and (5) is known. We 
mention only tha t the interpretation of the identity symbol = is always 
the real identity = in the case of relational systems. However we shall need 
occassionally so called pseudosystems. Roughly speaking a pseudosystem 
21 differs from a system only in t h a t the realization =,i( of the identity symbol 
is not necessarily the real identity. More precisely a pseudosystem 21 of L is a 
pair (A, A) where A is a set (A = | 21 |), A is a mapping of L U { = } such 
tha t A(P) ( = Рад) and A(f) ( = / s l ) for P,f £ L are as before and A(=) denoted 
by = a t is a binary relation on 21. In the case of pseudosystems we must modify 
the notat ion of satisfaction in the natural way. We shall use the notations 
(3), (4), (5) in connection with a pseudosystem 21 in the appropriate sense. 

Let 27 be a set of sentences of L (or an axiom system of L). Let M R 2 7 ) denote 
the class of all models of 27 in the language L, i.e. M R 2 7 ) = {21 : 21 £ <& (L), 
21 h F for every F £ 27}. We write ML (F) instead of ML({F}). If К = 
= M L ( 2 7 ) then we write К £ EC,,; if in addition 2 7 = {F} then К £ EC. 

Let L, L' be two languages, L с L', let 21 be a system or pseudosystem 
of L ' . Let 21 I L denote the uniquely determined system or pseudosystem S3 of L 
such t h a t I S3 I = I 21 I, Р а = Р и , / я = / î t for any PJ £ L and = 9 [ = = a 

in t he case of pseudosystems. Let К ' | L = {21 | L: 21 £ K} for a class К ' с 
с @(L'). If in addition K ' £ EC,, then К = К ' | L £ PC^ (or К is a PC„-
class), and if K ' £ EC then К £ PC. 

If К с S (L) then Tii(K) denotes the set of sentences of L holding 
in every system of K; Th(21) = Th({21}). 

A sentence F is a consequence of the set 27 of sentences or of the sen-
tence G (notation: 27 F, G \— F resp.) if every model of 27 or of G is a model 
of F . The set of all consequences of 27 is denoted by Cn(27). If F , G are formulae 
and Cl(F —• G) is identically true, i.e. it is t rue in every system of the corres-
ponding language then F and G are said to be equivalent and we write F ~ G. 
Besides we shall use the sign ~ to denote the real equivalence, i.e. if A and 
В are statements (having t ru th values) A ~ В will mean tha t A and В have 
the same truth value. 

We shall denote languages by L; relational systems or pseudosvstems 
by 21, S3, ; formulae by F, F , G, # , F , Ф, f ; sets of formulae by 27, 0 ; predicate 
symbols by M, N, P, Q, R; function symbols by / , g, h, I; functions by cp, 
ip, e, ô, r; sets by A, B, U, V, W, X, Z; variables by v, w, x, y, z; terms by 
t, u; classes of relational systems by K; natural numbers by i, j, к, l, m, n, s. 
All these notations can occur with indices or superscripts having similar 
meaning. In § 2 and § 3 we shall use several bold type letters to denote vari-
ables to emphasize their correspondence with certain elements. 

Let 21 be a pseudosystem of L. = 9 i is said to be a congruence relation on 
21 if =:3l is an equivalence relation and for any F, / £ L the closures of the 
formulas 

x1 = y1A . . . Л xn = yn (P{x1 xn) —> P(yv . . . , yn)) 
xi = У\ A • • • Axn = yn -+f(xv ...,xn) =f(yv • •., y„) 

II* 
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hold in 21, (Xj, . . ., xn, yx, . .., yn being distinct variables). In this case we 
define the factor system 23 = 2I/=a in the well known way as follows. 23 
is a relational system of L, | 23 | is the set of all equivalence classes a j f o r -
med by elements a of | 21 | with respect to the equivalence relation = ? [ and if 
? , / Ç L then -Pjg,/<g are defined by 

P a 3 ( a 1 / = 3 t , . . . , a„/=9l) ~ P>x(ai. • • •, an) 

/®К/=я> • • • >an/=9r) = / K . • • • - an)l —si• 

L e m m a 2 . I f 21 is a pseudosystem of L , 21 satisfies all sentences of the set 
P c z ^ f L ) and = j [ is a congruence relation on 21 then 211=% € M L ( i 7 ) . 

A formula is said to be in prenex normal form (pnf ) if it is of the following 
form: 
(6) (xx) . . . (xfci) (3yx) . . . (rfc„_i+1) . . . (xfcJ (3y n ) (xkn+1) . . . (х^+1) Ф 

where Ф contains no quantifier. It can happen that for some i = 1, ... n 
ki — ki_x = 0 i.e. no universal quantifier occurs between (Зу,^) and (3yß, 
or that n = 0 i.e. no existential quantifier occurs in the prefix. To every 
formula F there exists a formula G of the same language so that G contains 
the same free variables as F, G ~ F and G is in pnf. Let H be a sentence in 
pnf i.e. of the form (6). We define an open formula H* in an enlarged language 
Lf as follows. Let f f 1 he new function symbols for i = 1, . . . , n with v{f f ) = Z, 
Let 

(7) F * = | — Ф -
I f i ( x l i • • • ; xk{) 

L e m m a 3 . I f 21 is a system or pseudosystem of L then 21 | — I I if and only 
if there exists a system or pseudosystem 21* of L * for which 21* |— Cl(H*) and 
21* I L = 21. That is the well known procedure of introducing the Skolem 
functions. 

If 21, 23 € ©(L) then 21 is said to be a subsystem of if and only 
if j 21 i с I SB |, P-x a PsS and / м с for any P,f £ L. In this case we write 
21 с 23. The class of all subsystems of a system 23 is denoted by S(25) and we 
put S(A') = U S(23). If A is a non empty subset of | 23 | and for any av . .., 

ЖК 
. . . , a„ € A, f £ L we have f<&(av . . . , an) £ A then 23[A] denotes the unique 
subsystem 21 of 23 for which | 21 | = A. We shall consider 23[A] holding 
defined only if our conditions. 

If 2i„ € @(L) and 2t„ с 21п+1 for n < m then U 21„ is the system 23 
for which n < w 

' 231 = U I I , P* = U = U FAN 

п<(0 n<u) n<.Oi 
for any P,f £ L. 

L e t 21, 23 € S ( L ) . 21 i s a n elementary subsystem o f 23(21 -< 23), o r 23 i s 
a n elementary extension o f 21 i f 21 с 23 a n d f o r a n y F £ Ç ( L ) a n d av . . . , 
• • • , a n e I 21 I 

21 ^ F ~ 23 
ai 

Let N be a predicate symbol. We shall abbreviate (x) (N(x) —»• F) as 
lx)N F and (3x) (N(x) A F) as (3x)N F. FN is said to be the relativized of F 



ON PC.d-CLASSES IN THE THEORY OF MODELS 165 

to N and FN arises from F by replacing each quantifier (x) by (x)N and 
(Эх) by (3x)N . 

L e m m a 4 . I f 21 <E © ( L ) , F £ %0(L), { x : N^(x)} = В and 2 1 [ B ] is defined 
then 2 1 [ B ] h F if and only if St 1— FN. 

We shall need the possibility of replacing functions by predicates in 
the following form. We associate a new predicate symbol Q/ with each function 
symbol / € L with r(Q7) = v(f) + 1. Let L denote the language consisting 
of the predicate symbols of L and of the predicate symbols Qf for all / € L. 
Now let 21 6 <S(L). The system 2Í of L is defined by the following conditions: 
1 1 I = I 21I , = Pa t f o r P e L , ( Q ' ) f (av . . . , a n , a „ ± 1 ) ~ f^(ax, . . . , a n ) = 
= an+x f o r a n y ax, an+x 6 | 21 j , / € L . L e t К = {21: 21 6 К } . L e t 
now F 6 30(L). Let F denote the formula obtained from F by „replacing" 
each / £ L by Q/ in a well known way such that 21 f— F is equivalent to 
21 |— F. If is a set of sentences of L, we define E as the set of the formulae 
F for F £ E and of the formulae 

( x / . . . ( x n ) ( 3 y) (z) (Q^Xa, . . x „ , у) Л ( Q ^ X j , . . . , x n , z ) ^ > z = y)) 

for every / Ç L . 
Lemma 5. ML(2{ = Ме(2') . 
L e m m a 6 . I f for а К с : © ( L ) we have either К Ç E C ^ or К £ E C or 

К £ РСл or К Ç PC then the same holds for K. In order to obtain the desired 
axiom system for proving Lemma 6 we need only replace each part Q/(xx, . . . 
. . xn,y) of the corresponding formulae by f(xx xn) = У-

Let 21, 23 € @(L). The mapping cp of | S3 | onto | 21 | is said to be a homo-
morphism of 23 onto 21, i f f o r a n y P, f £ L a n d ax, . . . , an £ | 23 | P<&(ax, . . , an) 
implies P%(cp(ax), ...,ср(ап)) and <p(fa(ax, . . . , a„)) =f®{<p(ax), ...,<p(an)). In 
this case 21 is a homomorphic image of 23, in notation 21 € H(23). We write, 
also H(K) for U H(23). 

э е к 
A sentence F is universal if F = С1(Ф) where Ф contains no quantifier. 

F is positive if F does not contain —i, —>, •<—>-. I t is trivial and well 
known that universal sentences are preserved under taking subsystems and 
positive sentences are preserved under homomorphism. P o s ( E ) denotes the 
set of all positive consequences of E. 

In § 5 we shall need a theorem of L Y N D O N [6]. 
L e m m a 7 . (Theorem of LYNDON). I f E с ]5o(L)> К = M , . ( 2 ) and 

21 € M l ( P O S ( 2 : ) ) then there exists an 21' for which 21 -< 21' and 21' € H ( K ) . 
In the following we br ie f ly describe t h e notion of ultrapower and strong 

limit ultrapower t o be used in § 5 . These no t ions are special cases of i m p o r t a n t 
recent construct ions in t he t h e o r y of models . For more detai ls we re fe r t o 
[1] and [3]. 

Let 21 € ©(L), A = | 21 | , I be a non empty set, D be an ultrafilter 
on I (i.e. a maximal dual ideal of the Boolean algebra of all subsets of I). 
For any function y, y £ A1 we write y rp if and only if {г £ I\ y(i) = 
= y(i)} € D. is an equivalence relation on the set A1. For each у £ A1 let 
yjD = {y-y y} the equivalence class of cp with respect to я^D . We define 
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A'd = {cpjD : q> £ A'}. We define the system ol L as follows. Let | % | =A'D, 

P M D , VJD) ~ {» € / : 1 \ Ы г ) < P n ( i ) ) } Ç D 
and 

fai(<PilD> • • • - <PnlD) =Мч>1 <Pn)lD • 

Now we define an auxiliary notion to make easier the definition of strong 
limit ultrapower. Let ca denote the constant function of A' which takes the 
value a £ A for each i £ I, let A, D denote the set {cJD : a £ A}. I t is well 
known that 2 Í Ó [ ^ 7 d ] is an elementary subsystem of WD and it is isomorphic 
to 91 by the mapping cJD ->- a. Let AVW = (A'D - A, D) U A and let d'j? 
(briefly d) be the onto mapping d : -*• A'D for which d(q>jD) = rp\D if 
<p £ A' and q>jI) AJ D and d(a) = cJD for a £ A. We define the system 

of L sucb that d'jf is an isomorphism from I f / D1 onto 31b- Consequently 
we have 91 -< W"D l 

L e m m a 8 . I f 91, 93 £ @(L) and 91 satisfies every universal sentence holding 
in 93 then 91 is isomorphic to a subsystem 91' of 93'',D|

 for some I and D as before. 

That is well known and is an immediate consequence of Theorem 1.15 
of [1]. 

Now let 91 £ 'S(L), let I n be a non empty set, Dn an ultrafilter on I n 
for n < со. We define by induction 

( 8 ) 91 0 = 9 1 

(9) 91п+1 = 91/«/ад(те = о , 1 , . . . ) 
Lemma 9. 91 •< U 91„ . 

n<to 
Let 91, 93 £ ©(£), ot be a mapping from | 93 | into | 91 | . Let a'D denote 

the mapping of B'D into A'D (A = j 91 |, В = | 93 |) such that 
a'D((pjD) = (а о <p)j D f o r a n y <p£Bl 

(we note that in this case a O y ( A') Further we define oJ'lDl : J5W°l AVl° 1 
such that 

dIÀD о aV.D] = a'D о d'èD 

We see that а^Ч°Ца) = a(a) for a £ B, in other words a cz ah/oi. 
Now we put 

93» = 93 

a 0 = a 

a aU n/DJ 
in addition to (8) and (9). 

L e m m a 1 0 . I f a is a homomorphism of 93 onto 91 then U 
0-n is CL JlOTTlO-

morphism of U 95„ onto U 2 l „ . n < m 

п<ш л<а> 
We shall use the following 
Lemma 11. Compactness Theorem. I f В с $0(L) and F £ Cn(N) then 

there is a finite subset 270 of 21 for which F £ Cn(T0). 
We suppose the notion of (general) recursive function, (general) recursive 

predicate of the natural numbers, recursive or recursively enumerable set of 
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na tu ra l n u m b e r s to be known. The following axiom system called Robinson ' s 
system (see K L E E N E [4], p . 1 9 7 ) will be used in § 2. I t conta ins the cons t an t s 
0, 1 and t h e b inary func t ion symbols + , • . L e t the set of t h e let ter be L°. 

(x) (y) (x + 1 = y + 1 -> x = y) 

(x) (x + О = x) 

(x) (y) (x + (y + 1) = (x + y) + 1) 

( Ä ) J ( ® ) ( - , r + l = 0 ) 

(x) (x • 0 = 0) 

(x) (y) (x • (y + 1) = x • y + x) 

(x) m (y + 1 = X v x = 0) 

If к is a n a t u r a l number , к will deno te t h e corresponding numeral, i .e. if 
к = 0 t h e n к = 0, and к + 1 = (&) + 1. I n the following lemma [— ( R ) F 
will mean t h a t the sentence F is der ivable f r o m (B) in a usual formal sys t em 
of the f i r s t order predica te calculus w i th equal i ty axioms. 

L e m m a 1 2 . (a) For each recursive predicate B(xx xn) there is a formula 
F(xj, . . . , xn) of L° such that for any natural numbers kv . . ., kn 

B(kx, . . . , k n ) . 

K ) 

- I - kn) 

b o p •••>kn) 

(b ) I f specially B(xv . . . , xn) is cp(xx
 = xn f ° r « number 

theoretic function <p then in addition to ( a ) we have for any natural numbers 
k\, . . . , kn_x and kn = cp (kx, . . . , kn_x) 

K « ) ( x ) (F№t ' •••' 1 ,x)-r-x = kn) 

(c) For each natural number n 

( x ) ( x < 7 ? - > ( x = 0 v x = I v . . . v x = n — 1)) 

where x < у is an abbreviation of (3z) ((z + 1) + x = y) (see [4] Corollary 
of Theorem 32 (p. 296) for (a), Theorem 32 (p. 295) for (b) and *166 (p. 197) 
or its proof for (c)). 

§ 2. A generalization of a theorem of Kleene 

For t h e sake of simplicity we a s sume in the following defini t ion t h a t L 
contains only predicate symbols and n o funct ion symbol . 

Definition. The language L is said t o be recursive by t he enumera t ion 
у — ( P j ) j < m of all p redica te symbols of L if r(i) = v(Pj) is a recursive func t i on 
of i. 

W e def ine the Gödel number N u f F ) = Nu(F) of formulae F of A by 
induct ion on the n u m b e r of logical opera t ions contained in F . 

(i) If F = Vi = v.- (i, -j < со) then let 

Nu(F)= 21-3i-V 
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(ii) If F = Pi (vk vim) then let 
Ri) 

Nu(F) = 21 • II p\\ A 
k= 1 

(iii) If A == - , G then let 
Nu(F) = 23 • 3Nu<G> 

(iv) If F = F, л P2 then let 
Nu(F) = 24- 3N"<F-> • 5n"<F.) 

(v) If P = («,) G then let 
ATt(ß) = 2ä • 3'' • 5Nu<°> 

We remark that only —i, Л , («,) are considered as primitive operations, the 
others will be used as abbreviations. A set F с ^fo(L) is said to be recursively 
enumerable by p if { Nu^(F): F £ 27} is recursively enumerable. 

We define the class PCJR E C of classes of relational systems as follows. 
Let К с @(L), L contain no function symbol. 

Definition. К £ PCjrcc if and only if there exist a language L' recursive 
by an enumeration p and a set E с ej+L') such that L c L ' and E is recursively 
enumerable by у and К = YAW(E) | L. 

Theorem 1. If L0 is a finite language, К с @(L0) and К £ PCjrec then 
K~ £ PC (K> being the class of infinite systems of K). 

Proof. According to the hypothesis we have the language L z> L0, the 
enumeration (P,) i<m of all predicate symbols of L, the set E of sentences 
of L and the recursive predicate R(n, m) such that r(i) — r(P,) is a recursive 
function of i, К = Ml(A) I L0 and n = Nu(F) for some F £ E if and only 
if there exists a natural number m for which R(n, m) holds. We may assume 
that the predicate symbols of L0 are P0, . . ., Pn,-i- The language Lx is defined 
as the set of the predicate symbols P0. . . ., P„0-1 and of the following addi-
tional symbols: 

0, 1 constants 
+ , • binary function symbols 
N unary predicate symbol 
h binary function symbol 
I unary function symbol 
M binary predicate symbol 

Let us consider the relativization of Robinson's theory to the predicate 
N (see § 1), i.e. the following sentences 

Щ0) 
N( 1) 
(v0) (vf (N(v0) A N(Vl) + N(vо + /у)) 
К ) К ) 
W n (vi)N К + 1 = «1 + 1 v0 = ty) 
(«о)N К + 0 = vQ) 

3 pi denotes the г'-th prime number (p0 = 2 , p. = It, . . . ) 
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(vo)N (»1 )N (v0 + К + 1) = К + M + 1) 
Ю Л - 1 и + 1 = 0) 
(ю0)дг к • о = 0 ) 

Ю л / ( М л / К • ( « i + 1 ) = « о • « i + M 
Ю л / ( 3 М л / К + 1 == ^ о V » 0 = 0 ) 

Let RN denote the conjunction of these formulae. 
Let us consider the following number theoretical predicates: 

Neg(n, m) 

Conj(n, mv m2) 

Quant(n, m, i) 

Eq(n) 

Pim(n, i) 

Eq(n, j, k) 

Prim(n, i, j, k) 

Pr(n, i) 

к < i 

к < r(i) 

к 2> r(i) 

к 2i lh(n) 

i - max(;', k) 
R(n, m) 

n = Nu(—i Ф), m = Nu(0) 
for some Ф £ 

n = Ыи(Фу Л Ф2), my = Nu(Oy) 
т2 = Ши(Ф2) for some Фх, Ф2 £ 

t i = Nu((v~№), m, = 7 У и ( Ф ) 

for some Ф £ 
n = Nu(Vj, = г/у,) for some j0, / , 

тг = Nu(Pi(vj„ . . . , vjrfi)J 
for some /„, . . . , yK0-i 

тг = N u ( v j , = г/у,), 

к = 0 or A = 1, and / = jk 

тг = Nu(Pi(vy0, ..., wy,„M 
0 ^ & ^ r(i) - 1, j = jk 

n = Nu(Pi(vo, . . . , г/г</)_1) 

NEG(n, m) 

CONJ(n, mv m 2 ) 

QUANT(n, m , i) 

EQ(n) 

PRIM(n. i) 

EQ(n,j, k ) 

PRIM(n. i,j. k) 

PR(n. i) 

S0(fc. ») 

M f c , »') 

S2(fc, ») 

5 3 ( f e , n ) 

i¥AA(i, j , k) 

RE(n, in) 

Lemma 13. The number theoretical predicates listed above are all recursive. 
That is trivial by the definition of Уи(Ф) and by our hypothesis that 

r(i) is recursive. If n is a natural number then n denotes the corresponding 
numeral (formal term of Lx) (see § 1). 

Lemma 14. Let R(xv . .., xn) be a recursive number theoretic predicate. 
Then there exists a formula FN(xv ..., xn) of the language Lu с Lx such that 
for every model 21 of RN and for any natural numbers kv . . ., kn R(kv .. ., kn) 
is true if and only if 2Í (— F N ( k v . . . , k n ) . 

Proof. Our assertion is a direct consequence of Lemma 12(a). The desired 
formula FN can he obtained by relativizing the formula F of Lemma 12 to N. 

n = Nufö) and the maximal 
natural number г for which г/, is a 
a free variable of Ф is lh(n) — 1 
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The formula FN t o each of t he predicates l isted before L e m m a 1 is 
denoted b y the corresponding nota t ion standing on t h e right side of the 
above list. 

Lemma 15. For every model 21 of RN and for arbitrary natural numbers 
n, i, s 

( 1 ) 21 H U)n ( S 0 ( j , n) -> ( j = 0 v i = 1 V . . . V i = n I ) ) 

(2) 211- (k)N (Sx(k, г) -> ( fc = 0 v f e = 1V . . . V fe = r(i) — 1)) 

(3) 21 f - ( k ) N (MAX(k, s, г) —> fc = ш а х ( » г)) 

Proof. (1) follows f r o m L e m m a 12(c), (3) f rom L e m m a 12(b), (2) follows 
f rom L e m m a 12(b) and (c) if we specialize 

(4) Sßk, i) = (3 j)N (S0(k,j) A R»(i,j)) 

where R0(i,j) is a formula represent ing j = r(i) as in tended t o get in L e m m a 1 
(b) i.e. we have 

(5) 21 b = Кг) 
and 

(6) 21 h ( fc ) N ( K ( b k ) - » k = Hi)) 

for na tura l numbers i, j. 
For S f k , i) defined b y (4) we mus t show (2), f u r t h e r m o r e also 

(7) 21 b S f k , i) ~ 4 < r(i) 

i.e. t h a t S f k , i) satisfies L e m m a 14 too. 
F r o m (5) and Lemma 14 for S0(k,j) i t follows easily t h a t к < r(i) implies 

21 b SM, ()• Conversely if 21 b Sflc, i) t h e n f rom (4) a n d (6) i t follows t h a t 
21 b S0(k, НгУ) i.e. к < r(i), consequent ly (7) is proved. (2) follows f r o m (4), 
(6) and (1) similarly. 

Now we give a f in i te ax iom system 27, for which we shall prove 

(8) K°° = ML/27,) | L0 

W e use t h e abréviat ions то, = Агг(Р,(те0, . . . , тегЮ_!)) (г = 0, 1, . . . ) ; 
е0 = Nu(v0 = те,) 

Al RN 

А 2 Z ( 0 ) = 0 

A3 (a) N(l(a)) 

А 4 (a) (x) (3 Ь) (ЦЬ) = 1(a) + 1 Л ( j ) N (S0(j, 1(a)) -r 

-> h(a,j) = h(b,j)) л ЦЬ, 1(a)) = x ) 

A 5 (a) (b) {[1(a) = 1(b) л ( j ) N ( S 0 ( j , l(a))-+h(a,j) = h(b,j))] 

-+a = 5 } 

A 6 (a) (1(a) = 2 - > (M(eo, a) —> h(a, 0 ) = h(a, 1)) 
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A 7 " X 1 ( a ) [ Z ( a ) = >ii) - > ( M ( m f , a ) — * P , ( A ( a , 0 ) , . . . , h{a, Hi) —1))1 
í = o — 

A 8 (n)N(a) (b) {[EQ(n) Л S2(l(a), 2) Л ВДЬ),2) Л 

A ( j ) N ( k ) N { ( m n , j , k ) Л S0(j,l(a)) Л ( f c = 1 V fe = 2 ) ) - > 

-+h(b,k) = h{a,j))] -> (Ж(п, a) — il/(m, 6))} 
A 9 ( n ) N ( m ) N ( i ) N ( a ) ( b ) { [ P A 7 I f ( n , i ) Л PR(m,i) Л N 2 ( Z ( a ) , i ) Л 

Л S3(l(b), г) Л (j)N(k)N((PRIM(n,i,j,k) Л S0(j,l(a)) Л 
Л N / f e , г ) ) А ( Ь , / г ) = А ( а , j ) ) ] ( Ж ( п , а ) — Ж ( т , b ) ) } 

А 10 (»)N (m)N («) [iYEG(n, m) Л S3(l(a), n ) -> 
-> (M(n, a)*—* —i M (m, a))] 

A 1 1 ( w ) N (m1)N ( m 2 ) N ( a ) [ C 0 A 7 ( n , mv m 2 ) Л S3(l(a), n) -> 
(Ж(п , a) — ( Ж ( т х , a) Л Ж ( т 2 , a ) ) ] 

A 12 (n)N (m)N (i)N (a) [QZ7ANT(n, m, i) л ВДа), n)) 
-> [Ж(п, a) — (b) ({3IAX(l(b), 1(a), i) л 
Л ( k ) N ( ( - , fe = i Л S 0 ( f c , Z ( a ) ) ) - > A ( b , fe) = A ( a , fe))} - > 

-> M (m, b ) ) ] ] 

A 1 3 ( n ) N ( m ) N ( i Z A ( n , т ) - > Ж ( п . 0 ) ) 

I. Proof of 
( 9 ) M i J I j ) | L 0 D K ° ° 

Let 2Í0 € K ~ , i.e. let | 2Í0 | be infinite and 2l0 = 21 | L 0 for 21 £ M L ( 2 C ) 

We have to define 211 such that 

( 1 0 ) 2 / 6 М ц ( 2 7 1 ) 

and 

( 1 1 ) 9 1 0 = S l i I L 0 

Let В be a subset of A of power со and let iV9(i(rz) be true if and only if а £ В. 
Let 05ti, l M i be two elements of B, +51,, binary functions on A = 

= I 210 I so t h a t 23 = (A; 0,Mi, l3 l i , + 3 ( i , [B~\ is def ined and isomorphic 
to (to; 0, 1, + , • ) where the la t te r is the sys tem of the n a t u r a l numbers w i t h 
the usual constants and operations. We m a y and shall suppose tha t 23 is 
identical with (со; 0, 1, + . • )• If а, 6 £ A and a (£ со or b (£ со then а b, 
a b can be defined arbitrari ly, e.g. а b = a b = 0. 

We establish a one-to-one mapping cp of A — {0} onto the set of all 
finite sequences (with at least one element) of A . Let /ДО) = 0 and hi,(a) = 
= the length of 99(a) (= the number of elements of the sequence 99(a)) for 
a £ A — {0}. We say that a represents the sequence 99(a). 
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If 99(a) = (a0, . . . , a 5 _j ) and к £ со, к < s then le t ЛЙ1(а, к) = ак. Other-
wise let hwfa, b) — 0. 

L e t Ф be an a r b i t r a r y formula of L, n = Nu(0), a £ A, 1(a) ^ lh(n), 
(p(a) — (a0 , . . ., as_x). W e define 

M^(n,a) ~ 21 ' ' • ' V,h{n)~y ф 
i a0, . .., a/ft(n)_x 

Specially if a = 0 and Ф is a closed f o r m u l a 

M%(n, 0 ) — I— Ф 

In all o t h e r cases x,y £ A M^fx, y) m a y be a rb i t r a ry , e.g. M ^ f x , y) = 0. 
Considering (11) 21j has been comple te ly def ined. 
We h a v e to ver i fy t h a t 214 satisfies t h e axioms A1 — Л13. This verifica-

tion is s t ra ight forward . W e give only a sketch of i t . W e make a d v a n t a g e 
of the f a c t t h a t the special formulae l i s ted before L e m m a 13 take t h e same 
t ru th v a l u e as the corresponding n u m b e r theoretic predicates for na tu ra l 
number a r g u m e n t s (i.e. for elements a of A satisfying N ^ f a ) ) . 

A l is t r u e because t h e system of t h e natural n u m b e r s with t h e usual 
operations satisfies the ax ioms of Rob inson ' s theory (and see L e m m a 4 in 
§ 1). A4 expresses t h a t fo r every sequence (a0, . . . , a s _ j ) represented b y a 
and every e lement x the re is a & £ A represent ing (au, . . . , as_lt x). A5 expres-
ses tha t t h e r e is only one element of A representing a g iven sequence. 

Now let us observe t h e definit ion of M^fn, a). A6, A7 are obvious . 
A9 expresses t h a t Pi(via, . . . , t akes t h e same t r u t h value for a sequence 
(a0, ..., as_j) represented b y a which is taken by /J,(«0, . . . , « r ( i )„1) for 
the sequence (a,o, . . . , ai r t i )_) represented b y b. Л8 is s imilar for the i den t i t y . 
A10, A l l express the mean ing of the nega t ion and conjunct ion . Let n = Nu(0), 
a £ A, U f a ) > Ih(n). A12 expresses t h a t a sequence (a0,. . ., a s_,) represen ted 
by a satisfies t h e formula (?;,)Ф if and only if for every b <p(b) satisfies Ф p rovided 
t h a t the fol lowing hold : cp(b) = (b0, . . . , bs'_t)' s' = max(s , г) and bj = aj if 
j < s and j ф i. A13 expresses tha t t h e sentences F f o r which there exists 
an m with R(Nu(F), m) i .e. t h e sentences of N are t rue in 2L 

We h a v e proved (10) and (11), consequent ly also (9), qu. e.d. 
II. Proof of 

( 1 2 ) M ^ O l L o C K -

Let Щ £ M L i (2 \ ) , 2l0 = 21x | L 0, 2ii I = A . A is trivially inf in i te because t he 
values of t h e numerals in 2 / must be d i f f e ren t . 

In o rde r t o prove (12) we must c o n s t r u c t a system 21 £ <3(L) for which 

(13) 3 i |L 0 = 2(o 

and 

(14) 2I£M l (27) 

Let us d e n o t e the set of the values of t h e numerals in 2ij by В. В is a 
(possibly p r o p e r ) subset of [a: N^fa)) F r o m the fact t h a t in 2(1 A l holds i t 
follows t h a t 23 = (А; 0Я1, l 9 t i + -и,) [ В ] is defined a n d isomorphic t o 
(со; 0, 1, • ). We may a n d shall suppose t h a t S3 is ident ica l with the l a t t e r 
system. 
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Lemma 16. For every natural number n ^ 0 and every sequence (a0, 
av ..., an—i) of n elements of A (possibly the empty sequence) there is exactly 
one element a of A for which 1Ш)a) = n and h+a, Jc) = ak for к < п. Let 
[a0, ax, ..., an_J denote this a. 

Proof. First we show the existence of a by induction on n. If n = 0 
then a = 0 is suitable by A2. Let n ^ 1 and let us assume t h a t a Ç. A, Isafa) = 
= n — 1, h^fa, k) =f= ak for к < n — 1. Using A4 („substi tuting" an_x for x) 
we obtain b € A for which 1(ц)Ь) = n, h^Jb, n — 1) = an_x and 

(15) 21x 
a, b 
a, b (,j)N(S0(j,l(a)mh(a,j) = h(b,j)) 

By Lemma 14 21, |— 5n(0. n — 1), . . ., Sn (n — 2, n — 1) consequently (15) 
implies h^ßb, к) = h ^ f a , к) = ak for к < n — 1 qu. e.d. Secondly we prove 
the unicity. Suppose a, b € A; 1&,(а) — l%,(b) = n £ со, k) = h^fb, k) 
for к < n — 1. a = 6 will follow bv 2Q (— A6 if we show tha t 

2 Q 
a, b 
a, b 

U)n(S0U, n)-*-h(a,j) = h(b,j)) 

But tha t is a consequence of Lemma 15 (1) and of our hypothesis. 
To define 21 we give (Р,)<ч for i > n0 as follows. For any a0, . . . , ar^_x € A 

let 

(16) ( P , h («о. • • •. «кo-i) ~ ( r r i j , [a„ «KO-J) 

We remark tha t by 2(x [— A7 (16) holds also for i < n0. Similarly we have 
by 21] H A6 that 

(17) «о = a x ~ J / ? t l (e 0 ) [ a o . a j ) 

Lemma 17. If Ф € 5(L), n = Атм(Ф), a0, ..., as_x £ A, lh(n) < S then 

(18) 21 
V0' vx, .. • >

 vs-l 

a0, ax, . • • as-1 
Ф ~ M%fn, [a0 a s _ J ) 

Proof. The proof proceeds by induction on the number of the logical 
operators (i.e. —i, Л , (x)) occurring in Ф. 

1. Let first Ф be vjn = v> or P,(vj0, . . . . We consider only the 
second case. The first one can be t reated similarly using A8 and (17) instead 
of A9 and (16). 

Let a = [a0, . . . . a s l ] , b = [ajt, . . ., aJr(1)_J, m — mh By Lemma 14 
we have 

(19) 21] h PRIM (n, i), PR (m, i), S2(s, i), S2(rfi), i) 

further 

(20) 21] h- PRIM (n, i,fk, k) for к < r{i) 

and 
(21 ) 21, h - i PRIM (n, i, j, k) for j <s.jf= jk 
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By using L e m m a 15 (1) a n d (2), (20) and (21) we obtain 

Sli ~ U)N (k)N((Sx (k, i) A S0(j,*))-* 
a, b 

-> (PRIM(n, i,j, k) h(b, k) = h(a,j))) 

From this and (19) and 91x f - A8 it follows 

a, b (M(n, a)*-*M(m, b)) 
a, b 

( Л ) и ( « А > a / * . - ) — MKÂm> Ь ) 

(22) 9ÍX 

Applying (16) gives 

This and (22) imply 
(P/h (ay, aj^J ~ M^fn, a) 

which is exact ly (18) as was t o be shown. 
2. Let Ф — —i F or Ф = Fx л F2. These induction cases can be t rea ted 

b y using 91x ( - A10, A l l . P u t m = Nu(F) or m1 = Nu(Fx) and m2 = Nu(F2). 
Let us observe t h a t by Lemma 14 we have 91x |— NEG(n, m) or 91, CONJ(n, 

and in both cases 91x |— S3(l%fa), n). 
3. Let Ф = (»,•) F, m = Nu F. To f ix the notations we suppose г > s. 

The other case г < s can be t r ea ted without essential change. Let a = [ a 0 , . . . 
. . . , a s _ x ] . 

(a) First we suppose 

(23) 91 

We have to show 

v o> v v • • • • + - 1 ф 

a0'av • • • >as—i 

(24) Mmfn,a) 

B y 91j h A12 a n d 9lx [ - QUANT(n, m, i), S f s , n) i t is sufficient to prove t h a t 

(25) - ( b ) [(MAX (1(b), 1(a), i) a (fc)N ( ( - , fc = < л S0(k,l(a)))-». 
I a 

-> h(b, k) = h(a, k)) - > M(m, 5)] 

L e t b £ A and suppose 

(26) 91x 

and 

a, b 
a, b 

MAX (1(b), 1(a), i) 

(27) 9ix I—'—(fc ) N ( ( - i f e = « A S0lk,l(a))^h(b,k) = h(a,k)) 
! я , ь 

(26) implies by Lemma 15 (3) 

hi,(b) — max (5> i) = s. 

F r o m Lemma 16 and (27) and 91x |— S0(k, s) for к < s it follows that b = 
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= [a0, . . ., as_v a's, .. ., а\) for some a's, . . ., a\ £ A. F r o m (23) we infer 

v0, . . ., vs_v . .,vt 

« о . • • > as—1> • • • > a 'i 
This and t h e induction hypothesis for W imply M^(m, b) consequent ly we 
have p roved (25). 

(b) Secondly we suppose (24) and p rove (23). 
By Síi I- QU ANT (n, m, i), S3(s, n) and A12 we have now (25). L e t a\ be 

an a r b i t r a r y element of A, a's, ..., a\_r be elements of A (these l a t t e r are 
unessential) and b — [a0 , . . . , a s l , a's, . . . , a]]. By L e m m a 14 we have (26) 
and by L e m m a 15 (1) we have (27). F r o m (26), (27) a n d (25) it fol lows 
Mwfm, b) which implies 

• , v s - v • . , V i 

a 0 , . • ' as—1> • 

by the induct ion hypothes is . In o ther words, for a r b i t r a r y a[ £ A (28) holds. 
But th is means exact ly t h a t (23) holds. 

So we have f in ished t h e p r o o f of L e m m a 17. 
Now we prove (14). Le t F £ A, n = Nu(F). According to our hypothes i s 

we have a na tu ra l n u m b e r m for which R(n, m) holds. By Lemma 3 th is 
implies 91x |— RE(n, m) hence by using 91, |— A13 we ob ta in M%i(n, 0). Con-
sequent ly b y L em ma 17 we have 31 (— F. We have t h u s shown (14), and 
sonsequent ly also (12). 

(9) and (12) give (8), hence K~ £ PC. 
So we have f in ished the proof of Theorem 1. 
We give a counterexample showing t h a t the conclusion K ~ £ PC 

cannot be improved in general to К £ PC. Le t L0 be t he empty set . The 
systems of L0 can be ident i f ied wi th sets. The formulae of L0 conta in only 
the i den t i t y symbol besides variables a n d the logical operations. W e can 
const ruct a sentence Fn £ FY„(L0) for a n y n £ m such t h a t 91 £ ML o(P„) 
is equiva len t to 91 c^ n (n = {0, 1, . . . , n — 1}). Le t H be a recurs ive bu t 
not p r imi t ive recursive set of na tu ra l number s =j= 0. Consider 2 7 = {—i Fn: 
n £ H). Then 27 с g 0 (L 0 ) , 27 is recursive and fu r the rmore the set of the 
na tu ra l numbers n such t h a t n £ К = ML((27) is ident ical with со — H (the 
complement of H). 

L e t F be a fo rmula of an a r b i t r a r y language L( э L0). I t is tr ivial 
t h a t t h e set of all n such t h a t n £ ML (P) | L0 is p r imi t ive recursive. Hence 
if К £ PC held t h e n tu — H would he pr imi t ive recursive, t ha t is n o t t rue . 

§ 3. An operation on relational systems 

W e suppose t h a t t h e language L contains only predicate symbols and 
no func t ion symbol. 

L e t 91 be a re la t ional system of L, F(x) a formula of L with t h e single 
free var iable x. We de f ine 91 11 F(x) as t h e subsystem 18 of 91 such t h a t j 93 [ is 

ОС 
the set of those e lements a of | 911 which sat isfy F(x) in 91, i.e. 91 — F(x). 

I a 
Since we do no t allow relat ional sys tems wi th e m p t y domain, we consider 
91 H F(x) as def ined only if 91 + (3®) F(x). 
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This construct ion has a ra the r general character , as i t will t u r n ou t in 
§ § 4 and 5 i n which we a p p l y i t together w i t h Theorem 2. 

We d e f i n e for a class К of relat ional systems 

К I] F(x) = ( 9 1 H F(x): 91 £ K) 

Theorem 2(a). If L is an arbitrary language, F(x) £ U(L) with the single 
free variable x, К = ML(F) for some E с f^o(L) ап<к (Эх) F(x) is a consequence 
of E then 

( 1 ) К J) F(x) £ P C J 

(b) If in addition L is finite, and E is a one element set then 

( 2 ) К II F ( x ) £ P C ^ r e c 

Proof. We prove the theorem by constructing an axiom system E' 
in a language L ' D L such tha t 

( 3 ) K | | F ( x ) = M l - ( 2 7 ' ) | L 

We shall see tha t if the hypothesis of (b) holds, then I / and E' will satisfy 
the further requirements of (b). 

We suppose that F(x) is a prime formula, say Q(x). To reduce the general 
case to this we have to adjoin a new unary predicate symbol Q to L and to 
add the axiom (x) (Q(x) F(x)) to E. Let the resulting language and axiom 
system be L, and 27, resp. Obviously we have К || F(x) = (ML/A,) || Q(x)) | L 
and so we obtain (1) or (2) if we apply the same to L,, 27,, Q(x). 

We may assume that each formula II £ A has the following prenex 
normal form 

(4) (x,) . . . (xfci) (3y,) . . . (x f c_+ 1). . . (xkn) (Эyn) (xkn+1). .. (х^+1) Ф 

where Ф is an open formula of L. For each H £ E we introduce distinct new 
function symbols . . . , f ß corresponding to the variables y„ . . . , y n 
bound by existential quantifiers in H, with r ( / f ) = 4, (г = 1, . . . , n). By 
adjoining every f[* to L for each II £ E we obtain the enlarged language L,. 
We associate an open formula H* of L, with each H £ E by putting 

(4') Я * = 
/Дх,, . . . , xk() 

Ф. 

Let T be a prime formula of L,. T is said to be a free prime formula 
(briefly fpr) if (i) each variable of T occurs in only one argument place of T 
and (ii) the argument places of T are occupied by vQ, .. ., тет_, in that natural 
order in which these argument places follow each other from left to right 
in T. It is obvious how to give a rigorous inductive definition for the notion 
of the free prime formula. At any rate the following lemma is evident. 

Lemma 18. To each prime formula T of L, there is a unique fpr T0 such 
that we get T from T0 by substituting a variable of T for each variable vt of T0 
Moreover, this latter sustitution is uniquely determined. 

We associate a predicate symbol PT with each fpr T with the following 
stipulations. The symbols PT are different from each other for different fpr-s, 
and they are different from the predicate symbols of L with the following 
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except ion: if T is a pr ime formula of L. i.e. of the form — vx or P(v0, .. ., vn_x) 
for P £ L t hen let PT be identical wi th = or P respect ively. We p u t v(PT) 
t o be t h e number of t h e variables in T . 

L e t L' = {PT : T is an f p r } - { = }. Obviously we have L с L'. 
Now we def ine W for each open fo rmula W of L t as follows. Le t f i r s t W 

be a p r ime formula of Lx. B y Lemma 18 4 ' arises f rom a un ique fp r W0 b y well 
V V 'V 

de te rmined subst i tu t ions for variables of W0, i.e. 4 ' = 11 ' ' *' m ~ 1 W0 

I x 0 , x v . . . , x m _ 1 

where x0, ..xm_x a re variables. Le t F be the formula Pv«(x0, xv . . . , x m _j ) 
If 4 ' is a n a rb i t ra ry open formula of Lj, t h e n W is ob ta ined f rom W by replac-
ing each pr ime formula p a r t Ф in 4J b y Ф. 

W e remark t h a t W has the same var iables as Ф a n d if 4* £ then 
V = V. 

L e t I be the set of t he following open formulae 

v 0 = v 0 

v0 = v1-*vl = v0  

(v0 = V1/\V1 = v2) ->- v0 = v2 

К =vnAv1=vn+1L . .. Лv„_1=v2n_1)-*-(P(v0,.. .,»„_!)->?(«„,. ..,v2n-x) 
for a rb i t r a ry P £ L 

Let 2 * = {H* : H £ 2 } U I . 

L e t 1'j be the set of all formulae | Xv * ' ' ' X k F whe re F £ 2*, ж j I . > > j xk 
I . .., tk _ 

are dis t inct variables, tx, ..., tk are t e rms of L r Le t = [4* : W £ 27J and 
= Cl(Sx). 

L e t t be a t e rm of L v ж be a var iable not occurr ing in t. We de f ine the 
fo rmula Et by 

(5) Et = Cl(Q(t)->(3x)(x = t)) 

Final ly we put 

Г = E2 U {Et : t is a t e r m of L J U {(ж) ф(ж)} 

For L' and E ' so def ined we shall p rove (3). 
We remark t h a t if the hypothes is of (b) holds then in v i r tue of the 

„effec t iveness" of our construct ion we trivially h a v e an enumera t ion /л — 
— (Pi)i<m of all p red ica te symbols of L' for which is a pr imit ive recursive 
func t ion of г and {Nv;l(F) : F £ E'} is a primit ive recursive set of na tu ra l 
number s . Thus (3) will imply (2). 

I. Proof of К II Q(x) с ML.(Z") I L 
Let 91 € К II Q(x). We have to show 

(6) 91 £ Mt'(2F) I L 

We have a system 33 £ К = ML(-F) for which 91 с 93 and 

(7) I 91 I = A = {a : a € В = | 93 |, Q»(a)} 

1 2 A Matematikai Kutató Intézet Közleményei IX. A / 1 - 2 . 
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We define the system 33, € S ( L , ) . Let j 23, | = В, P», = P » for any P £ L . 
Let H £ P of the form (4). Since 23 |— H, by Lemma 3 in § 1 we have a 
23" £ @(LJ) for which 33 = 93" i L and 33" Ь СЦН*). 

Let ( / " ) « , = ( / " ) ® я f o r г — 1, . . n and for each Я £ P. So we h a v e 

(8) 23x I L = 33 and 33x | - Cl(H*) for every Я £ P 
W e define t h e system 21' of L ' by put t ing | 21' | = A and 

(9) ( P 7 " ) » ! ' ( « 0 , • • • . ®m—l) ~ 
VQ, . • > vm—1 
a0, . • ' a m — 1 

T 

fo r any fpr T a n d a„, . . . , am_3 £ A. If we replace T by P(v0, 
P £ L in (8) we obtain 

., vn_y) for 

, a n _ y ) ~ Р ^ А а о < • • • - a n - 1 ) ~ P « i ( « o > • • • > a n - i ) 

31' I L = 31 

P a r ( a o > 

i.e. 
(10) 

Now we show 
(11) 21' £ ML'(P) 

If Ф is an arb i t rary open formula of LX, A. t h e n 

( 1 2 ) 21' 
I X0' • • •'xk—1 
1 a0, .. •, ak-\ 

; ®o> • • • > xk—I 

! « о . • • • - 4 - 1 

ak_j are elements of A 

Ф. 

T h a t is a direct consequence of (9) and the definit ion of Ф. 
Let P £ P , . We show 

(13) 33, h Cl(V) 

®0. • • •. xm-1 F w h e r e F = H* f o r s o m e Я £ P or P £7. N o w we have P = 

In the first case (13) follows from (8), in the second one (13) follows from the 
trivial fact that 33x h Cl(F). 

Now let E £ P2 , i.e. E = Cl(W) for some P £ Px . I t follows f rom (12) 
a n d (13) t ha t 21' H E. 

Secondly le t E == E, of t h e form (5). We prove 31 ' \- Et. Le t 
be all the d i s t inc t variables of t and аг am £ A. W e have to show 

X; 
- (Q(t) (Зж) ж = I). Suppose 31' 

x 

31' 

i.e. QJx) where r 

-i-Qit). This implies b y (12) 23x - Q(t) 

» i 

ж, xv ..., xn 

— t, consequently b v (7) r £ A. But t r iv ia l ly 
a,-

/ I Xt xl> ••• I xn 

x , a v . 
x = t and so again by (12) we have 31' x = t 

x,a. • ' an 

i.e. 31'!—(Зж)ж = / and that had to be shown. 
I a, 

Finally we have trivially 21' )— (ж) Q(x). 
Thus we have shown (11), (10) and (11) gives (6) qu. e.d. 
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II. Proof of К II Q(x) с ML-(Z") I L 
Let 

(14) 21' £ M J E ' ) 

(15) 21 = 21'I L 

W e have со cons t ruc t a 23 for which 

(16) 23 £ К = Ml(27) 

(17) 21 с 23 

a n d if I 21 I = A, I 23 | = В 

(18) A = {a : a £ B, QJa)) 

We associate a new cons tan t ca with each a £ A. W e suppose t h a t 
ca ф L j and cai =/= саг if «j ф a2. Le t A1 = {ca: a £ A}. We de f ine the auxi l iary 
language = L4 U A1. Le t Bx be t he set of all closed te rms of L f , i.e. which 
contain no var iable . 

We def ine t he pseudosystem 23] of L4 as follows. Le t 123x1 = Bv L e t 
bv . . ., bn £ Bv let c0o, . . . , Cnm t be all t he d i f fe ren t elements of A1 occuring 

in some of t h e brs, tt = 

Now we def ine 

(19) 

• • > cam-i 

u o . • • • i 1 

— 
S, Ь2 --21 ' 

v0, . . •. «m-1 
a0 , . • > am—l 

<1 — t g 

21' 
V0, . • . " m - l 

a0, . • > am—1 
P ( t v . . . , t n ) (20) P^(bv ...,bn) 

for P £ L and 

(21) / » , (&, bn)=f(blt ..:,bn) 

for / £ L,. 
Using similar nota t ions (19), (20), (21) imply t h a t 

(22) 2 3 , 
• ,

 xn 
bv ...,bn 

ф ~ 21' 
«О' • • . ®m-1 
a0, . •.am-1 

xv ...,xn Ф 
»1» • • •, tn 

for any open formula Ф of Lj. 
Now we p u t 232 = 93, | L, consequent ly 232 is a pseudosys tem of L. 

We prove t h a t 232 is a pseudomodel of E. 
Let H £ E. By L e m m a 3 i t is suff ic ient t o show 

(23) 2 3 , 1 - Cl(H*) 

for proving 232 (— H. We have t o show t h a t if b v . . ., 6/Cn+] are ai 'bi trary 
elements of Bl then 

(24) « i 
x „ . • • . x k n + 1 

• • ' 

H* 

(we suppose H to be of t he fo rm (4)). 

1 2 * 
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Let cQo, . . . , cam_t denote all t he different elements of Ax occurring in 
some of bv ..., le t us replace each caj by те,- in each b, and let tv ..., 

• • • > tk„+1 Le the result ing terms of Lv Le t W be 

(24) it is sufficient t o show by (22) t h a t 9Г 

x , , . . . , xkn+ 

h> • • - , 
H*. For proving 

V°' " ' ф . But t h a t is t rue 
I a0> • • • > vm—1 

since W £ 27, and consequently С1(Ф) £27' and so we have (14). So we have 
proved (24) and (23). 

Moreover we assert tha t is a congruence relation on 932- We have to 
show t h a t S3, [— С1(Ф) for Ф £ I where I was defined above (equality axioms). 
This follows similarly as before from the fact tha t if Ф £ I , tv ..., tn are terms 

of L, t h e n CI Я " Ф | ( Г . 
Z,, • • • *ri J 

Let 93 he the fac to r system 932/=®,. By Lemma 2 and from t h a t what 
we have jus t proved i t follows (16). 

Le t A2 denote t he set of the equivalence classes c Q / = S s = [a] (a £ A). 
We assert t ha t the subsystem 93[42] is isomorphic to 91 by the na tura l mapp-

vo< vi ing [a] -V a. Indeed we have [a0] = [a,] ~ ca<,=a3i cai 91' Va = те, ~ 

vo> V 
я0 , я , 

moreover 

, = те, ~ я 0 = av hence the given mapping is one-to-one and 

Р Т А Г ] ([«о]. • • • > K - x l ) ~ Р Д Ы . . ., [»„_,]) ~ P5B,(Co,, • • •, Ca„-,) 

- 9 Г • . • . » n - i Р(те„, . . . ,теп_,)~91 ' V0, • • • . v„-1 
Я д , . • • . a n - i 

те0, . •. «п-1 
Яд, . • . «л-1 

P(v0- • • • - Vn-1) ~ 

~ P<H'(a0, . . . , a „ _ i ) — P<u(a0> • ••> an-1) a s des i red . 

We can identify 93[A ' ] with 91, hence we can consider 91 as a subsystem 
of 93. 

To complete the proof we have only to show t h a t A = X if X denotes 
(b: Qffl(b)}. Being 91 a model of (x) Q(x) and a t the same time a subsystem of 
93 we have i с Í . T o p rove А z> X let b £ X. Then b = t(cat, ..., can_,)l =sb, 
where <(те0 теп_,) is a t e rm of L,. I t follows f rom (12) and Q®,(x) tha t 

(25) 9Г 
те0, . • > b - i 

ао> • • - « л - 1 
— Q(t{v0, ...,»„_i)) 

But Et £ 27' (see (5)), consequently 91' ( - Et hence (25) implies 

91' 

Let a £ M for which 

91' 

(3x)x = t(v0, ..., те„_,). 
a0' • • • ' an— 1 

V ° " - - ' V n - v X x = t(v0 те„_,) • 
Я д , . . . , Я „ _ , , Я 
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B y defini t ion th i s is equivalent t o ca =35, t(ca,, • • - , can_J i .e. b = [ca] = a £ A. 
Thus we h a v e proved (16), (17), (18) q u . e .d . 

Corollary 3. If К £ P C and (3x) F(x) holds in all systems of К then 
we have 

(K [I F(x))°° £ P C 

Proof. B y Theorem 1 a n d Theorem 2 (b). 
Now we wan t to give an example of a class К £ E C and a f o r m u l a 

F(x) such t h a t К || F(x) ^ EC^. Our e x a m p l e is a slight modif icat ion of t he 
one given b y L Y N D O N [3] fo r showing t h a t К £ EC does n o t imply H ( K ) £ 
£ ECj . L e t t h e language L consist of t h e predicate symbols P , Q, R wi th 
v(P) = v(Q) = 1, v(R) = 2. L e t H be the conjunct ion of t h e following fo rmulae 

(ae) (Q(x)-*- —i P(x)) 

(26) (3®) (y) (P(x) Л (P(y) -+x = y)) 

(27) (x)(P(x)->R(x,x)) 

(28) (x) (P(x) -> (y) (R(x, y) (3e) (R(x, z) л R(y, z) л Q(z)))). 

Let К = МЬ(Я). 
We asse r t t h a t К |[ Q(x) consists of t he relational sys tems 21 for which 
21 H (x) Q(x) 
21 H (x) - i P(x) 
and t h e r e exists a n infini te sequence zv z2, . . ., zn, . . . such t h a t 
RÇQ (zn_x, zn) for each n = 2, 3, . . . 

Let f i r s t 23 € K, 21 = 23 || Q(x). T h e n there exists exac t ly one element 
x 0 of I 23 I = В for which P a ( x 0 ) is t r u e . Let us rep lace x 0 for x a n d у in 
(28). Then (27) and (28) s ay tha t t h e r e exists a zx € A = | 21 | such t h a t 

(29) 7?(g(x0, zx) a n d Q^(zx) 

hence zx Ç A. 
Taking x 0 for x, zx fo r у in (28) we see by (29) t h a t there exist a z2 £ A 

with R&(Xp, z2), R®(zx,z2). 
Cont inuing in this manne r we g e t t he sequence zx, z2, . . . such t h a t 

A?i(zn, zn+x) and R%(x0, zn) hold for each та ^ 1. 
Secondly let 21 sa t i s fy (*). We choose a new e lement x„ (£ A = | 21 i 

and def ine | 23 | = A U {ж0}. We def ine Р^ (х ) to be t r u e in 23 if a n d only if 
x = x0 ; Rm(x, y) if and on ly if x == у = x0 , or x = x 0 a n d у — zn, or x = zn_x 
and y = zn for some та; Qs(x) if and on ly if x £ A. I t can easilv be checked 
tha t 23 h- Я a n d 21 = 23 || Q(x). 

Now we show t h a t К || Q(x) (j EC^. I t is suff ic ient t o exhibit a system 
21 such t h a t 21 does not sa t i s fy (*) bu t a n ul trapower 21/ of 21 does sa t i s fy (*). 

Le t I 21 I = A be t h e set of the d i s t inc t elements zik for na tura l n u m b e r s 
i, к with i, к 1, i <L к a n d let P, Q, R be defined in 21 as follows. 

Q 9 I ( X ) is identically t r u e 
Да(х) is identically false 
R<x(Zjk, Zji) is t rue if a n d only if fe = Z and / = i + 1. 
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I t can be seen t h a t 9Í does not sat isfy (*). 
Let I be the set of t h e positive integers, D be a non principal u l t r a f i l t e r 

on I. We c a n wri te the e lements of A'D as (xv xv . . . )/ /) . Le t us p u t 2,- = 
2,7, Z/i+i, ••• )\D. Then R^(Zi_x,Zi) is a lways true, i.e. 91? 

satisfies (*) que.d . 

§ 4. Homomorphisms 

Let F be a n a rb i t r a ry set of formulae of t h e language L, let 91, 93 be sys-
t ems of L, <p be a mapping of [ 93 | = В on to | 91 | = A. 

Definition. <p is said to be an F-homomorphism of 93 onto 91 if for every 
F , F and arbitrary elements bv .. .,bn of В 

93 
..,xn 

bv. ..,bn 

F implies 91 • > x n 

cplbj, .. ., cp(bn) 

This notion is due to K E I S L E R [2]. K E I S L E R requires F t o have some specia 
properties ( to be a Generalized Atomic set of formulae) b u t we do not need 
such restr ic t ions. Moreover we can and shall suppose w i t h o u t any loss of 
generali ty t h a t v0 = vx is a n element of F, because for a n y mapping rp of В 
b0 = bx implies ep(b0) = cpibf). 

In t he described case 91 is said to be an F -homomorphic image of 18 
(91 £ h f ( 9 3 ) ) . W e pu t h F ( K ) = U hF($8). 

« é k 

The no t ion of (simple) homomorphism is a special case of tha t of F-
homomorphism. In order t o see this we h a v e t o take F t o be the set of all 
formulae of t h e form v0 = vv P(v„, ..., u n - i ) and f(v0, . . ., vn_x) = vn fo r 
ß - / € L. 

Corollary 4. / / K c © ( L ) , Fc£?(L)and К £ ECAthen Н Г ( К ) £ Р С „ . 
Corollary 5. 7 / L is a finite language. F is an arbitrary recursively enumerable 

set of formulae o / L , K c S ( L ) and К £ EC then (H F (K) )~ £ P C . 
Corollary 4 ' . If К , PCA or К , ECa then H(K) £ PCA 

Corollary 5'. 7 / К £ P C or К £ EC then (H(K))~ £ P C . 

Proofs. Corollary 4 ' can be derived f r o m Corollary 4 as follows. WTe 
consider the class К ' с <3(L') for some L ' гз L such t h a t K ' £ EC^, a n d 
К = К ' I L. L e t F be the set of t he formulae v0 = vx, P(v„, . . ., vn_x), f(v0, . . . 
. ..,«„_!) = v„ for any P,f £ L. Then t r iv ia l ly H(K) = H F ( K ' ) |L £ PCA. 

Corollary 5 ' can be p r o v e d similarly by t h e help of Corollary 5. 
Now we a re going to p r o v e Corollaries 4 and 5 a t t he s a m e time. 
By assumpt ion we h a v e 27c^o(L) such t h a t К = ML(A). In case of 

Corollary 5 E consists of a single formula. L e t us associate a new predicate 
symbol P + w i t h each P £ L a n d a new func t ion symbol / ' w i t h each / £ L. 
W e take r ( P + ) = r(P), r ( / + ) = v(f). Besides we t ake the new unary funct ion 
symbol h and u n a r y pred ica te symbol A. L e t L ' be the language which we 
ge t by adjoining every P + , / + and A and h t o L. 

Let us d e f i n e F+ for an a r b i t r a r y fo rmula F of L as t he formula resul t ing 
f r o m F by subs t i tu t ing P + and f+ "for any P , / £ L in F. FA denotes t h e 
relat ivized of F t o A (see L e m m a 4 in § 1.) 
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Now we def ine the set 2" as t h e collection of t h e following sentences: 

(1) (x) A(h{x)) 

(2) (x) {A(x) ~> (3y) (h(y) = x) 

(3) (xx) . . . (xn) [P+ (xv . . . , x„) ^ FA(h(xx), ..., h(xn))) 

for each F(xv . . ., xn) £ F 

G+ for e ach G 6 2 

(4) ( х / . . . (x„) ( (Mix/ Л . . . Л A(xn)) A(f(xv . ..,xn))) 

for each / £ L 

Now we shall use t h e nota t ions in t roduced before Lemma 5. W e assert 
t h a t 

(5) Н Д К ) = ( Щ Г ) И ( х ) ) | Ь 

I . F i r s t let 21 £ H F ( K ) i.e. 23 € К and у be an F-homomorphism of 
23 on to 21. We def ine the sys tem 23' of L ' b y as follows. Let | 23' | = | 23 | = B, 
(P+)w = P®. ( / + ) » ' = / S B I ° r а п У P . / € L and h® = y. Let f u r t h e r A' be a 
subse t of В of t h e same power as [ 21 | a n d we def ine t he relations a n d funct ions 
P®'> / » ' s u c h t h a t if av . . ., an £ A' t h e n f<%\av , . . , « „ ) ( 4 ' a n d the sub-
sys tem (23' ! L) [A'] is isomorphic t o 21. Final ly we require A® (a) ~ a £ A' 
fo r a n y a £ B. I t can be a t t a ined by an " exchange" procedure t h a t (23' L) [A'] 
is identical wi th 21. Now it is t r iv ia l t o ver i fy t h a t 23' £ mL-(2'') and 21 = 
= (W II A(X)) L. 

I I . Secondly let 23' € M l-(2"), 21x = (23' || A(x)) L. Since t h e formulae 
of t h e form of (4) are in E ' , 21] = 2Î £ <S(L) for a un ique 21 £ @(L). W e define 
S3 € @(L) such t h a t | 23 | = | 23' | , Pm = (P+)«. , / » = (/+)®- for P , / £ L. 
T h e n h<Q' will be an F-homomorphism of 23 onto 21 and 23 6 K. T h u s we have 
shown (5). 

By L e m m a 5 (§ 1) (5) implies H F ( K ) = ( M p ( 2 ' ) || A(x)) | L. 
Le t us now consider the case of Corollary 4. Using Theorem 2 (a) we 

get HfTK) € Р С л and b y Lemma 6 of § 1 H F ( K ) 6 P C , qu. e.d. 
In case of Corollary 5 L ' is a f in i t e language and 2 ' is obviously a recur-

sively enumerable set of formulae (it is i r re levant which enumera t ion of the 
symbols of E ' is chosen). Consequent ly b y Theorem 1 (M i7(2'))~ £ PC i.e. 
( M P ( F ) ) - = M L - ( P ) I L ' where F is a formula of a l anguage L" U T ? . 

F u r t h e r we have (ML - (P) || A(x))°° £ P C b y Corollary 3., hence 

( р о т г ) ~ = ( Н И К ) ) " = ( M p ( f ' ) ii a ( x ) ) i L ) - = 

= ((ML"(P) Il A(x)) L ) - = ( M , , ( P ) II A(x))' I L £ P C 

a n d by L e m m a 6 ( H F ( K ) ) " £ P C qu. e.d. 
The con ten t s of t he next Theorems 6 and 7 are roughly speaking the 

following. For any class K, H F (K) is closed under F-homomorphisms. If more-
over К £ E C , then we know f rom Corollary 4 t h a t H F (K) can he "axioinat -
i z ed" in an enlarged language. These two fac ts make the ques t ion natura l 
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whether there ex is t s an axiomat izat ion of HF (K) in an enlarged language 
whose every fo rmu la is in some normal form such t h a t every set of sentences 
in th i s normalform is "p rese rved" under F -homomorphism in a na tu ra l sense 
expla ined below (Theorem 6). 

We answer t h i s question posi t ively by in t roduc ing a t y p e of sentence 
(see HF-sentence below), which t y p e has the desired p roper ty (Theorem 6) 
and b y proving t h a t t h e axiomat izat ion in ques t ion can be given using only 
H F -sentences (Theorem 7). Thus Theorem 7 is analogous in some sense t o 
L Y N D O N ' S theorem or t o it 's general izat ion given b y K E I S L E R [2]. 

n mi 
Let us consider a formula Ф of the form V Л F и where iL. £ F. We 

<=i j=i 
consider a set L l of func t ion symbols not occurr ing in L. Let us consider t h e 
set T° of the t e r m s having the f o r m x or f(xv . . ., xn) where f £ L j and x, 

var iab les . We replace t h e variables of Ф by t e r m s of T 0 i so we 
ob ta in a formula \F in the language L ' = L U Lj . We call a formula Cl(W) 
for a E so obta ined an Hf-sentence over L. 

Theorem 6. Every set 6 of H F-sentences over L is ,,preserved" under F-
homomorphism, i.e. if 91, 93 6 <S(L), 9Í € HF(93) and 9 3 ç M l - ( 0 ) | L then 
91 £ ML-(0) IL. 

Proof. Let 33 = 93' IL, 33' £ ML (0 ) , <p be an F-homomorphism of 
93 on to 9(. We have t o construct 91' such tha t 

(7) 91' £ ML (0) 

and 

(8) 91 = 91' I L . 

Let j 91 I = A, I 33 I = B. We choose an e lement a £ В to each e lement 
a £ A such tha t 95(d) = a (by the ax iom of choice) a n d define fw(av ..., an) = 
= <p(ft»'(di' • • •> ®n))- T h u s is de f ined , considering also (8). F r o m this def i -
nition it follows a t once tha t 

( 9 ) cp 
i a v . . . , a m 

1 * 1 , . X 

i a v . • • > am 

for a n a rb i t ra ry t e r m t of T°. 
L e t G £ в. F o r t h e formula G we keep the no ta t ions used in t he defini-

tion of HF-formula. 
To show (7) we mus t prove, t h a t 

(10) 91' j* 1 ' " ' " X m Ф 
I av ..., am 

for a n y elements я1, . . ., a m of A. B y hypothesis we have 

( 1 1 ) з з ' 1 - l ' ' ' " z u у 1 * 1 . • X 

\ a v . • • - am 

4 Before the replacing we must possibly change the bound variables of-Ф to 
avoid collisions. We shall consider that to have been peformed in all cases if necessary 
without any mentioning. 
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n ry 
(Uhas t he form V Д F f , where F f , arises f rom Fu b y subst i tu t ing some te rms of 

1=1 j=i 
T° for t he free var iables of Ftj. 

F rom (11) we infer t ha t for some i0, 1 г0 iL n 

(12) 23' 
x , , . • ' xm 
av . • > am 

F* 
r '0J 

for every j (j = 1 mj. 
Let us choose an index j. By hypothesis 

4 i 

where l v 
Let 

.,tk € 

(13) 

(12) can be wr i t t en as 

Vv • - •>Ук у 
t v • • 

= 23 
X , , . . . , X M = 23 
av 

ioj 

23 Vv • • >yk 

t i > • • • > rk 
F loi-

Since 9? is an F -homomorphism and Fit, £ F, we h a v e 

21 Vv •<Ук 

Ф i ) . • • -><PUk) 
F, '0J • 

This and (9) and (13) imply 

21 ' 

Applying this for j — 1, ..., 

xv . • > xm 

av . • > am 
F* . r <01 • 

m,0 we obtain 

21' ! 
• > 3 n 

m<° . 
А К Ю J 

which implies (10) qu. e.d. 
Theorem 7. If К = ML(27) for some E с g0(L), and F с then 

there is an axiom system E', in a language L', consisting of Ыг-sentences over 
L such that 

(14) H F (K) = M t .-(Z')|L 

Proof. We assume of each fo rmula H of E t o be in prenex no rma l form 
as in (4) in § 3 a n d we in t roduce t he Skolem funct ions ( funct ion symbols) 
ff, . . . , f f and t h e formula / / * as in § 3. F u r t h e r we bring each formula 
—x F for F £ F, i n to prenex normal form, i.e. 

(15) Ы • • • («*,) 02/,) . • . (3yn) . . . (xfc„J Г . 

L e t zv ..., Z[ be all the different f ree variables of F . We in t roduce t h e funct ion 
symbols g[ g„ each gf hav ing + I var iables and we de f ine F** as 
t he resul t of subs t i tu t ing gf(xv ..., xA.n+t; zv .. ., z,) for y, for each i in Г. 
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/ -

Adjoin ing every f f 1 , gf (H £ X, F £ F) to L we o b t a i n the language Lx. A t e rm 
t of L, is a free term if (i) each var iable occurs in t a t only one a r g u m e n t place 
and (ii) t he var iables v0, ..., vm_x occupy the a r g u m e n t places of t in them 
na tu ra l order f rom l e f t t o right. We s ta te the following trivial l emma. 

Lemma 19. To each term t of L, there is a unique free term t0 such that 
t comes from t0 by substituting certain variables for the variables of ta. The latter 
substitution is also uniquely determined. 

Now we associate a new func t i on symbol h' wi th each f ree t e r m t of 
Lj. such t h a t v(h') is t h e number of t he var iables in t, N is d i f f e ren t f rom 
each func t ion symbol of L, and for d i f fe ren t f ree t e r m s tv t2 A'1, A'2 a re di f ferent . 
We de f ine I for an a rb i t r a ry t e rm t of Lx. Let t0 be as in L e m m a 8, and let 

V°' ' ' ''Vm~1 t0. T h e n let i = h'° (x0, ..., xm_f). We define t h e language 
x0' • • • i xm—1 

L' as t h e extension of L by the symbols A'. Before def in ing the desired axiom 
system X ' we mus t g ive some pre l iminary def in i t ions . 

We def ine t h e set I similarly as in § 3 excep t we now m u s t t a k e the 
func t ion s3rmbols of L in to consideration too. 

Le t I be the se t of the following formulae ( the equal i ty ax ioms for t he 
language L) 

vQ = v0 

v0 = vx->vx = v0 

(v0 = vx Л vx — v2) v0 = v2 

(v0 = vn A ... Л vn_x = v2n_x) (P(v0, ..., vn_f) — P(vn, .. ., v2n_x)) 

К = Vn Л ... Л vn_x = t),J -+f(v 0, . ..,«„_!) = / K v2n_x) 
for every P, f £ L. 

L e t Г* = {H* : H £ S) (J I. If E is an open formula of Lx t h e n let 
X X 

Subs t (F) denote t he se t of all formulae i — ' " E where tv ..., I n a re t e rms 
I tv ... tn 

of Lj. If A' is a set of formulae we p u t Subs t (A) = U Subst (F) . L e t 0 = 
e ç x 

= Subst(A*). 
L e t Z denote t h e set of all o rdered pairs (F, G) such t h a t F £ F and 

G £ Subs t (F**) . 
Now we def ine for each (F, G) £ Z a formula f F C £ g(L'). By hypo-

thesis 

(16) G = 
X . 

• • ) xkn+l ! ZV • 
tv • • •. tkn+, ; ul> •• •,U1 

F1*"' 

for some te rms tv . . ., uv . . . , w, of Lx. (We suppose —! F to be of the 
form (15)). We pu t 

(17) W F,G 
zv . 

«1, • 
F 

where и, was defined above . 
Le t Pr(Lx) denote t h e set of all p r ime formulae of Lx, let U be an a r b i t r a r y 

subset of F/(Lj). We consider funct ions e £ 2U to f i x valuat ions of t h e pr ime 
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formulae T £ U, i.e. we associate the t ruth value e(T) with each T £ Z7. 
Let E be an arbitrary open formula of Lx, and let us suppose that each prime 
formula occurring in Я as a part is an element of U. Then the valuation e 
associates with E a fix truth value if we consider the propositional connectives 
as operations on truth values in the well known way. This truth value will 
be denoted by s(E); for Te U ё(Т) is the same as e(T). Note that ê(E) is defined 
only if E satisfies our condition. Let Хи be the subset of 2U consisting of those 
functions e for which s (E) = 1 for every E £ в provided that ё (E) is defined. 

Now let U,V be arbitrary finite subsets of 7V(L,) and Z respectively. 
We define the formula Фцу € tf(L') by 

(18) ф ц , ч = v л у f , g 
e&v ( f , g ) € v 

£ ( G ) = 0 

Finally we define E' as the set of all formulae С1(Фиу) for all U, V as 
before. 

I. Proof of H F (K) с ML.(X') I L . 
Let 91 £ @(L), 23 € K, 99 be a homomorphism of 23 onto 91. We must 

construct a system 91' such that 

(19) 

and 

91' € ML.(X') 

21 = 91' I L 

F r o m Lemma 3 we can easily infer t h a t there ex i s t s a system 23, of L, 
such t h a t we have 

(20) 

(21) 

(22) 

23x I L = 23 

23x h Cl(H*) 

23x h Cl(F** V F) 

for any H £ X, Fe F. 
We choose an element â from | 23 | = В for every element a of | 21 | = A 

such that a = cp(a) (by using the axiom of choice). 
Let 21' be the uniquely determined system of L' such that 21' | L = 21 and 

(h%- (av . . .,am) = 99 э з 1 
V v . . 

a v . . 

for any free term t of L, and elements av . . ., am of A. From this definition 
we infer easily that 

' W: (23) 2 1 ' 
Ü: 1 

for arbitrary term и of L,. 
In order to prove (19) let V, V as before (18) and xv ..., xm be all the 

different variables occurring in Фи у °r in some prime formula T of U. We 
have to show 

(24) 21' Ф и у 

for arbitrary elements av ..., am of A. 
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Let W be the set of all formulae E of 0 , each prime formula component 
of which is an element of U. (In other words, for which s (E) is defined for 
e £ 2U.) Le t E Then E £ Subs t ( iP ) for some Я £ P or E £ Subst(Z). 
I n the f i rs t case we infer f r o m (21) tha t 

(25) 9 3 , ' E . 
\ a, 

I n the second case (25) holds trivially. 
We def ine £0 £ 2U by t h e following condition 

e0{T) = 1 — 50! 
X, 

i t . 

By (25) è0(E) = 1 for each E £ W consequently 

( 2 6 ) £ 0 е х и . 

Now let (E, G) £ V, G be of the form (16). By (22) we have 

p ) . (27) 231 
ж,-

G V 
ai uv . . ., u, j 

Let us observe the def ini t ion of Фи y under (18). 
To prove (24) let us suppose £0(G) = 0. Then by (27) 

(28) 

Let bk = 93x 

form 23x 

г • 

a,-
F 

uv ..., u. 

-j- uk for к — 1, . . . , I. Now (28) can be written in t he 

. 
by, . 

i 

- F or which is the same (see (20)) 

93 
bv . . .,ul 

Z±F. 

Using tha t fp is an F-homomorphism of 93 onto 31 we infer 2Í i 

1 Zy, . . . , z, 

zl> • • • '
 zl 

<p(by), . ..,f(b,) 
F or 

(29) 

Using (23) we have 

(30) 

21 ' 
<p(by), . . .,<p(b,) 

F . 

4>{bk) = 21' i-Й- uk. 
a,-

Observing (17) we infer f r o m (29) and (30) 

(31) г 
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To sum up we have proved t ha t è0(G) = 0 implies (31), consequently we have 

91' Шг л f 
(F,GKV 

F,G 

È„(G) = 0 

and taking (26) in to account so we have shown (24) qu. e.d. 
II. Proof of HF(K) э ML(27') |L. 
Let 91' £ Мь-(Г'), 91 = 91' I L. We mus t construct a system 93 wi th 

(32) 38 £ К 

(33) 91 £ HF(93) 

We define new different constants ca t o every element a £ A, let Ax 

denote the set of all ca-s. Adjoining the elements of At to L, we obtain t he 
language Lf = L, U Av We de f ine Bx the set of those t e rms of L? which 
conta in no variable. 

Let PrÇLf) be the set of t h e prime formulae of Lx which contain no 
variable. 

Let Subst ' X (X с ^(Lj)) denote the set of all formulae • > xm 
t [ , . . t' • > lm 

E 

for E £ X, t'x, ..., t'm being te rms of Lx containing no variables and xx, ..., xm 

being all the free variables of E . Each element of Subst ' A is a closed formula 
of L A . Let Z' be the set of all ordered pairs ( F , G') where F £ F and G' £ 
£ Subst / F** a n d let 0 ' = S u b s t ' 0 . 

The fact t h a t 91' is a model of 27' can be formulated as follows. (Let us 
observe our defini t ion of 27'.) 

Lemma 20. For any finite sets V, V' of Pr(Lj4) and Z' respectively there 
exists a function e £ 2U' such that 

(i) 'e(E') = 1 for each E' £ 0 ' if l(E') is defined, 

(ii) if (F, G') £ V' and l (G ' ) = 0 then 

91' m zv .. • > zi 
at \ ux,.. .,Ui 

where we use t h e following conventions: c0l , ...,cam are all the distinct 
constants of Ax occurring in some formula T' of U', xx, . . ., xm are different 

variables, 0 = °a x ' •••'Ca*G' and - i F and G have the f o r m s (15) and (16) 
xx, ..., x„ 

respectively. F u r t h e r we use t h e notation è ( E ' ) analogously as before. 
Let us app ly Lemma 1 of § 1 with t h e following distr ibution of t h e 

roles. Let the set A be Pr(Lf) U Z' and call a function e on the finite set 
U' U V' (U' с Pr(L?), F ' с Z') a "good" funct ion (i.e. e £ ß(U' U F')) if e 
satisfies (i) and (ii) of Lemma 20. Let c(x) = 2 = {0, 1} if x £ Pr(Lf) and 
с (x) = {0} if x £ Z' (We r e m a r k tha t с (x) fo r x £ Z' is i r relevant) . One can 
easily see t ha t L e m m a 20 says exactly tha t t h e hypotheses of Lemma 1 hold. 
So we can s tate b y Lemma 1 
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Lemma 21. There exists a function à £ 2 P r ( L C ) such that 

(i) for each E' £ &' we have H(E') = 1 

(ii) if F £ F, G ' £ S u b s t ' F** and d(G') = 0 then 

2 г 
a, 

zv • • 

« 1 , . 

where ., cam a re all the d i f f e r en t cons tan ts of Ax occurr ing in 
c„ G', xv . . ., xm are d i f f e r e n t variables, G — G' a n d 
x,-

F a n d G have 

the forms (15) and (16) resp . 
Le t us define a pseudosystem of the l anguage L, by t he following 

condit ions. 
i « i i = a 

h =»A~<5(bt = b2) = 1 
ря,A, ...,bn)^d(P(b1 b„)) = i 

fvAK ...,ьп) = f ( b v . . . A ) 

, bn £ Bv We infer easily from th i s defini-for a rb i t r a ry P,f £ Lj a n d bx 
t ion, t h a t 

Ф 
A 

Xj 

ь, 
Ф = 1 

bj 

x i ' f . 
— Ф 

- Ф £ 0 ' a n d so by L e m m a 21 (i) 

(34) A 

for any open formula Ф of Lx. 

If we t ake specially Ф £ 2*, t h e n 

and (34) we have 

A 

for a r b i t r a r y b,-s f rom Bx, i.e. 

(35) 23] h СЦФ) 

We def ine S32 = A | L. B y (35) and L e m m a 3 ( t ak ing Ф = H* for Я £ 2 ) 
we see t h a t 232 satisfies all sentences of 2'. If we a p p l y (35) to Ф £ I we can 
infer t h a t is a congruence re la t ion on 232. Le t 23 = S3 2 / = s 2 - N o w we 
have b y L e m m a 2 (32) a s desired. 

We def ine the m a p p i n g y: Bx —> A. by 

h, 

(36) y(b) = W \Xi [ m 
i « ! 1 

xi 
where c0i, . . ., cam are all t h e different cons tan ts of Ax occurring in b. 

у is on to since y(ca) — a. 
We prove t h a t 

Zv . . . , Z[ 
(37 23] 

a > •••,bi 
F 
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implies 

(38) 91 
Zl> • • • ! Z1 F 

for arbi t rary F £ F, zv 
by, . .., b, elements of I f . 

Let us assume (37). Le t c0i, 

уфу). . . . , rp(b,) 

., Z[ being all t h e distinct free variables of F and 

-, С a be all the d i f fe ren t constants of 

Ay occurring in some of by, . . ., bp, xv . . ., xn different variables, uk = 

for к = 1, . . ., I. By (36), (38) is equivalent to 

J± h 

(39) 9Í 
Zy, . . • >

 zi 
a, Uy, . 

F . 

Suppose t h a t (39) is not t rue . 
Let G be an a rb i t ra ry formula of Subst (F**) as under (16) wi th the 

stipulation t h a t the terms щ , . . ., и, are t he same which we have just de f ined . 
By Lemma 21 (ii) we infer f rom our supposition t h a t Î)(G') — 1 where 

X . X v —— G and xn+1, ..., xm are the additional distinct variables G' = 

of G and a n + 1 , . . . , a m a re arbi t rary elements of G. This means exac t ly 
t h a t 

x v • • • ' xk„+l I z \ , • • • > zl F* 

or by (34) 
b'y, • • •, b'kn+i ; by, . . . , b, 

XV • • • > xkn+, > zyt • • • ,zi 

1 

» 1 
F** 

K, • • - ,b'kn+1; by, . . . , b, 

for a rb i t ra ry elements b[, . . ., bkn+t of I f . This can be expressed by 

» 1 
z v 

by, 

Cl(F**) 

F what contradicts our hvpo-and by L e m m a 3 we have 332 
by, . . ., b, 

thesis (37). So we have proved tha t (37) implies (38) indeed. 
We need also tha t by = Й 1 b2 implies y>(by) = f(b2). B u t tha t is contained 

in our last assertion because we have supposed that v0 — v2 is a formula of F. 
Now let q> be the mapping (p: | 93 | = A de f ined by ip(bj =sa2) = 

= y>(b) (b £ BA). From t h a t we have proved above it follows that the la t te r 
equality def ines (p uniquely. 

Finally we see t ha t q> is an F-homomorphism of 93 o n t o 91, consequently 
we have proved also (33) qu.e.d. 

By I, I I we have shown (14). I t is t r ivial from the definition of 27' t ha t 
each formula of E ' is an Hp-sentence over L. Qu. e.d. 
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§ 5. Endomorphisms 

If 21 is a hoinomorphic image of 93 by the homomorphism q> and at the 
same time 21 is a subsystem of 93 then we say that 21 is an endomorphic image 
of 93 and cp is an endomorphism of 93 onto 21. We denote the set of all endo-
morphic images of 93 by End(93), i.e. End(93) = H(93) П S(23) and we put 
End(K) = U End(93). 

a s e a 
Corollary 8. / / К £ PC^ or К £ EC„ then End(K) £ PC, 
Corollary 9. If К £ PC or К £ EC then (End(K))~ £ PC. 
The proof of these statements is similar to the proof of Corollaries 4,5. 
Now we want to prove a theorem, which has the same relation to the 

endomorphisms as L Y N D O N ' S theorem to homomorphisms. In the proof we 
use L Y N D O N ' S theorem as stated in § 1 and a simple "ascending chain" con-
struction, i.e. we get the desired relational system as the union of some 
sequence of systems, each of which is elementary subsystem of the next in the 
sequence. That is the principal tool in the proof of many model theoretic 
theorems. We can described this part of the proof most easily by using ultra-
powers and limit ultrapowers and we shall apply some notations and well 
known results stated in § 1. 

Theorem 10. (i) Let E cz К = ML(T) Let E' be the set of the sentences 
Fx V F2 such that Fx V F2 € Cn(E), Fx is a positive sentence and F2 is a uni-
versal one. Then we have 

Th(End(K)) = Сп(Г') 

(ii) Moreover, if 21 £ ML(2") then there exists a 21' such that 21+21 ' and 
21' £ End(K).5 

Proof. To prove Cn(-T') с Th(End(K)) it is sufficient to show E' cz 
с Th(End(K)). To this end let Fx be a positive sentence, F2 a universal one, 
Fx V F2 £ Сп(Г), 93 € К. 21 € End(®). We have to show 21 f - Л V F2. We 
have 93 f - Fx V F2, hence 93 Fx or 93 h F2. 

In the first case 21 6 H(58) implies 99 h F2 in the second one 21 € S(93) 
implies 93 + F2, consequently 21 (— F2 \J F2 at any rate. 

Instead of Th(End(K)) cz Cn(E') we prove the stronger assertion (ii). 
Let us suppose 

(1) 2t£ML(Z") 

We may and shall assume Cn(2C) = E. Let О be the set of sentences Г G 
for which —i G £ Th(2l) and G is universal. Let Ex = E U 0- We assert, 
that the positive consequence of Ex are satisfied by 21, i.e. 

(2) Pos(ri) с Th(21). 
To prove that , let Fx £ Pos(2/) and suppose on the contrary that Fx (£ Th(2l). 

The Compactness Theorem (Lemma 11) implies the existence of finite 
subsets Vv V2 of Eand 0 respectively such tha t Fx is a consequence of Vx U V2. 
Let the conjunction of the formulae of Vx and V2 be G, and G2 resp. G2 is equi-

5 This stronger statement is a consequence of (i) and Corollary 8 by a familiar 
application of the Compactness Theorem; it is derivable also from the fact that End(K) 
is closed under ultraproduct and limit ultrapowers and from (i). 
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and we put 

valent to a formula —i F2 where F2 is universal. We have Gy Д —, P2 |— F y 
i.e. Gy h F y V F2, hence by G y £ 2' we have F y V i \ £ P a n d thus Fy V P2 £ P ' . 
We have - , F2 £ Th(2I), Fy (j Th(21), consequently Fy \J F2 $ Th(Sl) and that 
contradicts our hypothesis (1). Thus we have proved (2). 

By L Y N D O N ' S theorem (Lemma 7) we infer from (2) that there exist 
systems 9IJ, 93 0 and a homomorphism (p0 of 33 о onto 21J such that 31 •< 2IJ, 
33 о £ ML(PX). We assert that every universal formula G satisfied by 93 0 is 
satisfied by 91J too. In the contrary case —, G would be satisfied by 91 hence 
—i G £ в and so by 930 £ ML(0) S3„ I 1 ß what is contradiction. Now by 
Lemma 8 there exists a non empty set I and an ultrafilter D on I so that 
31J is isomorphic to a subsystem 910 of 93{/,D'. Let us define by induction 

2 ü + i = w / d 1 ( « = 0 , 1 , . . . ) 

9 i „ + 1 = ( « = 0 , 1 , . . . ) 

33„+1 = 83Ä//D1 (« = 0,1, . . . ) 

Vn+i = 9ln"D]
 ( n = 0 , 1 , . . . 

9i" = и ад 
n<û> 

21 ' = U 21,, 
П<а> 

33' = и зз„ 
п<(0 

Ч>' = и Vn 
п<а> 

Then by Lemma 10 <р' is a homomorphism of S3' onto 21", by Lemma 9 
21 -< 21" and 33' £ ML(P). 21' is trivially a subsystem of 33' and 21' is iso-
morphic to 91". Consequentiv there exists a system S3" isomorphic to 93' for 
which 21" £ H(33") and the same time 21" С 93". Thus we have 21" £ End(93") 
and 33" £ ML(P) and 21 -< 21" qu. e.d. 

Corollary 11. If F is a sentence which is preserved under endomorphism 
(that is 93 h F and 91 £ End(93) imply 91 (— F), then F is equivalent to a 
sentence 

л F(vFi 
í = i 

where F{ is positive and F2 is universal for each i = 1, . . ., ft. The proof 
proceeds in a well known way by Theorem 10. 

We remark that the notion of endomorphism can be generalized ana-
logously as we did with the notion of homomorphism by introducing the 
F-homomorphism. The analogon of Theorem 10 for the generalized case can 
be proved in a similar way, using results of K E I S L E R [2]. 

(Received December 6, 1963) 

1 3 A Matematikai Kutató Intézet Közleményei IX. A/l— 2. 
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0 КЛАССАХ ?Cá ТЕОРИИ МОДЕЛЕЙ 

M. M A K K A l 

Резюме 

Содержание теоремы 1 статьи: бесконечные системы отношений класса 
P C j над конечным языком, где этот класс удовлетворяет определенным 
(очевидным) «конструктивным» условиям, образуют т а к ж е класс P C . Далее 
определяется операция, определяющая для системы отношений 91 и фор-
мулы F(x) содержащей единственного свободного переменного, систему 
отношений 9 í | |F (x) , являющейся частью от 9( и основное множество кото-
рой состоит точно из тех элементов 9í i, которые удовлетворяют формуле 
F(x) на 9Í. Доказывается, что системы отношений 9í[| F(x), полученные для 
систем отношений 9Í класса К £ E C j и для фиксированной формулы F(x), 
образуют класс Р С Д п р и условии, что (Зх) F(x) справедливо в К) (Теорема 
2а). Далее, если К £ Е С , тогда бесконечные системы отношений только, что 
определенного класса образуют класс P C (следствие 3). В качестве приме-
нения доказывается, что если K £ P C i, тогда гомоморфные образы системы 
К образуют класс P C j (следствие 4), кроме того если К £ P C , то бесконечные 
системы этого класса P C j образуют класс P C (Следствие 5). Согласно одному 
варианту следствии 4' H F ( K ) получается некоторым специальным образом 
в качестве класса PC.i если K £ E C j (Теорема 7). ( H F ( K ) — класс F — гомо-
морфных образов сыстем из К , см. например [2]). Наконец, относительно 
эндоморфизмов доказывается аналог теоремы L Y N D O N - Э [ 6 ] с подобными 
следствиями (Теорема 10, следствие 11). 
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