ON A COMBINATORY DETECTION PROBLEM I

by
BeErNT LINDSTROM!

1. Introduction

The present investigation was inspired by the work of H.S. SHAPIRO
and S.SODERBERG [4] on a weighing problem:

“Counterfeit coins weigh 9 grams and genuine coins weigh 10 grams.
Given a scale that weighs all real numbers exactly, what is the minimum
number of weighings required to extract all the counterfeits from a sample
of m coins™ 2.

The schemes for finding the counterfeits are of two kinds; (1) either
one determines in advance which coins are to be weighed together in each
weighing or (2) the choice of coins for a weighing is made to depend on the
results of all previous weighings. I shall only consider schemes of the first
kind. Then the problem can be given a formulation in terms of sets.

Detection Problem. Let S be a given set of | § | = n elements. A family
Fof subsets T, T,, ..., T, of S is a detecting family for S if each subset M
of 8 is uniquely determined by the m numbers M N T;|, i=1,2, ..., m.
Then the problem is to find f(n) = min m is the class of all detecting families
for §.

It is easy to prove that f(4) = 3 and f(5) = 4, but for larger n the deter-
mination of f(n) is difficult. Therefore one must in the first instance search
for good estimates.

Since there are at most (n - 1)™ combinations of values for the numbers
M NT;|, (¢=1,...,m) and different combinations correspond to the 2"
different subsets of S we find that 2" < (n + 1)™ and

nlog 2
(1.1) oz B

The main achievement of H.S.SHAPIRO and S. SODERBERG was the
proof of

(1.2) f(n) = O(L ,
log n
P. ErpGs and A. RENYI have given a proof [1] of the inequality
(1.3) hmmff ki gn log 4 .
n—eco n
b 'St;);{holm.
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This inequality has also been proved by B. GorpoN, L. Moser and myself
(see [1] Remark). Although my proof is not the shortest it may have some
interest as an application of information theory.

But my main result is

(1.4) lim sup e < log4,
n

n—>eo

thus confirming a conjecture in [1] that the limit exists.

I am grateful to Professor H. S. Shapiro for stimulating discussions during
his stay in Stockholm. I also express my thanks to Prof. O. Frostman, who
suggested many simplifications in my proofs.

2.

The following two inequalities are easy consequences of the definition.

(2.1) fn) < f(n + 1), =125
(2.2) f(ny + ny) < f(ny) + f(ny), Ry Mg =020 oo

In order to prove (2.1) we note that if 7', ..., T, is a detecting family
for 8 and 7 is any subset of § then T N T, ..., T N T,, is a detecting

family for 7' N 8. Take |S|=n +1, |T|=n, m =f(n +1) and (2.1)
follows.

Now, let S, and S, be two disjoint sets and #;: T';, ..., T, a detecting
family for 8; (i =1, 2). Then F: Py Tyins Taas oov Loy 18 8 detecting
family for S, U 8,. With |8;|=2,m;=f(n), (¢=1,2) we get (2.2).

It is suitable to use vectors representing sets, and matrices representing
families of sets. Define S, = {1, 2, ..., n}. A subset T of §,, can be represented
by an n-dimensional column vector # with ,,1”” in the ¢-th position if ¢ € T
and ,,0”if7 ¢ 7. A family .#: T, ..., T,, of subsets in S, can be represented
by an m X m matrix 4 = (a;;) with a;; =1 if j€7T; and a;;=0 if j ¢ T,
With this mode of representing sets we find that Az is an m-dimensional column
vector with |T' N 7T';| in its ¢-th position (¢ =1, ..., m). If 7 is detecting
family for §, we say that the corresponding matrix A4 is a detecting matriv.

Suppose 4 is a matrix, all of whose entries are 0 or 1, which has the pro-
perty that 4dx = Ay implies x = y for @, y columnvectors with entries 0 or 1.
Then 4 evidently is a detecting matrix.

For convenience we introduce vectors & with entries from the set { —1, 0,
1}. Then the above statement can be expressed in the form:

A is a detecting matriz if A5 = 0 implies & = 0.

Example. To the family {1, 3, 4}, {1, 2}, {2, 3} of subsets of §, corre-
sponds the matrix

LIS P |
A=111T 0 0}
(o 1 CR0 )

which is easily proved to be a detecting matrix. ([4]p. 1069).
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3.

In this section we prove the following result

Theorem 1. (k2= 9ok =123,

In order to prove this theorem we shall prove the existence of a (28 — 1) x
x k2k=1 detecting matrix A4, for every integer £ > 2. The matrix 4, will be
of the form
A4, = B,|Cp|CR| ... |Ck,

where B, Okt ete. are certain matrices to be defined later, and the bars indicate
that they must be put together side by side. Before we define them we shall
prove three lemmas.

From now on, the set S, = {1, 2, ..., k} and its subsets will only be used
as indices for numbers and matrices. Suppose that a number a,, is given for
every subset M c 8. For any N c 8, and {€ N we put N~ =N — {7}
and get

(3.1) 2D ay= 2 (ay + amyp)

MCN MCON~

where summations are taken over all subsets, the null set ¢ included.
In the following three lemmas the numbers ay, b, aps by take only the
values 0 or 1. The number of elements in a set N c 8 is denoted by |N 1
Lemma 1. Choose numbers a,, a,, . . Put ayz = 0 and define a,,
for every other subset M — S, by the aid of the congruence

(3.2) au= 3 a; (mod 2)
iEM
The for every N — S,

(3.3) S ay=0 or 2N,
MCN

Lemma 2. Choose numbers a,, a,, ..., a; (not all 0) and by, b,, ..., b,

(not all 0). Put a, =b, =0 and define a,, and by as above by the aid of (3.2).
Then

(3.4) S ayby=2" if =08 for i=12,...,k
MC Sk y
=22 if a@,#b, for some $.

Lemma 3. Let L be any subset of Sy. Choose a number a,, for every non-
void M c L. Put ay = 0 and define a,,; for every M ¢ L by the aid of the con-
gruence

(3.5) apy=ayn, + | M —MNL| (mod 2).
Then for every N < 8, for which N ¢ L '
(3.6) S ay =2V,
MCN

Proof of lemma 1. Either a; = 0 for every i € N, or a; = 1 for at least
one ¢ € N. In the former case a,; = 0 tor M/ c N and the sum in (3.3) is 0.
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In the latter case we put N~ = N — {i} and find by (3.2) that if M c N~
then amy(iy= ay +1 (mod 2) and ay + amu(iy=1. Now (3.3) follows
by (8:1)

Proof of lemma2.Ita; = b, fori = 1,2, ..., kthena,, =byand ay b, =
=a, for M < 8,. In this case (3.4) follows by (3.3) since at least one a,; = 0.
Now suppose a; # b; for some 7. Then either a; =0, b; =1 (a) or a; =1,

b; =0 (b). We see that if M < N~ then

apby + apo(iybmo(s) = am (@) or by (b).

By the aid of (3.1) and lemma 1 we now get (3.4) in the 2nd instance.

Proof of lemma 3. First we observe that (3.5) is valid for every M C §,.
Since N ¢ L there is an ¢ € N which 7 ¢ L. For M ¢ N~ we now find by
(3.5)

aMU{,}EdMnL+[ﬂ[U{’l}—MﬂL\EaM—f—1 (mod 2)

Thus ay+ amu(y =1 and (3.6) follows by (3.1).

Structure of B,. Let M,, M,,...,M, (r = 2¥ — 1) be enumeration of
the nonvoid subsets of 8. There are (2¥— 1) different combinations of values
for the numbers a,, ..., a, in lemma 1 if at least one a; = 1. For each such
combination we define a,; by (3.2) and then arrange them (excepting a,)
in a column in the order determined by M, M,, ..., M,. These columns make
a square matrix B, of order 2¢ — 1.

Now we define an r-dimensional rowvector D} for each non-void N c §,.
DY shall have ,,1” in the i-th position if M;c N and ,,0” if M; ¢ N. By
(3.3) we find that

(3.7) DYB,=(0,...,0) (mod 2/NI-1)

According to lemma 2 is Bf B;, an r X r matrix with 2% ! in the main-
diagonal and 2%—2 in all other places (,,*’ denotes transposition). By an easy
calculation we find the determinant

(3.8) det(BEB,) = (det B,)2 = 22+(-22,

Structure of Cf.Suppose L c §) with |L | > 2. For each » =0, 1, ...,
(|]L|—2) we can find numbers a; (0 or 1) for M c L such that a; =0

and

ZaM == 2”.

McL
By the aid of (3.5) we then define a, for M c 8,. The a,, with M = ¢
are arranged in a column in the order determined by M,, M,, ..., M,. For

each » we get a column and these colums form the matrix C% when they are
put in the order of increasing ».
We find by lemma 3 and the definition of Ck that

(3.9) DNCL=(2INI-1, 2INI-1) if N L
=(29,2,...,2INI-2) if N=L.

Proof of Theorem 1. Let L,, L,, ..., L; (t = 2¥ —k — 1) be an enumer-
ation of the subsets L c 8, for which |L | = 2. Form the matrix

A, = B, |Ch|CLe| ... |Ch.
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We shall prove that 4, is a detecting matrix, i.e. that 4, & = 0 implies £ = 0.

Let &, be an 7-dimensional column-vector and &, (i = 1,2, ..., t)be (| L; | — 1)
dimensional column-vectors with their entries from {—1, 0, 1}. Put
&
e,
§=| .
1,
Then 4,& = 0 is equivalent to
(3.10) B.é+ 2 OfE =0,
2<|Li=k

We assert that if (3.10) holds then & = 0. If §{;, = 0 for |L | = 2 then
&, = 0. This follows since B, is non-singular by (3.8). Now suppose &y = 0
forsome N, | N | = 2,and &, = Ofor | L | > | N |. Multiply (3.10) from the left
by D}. Then we find using (3.7) and (3.9)

ot ool (20,21, ..., INI=2) £, =0 (mod 2INI-1) .
ut eviaen A4
: —(@INI-1 — 1)< (20,21, ... ,2INI=2) g, < QINI-1 ]
anda So
(29,21, ... ,2INI=2) £y =0.

We conclude that &y = 0. This follows from the uniqueness of the binary
representation of non-negative integers. We have arrived at a contradiction
which proves that § = 0 for | L | = 2 and so that { = 0.

Now Theorem 1 follows if we observe that 4, is an m X n» matrix, where
m = 2% — 1 and

e k
n=2% —1 —{—Z(i——l)[i]=k2"—'.
i=2

Example.
L;: {1,2} {1,3} {2,3} {1,2,3} M;:
1 RGH12 080 [OR1, 1 1 1 i {1}
gl indta o 2 1  ERO T | {2}
0001111 1 0 0 00 {3}
A4,=|1100110 o0 0 0 00 (1,2}
1EOR 10RO 0 0 1 00 {1,3}
Gl e, @ 1 0 00 {2,3}
T B R | 1 1 00 {1,2,3}
4.

Now we shall prove the main result in this paper

Theorem 2. lim sup

n—»oo

M&ﬁ_élogzi.
n
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When this theorem is combined with the result (1.3) we obtain the

Corollary. lim il LT log4.

n—>e n

Proof of Theorem 2. Suppose n > 4 and define k by k21 < n < (k +

+1)2%. By repeted divisions we define non-negative integers q, ..., a,
such that
n="5k2 a; 4+ r:; D= =k
(4.1) r=W=12"30, .+r 5; 022, ,<(@=1)2""
ry=4a, 4+ a, 0=5a,<4.

Observing that »2*~'a, <7, < (v+1)2" for v = 2, we find that

1
av<2(l+—
v

and so a, < 2 for v = 2. Now we have

K
n= 3v27la,+a
=2

By induction on (2.2) and Theorem 1 we get

(42) s 3 @—Dotfa)s 320 +a.
r=2 =2

An easy calculation shows that
K k
kfn) —2n < X (k—v) 20, + (k —2)a, < 3 (k —») 2+ < 24+2,
y=2 =
Multiply this inequality by
log n 5 klog2 + log (k + 1)
kn k2 2k-1

and we obtain

f(n)log n & 3[1 o il (klog 2 + log(k + 1)) .
n k k)

As n and k tend to infinity simultaneously we conclude

lim supf(n—)logﬂ < log4.

U—>eo n
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5.
In this section I shall give a proof of (1.3) based on information theory.
We state this as a theorem

Theorem 3. lim inf f()logn >log4.
e n

We shall need some elementary results from information theory. For
proofs of them the reader may consult e.g. [2].

Let X be a finite set of » elements z. Let p be a probability distribution
over X with probabilities p(x) = 0. The entropy of the probability space
(X, p) is defined (let 0log 0 = 0) by

H(X) = — ¥ p(x)log p(x) .
xeX

It is well known that
(5.1) 0<HX)<Zlogn,

with equality on the right-hand side if and only if p(x) = 1/n for every z€X.

If X and Y arefinite setslet X % Y denote the set of all ordered pairs (z,y)
where x € X and y € Y. A probability distribution over X x ¥ gives rise to
probability distributions

p(x) = 3 p(x,y) and p(y) = 3 p(x,y) over X and Y respectively.
ver oeX

Let H(X) and H(Y) be the corresponding entropies. Define a conditional
probability p(x |y) such that p(x|y) p(y) = p(z,y) and the conditional
entropy H(X | Y') by

H(X|Y)= -2 ply) 3 plx|y)log px|y) .
yEY XEX
Then it is known that
(5.2) H(X|Y) < H(X),

with equality if and only if p(z, y) = p(z) p(y) for x € X, y € Y.
From the definitions given above follows

(5.3) HXxY)=H(X|Y)+ H(Y).
As a consequence of (5.2) and (5.3) we get
(5.4) H(X x Y)< H(X)+ H(Y),
with equality if and only if X and Y are independent (i.e. p(z, y) = p(x) p(y))-

A stochastic variable is a vector-valued function u(z) defined over a
probability space X. Its range U is a probability space with the distribution

pu)= 3 p).

X:ufx)=u
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If u, v and w + v are stochastic variables and U, V, U + V their ranges,
and if U, V are independent, then>

(5.5) HU)< HU +7).

In order to prove (5.5) we note that there is an one-one correspondence
between the probability spaces (U -+ V)%V and UxV. Thus H(U +
4+ V)% V)= HUxV).Subtract H(V) in both members, and we get H(U +
+V |V)=HU |V)= H(U). Then use (5.2) once again and we get the
desired result.

As an application we consider the set X = {(a,, ..., 2,); ; = O or 1}.
A probability distribution can be defined over X in such a manner that
&, ..., Zn are independent and P(x; = 1) = p, P(x; = 0) = ¢, where p >0
and ¢ > 0 are fixed numbers with the sum 1. Now w,(z) =@, + o, + ... + 2,
and v,(x) = 2,4, + ...+ @, are two independent stochastic variables and
H(U,), the entropy of the first. But now », + v, = u,, and so we get by (5.5)
(5.6) H(U.) < H(U:.); Y ]

U,= {01, ...,n}, the range of wu,, has the binomial probability
distribution

P, =)= [7] o' = put).
The following assymptotic formula will be important in our proof of (1.3)

(5.7) H(Un)fvélogn .

But we shall prove a little more, namely

Lemma 4. lim [H(U,,) — %log 27 enpq] =0.

n—oo

For the proof of this lemma I need a theorem in FELLER [3]on p.135.
Theorem. If n and k vary in such a way that (k — np)’|n*— 0, then

(5.8) Pa(k) ~ (27 npg) 2 e=xil2

asymptotically, with x, = (k — np) (npg)—12.
Proof of lemma 4. Choose « in the interval 0 < a < % Then we obtain

by Chebyshev’s inequality

(5.9) So= 3 pk) <n-%.

kilxg|<n®

*I am indebted to B. AJNE for this inequality.
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Put p(z,) = ,, k)[S, for |z, | > n* and use (5.1). Then we find that
0< 8 = — 23 palk) log pu(k) < S,log (n+1) — 8, log Sy — 0 when n — oo,
k:|xz| >n%
Now we put
Sg=— 3 pn(k)log(pa(k) €P?),

k:|xx|<n®
For |z, | < n* and a < % we get (k — np)3n? — 0 if n — oo. Then we
find by (5.8) and (5.9)

112
(1 —n—2) lo(r(zylz%q) SN log—l—— for: m=n,
& —e
Further, put
8= ' p,(k)logexi? and S, = L. x3 e~%il2(2 w npq)—112 .
3 p g 1 Pq
ke[ xe|=n? fe|xg|=n® 2

Then we get by (5.8)
(1—¢)S,loge <83 < (1 —f—s)S loge for n>n,.

Now §,— -;—when n— oo, and so §;—>— loge Thus 8, +8, +8; —

- %log 27 enpq tends to 0 when n tends to oo.

Proof of Theorem 3. Let 4 be an m X n detecting matrix. Let X be the
set of »-dimensional column-vectors @ with components 0 or 1. Put p(x) = 2",
Then the components of  become independent stochastic variables. Also the
j-th component of Az is a stochastic variable. Its entropy H;is < H({Up,)
according to (5.6), and if its range is denoted by V, (G=1, , m), Ax has
the range Uc V% VyX ... ¥V, =V. Az is a stochas’mc va,rla.ble with
the range V if we deflne p(y) — 0 for y € V —U. By (5.4) we now find that

m
(5.10) HU)=H({V)=< SHV)<mH{U,).
j=1
Since A4 is detecting there is an one-one correspondence between the
probability spaces X and U, and so

(5.11) H({U)= H(X)=nlog?2
From (5.10) and (5.11) we get

’ n log 2

(5.12) Sy 25 25

Take (5.7) into account and the theorem is proved.

6. Another detection problem

The following problem was posed by P. Erpos and A. RENYI in [1].
Detection Problem. Let 4 be an m X n matrix with entries 0 and 1.
If x is a sequence of n digits (=0 or 1) we are told the number of places (c;)
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in which # and the i-th row in 4 coincide, ¢ = 1, ..., m. Suppose 4 has
the property that the 2’s are uniquely determined by ¢,, ..., ¢,,. For n given
let B(n) be the minimum of m for such matrices 4. Then the problem is to
determine the asymptotic behaviour of B(n).

It has been proved by P. ErRpGs and A. RENYI that

(6.1) i D) 108 A

N—>oco n

= log4.
By the methods in this paper I can prove

Theorem 4. lim sup

B(n) logn =g,
nN— oo A
This confirms a conjecture in [1] as to the existence of the limit.
We saw in section 2 that a matrix 4 is detecting if 4 § = 0 implies
= 0. Now we take this as definition of a detecting matrix when the entries
of A are not necessarily restricted to be 0 or 1.

I now claim that the detection problem above has the following equi-
valent form:

Detection Problem. For 7 given, let B(n) be the minimum of m in the
class of all m X n detecting matrices B with all entries from the set { +1, —1}.
Determine the asymptotic behaviour of B(n).

In order to see the equivalence of the two problems let #Z be the m x =
matrix all of whose entries are 1, and let # be the n-dimensional column-
vector of merely 17 s. Let  and y be column-vectors of 0’ s and 1’ s. Then
the matrices 4 of the first problem have the property that

(6.2) Ax + (E — A)(F —x) = Ay + (E — A) (F — y) implies 2 =y .
The matrices B of the second problem have the property that
(6.3) Bx = By implies x = v .

Subtract (£ — A)F in both members of (6.2) and put 24 — ¥ = B.
Then (6.2) and (6.3) become identical. 4 is a (0,1)-matrix if and only if Bis a
(—1, 41)-matrix and so we have proved the equivalence of the problems.

By the methods of section 3 we can prove the result

Theorem 5. Bl 21 1) < 2%, =128

I think it is not necessary to give all details of the proof, whichis analogous
to the proof of Theorem 1, but I shall describe those parts where the two proofs
differ.

We shall keep the notations of section 3. Thus matrices denoted 4, are
from now on detecting matrices with entries 41 and —1.

Instead of Lemmas 1—3 we need the three following lemmas, whose
proofs are left to the reader. a;, b;, a,,, by, are 0 or 1.

Lemma 5. Choose numbers a,,a,, . ..,a, Put a, =0 and define ay; for
every non-void M < S, by the aid of the congruence
(6.4) ay=2a; (mod 2).

ieM
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Then we get for every N c S,

(6.5) > (—1)aw =0 or 2INI.
MCN
Lemma 6. Choose numbers a,, a,, . .., a, and by, by, ..., b,. Putaz=b, =
= 0 and define ay and by, as above. Then we get
(66) 2 (—1)aM+b“l=2k if a,=b, fOT izl, o % Y ,k
MCsi

=0 if a;b; forsomei.

Lemma 7. Let L be any subset of S,. Choose a number a,, for every non-void
M c L. Put a, = 0 and define a,, for every M & L by the aid of

(6.7) ay=amn+ |M—M N L| (mod 2) -
Then we get
(6.8) 2(=1)px=0 i NgL.
MCN

Observe that the role played by o is more important than before. The matrix
A, shall have the form

A4, = B,|Ck|Ck| ... |Ck, t=2k—k—1,

where B,, Ck' etc. are certain matrices now to be defined.
Structure of B,. Let M,, M,, ..., M, (r = 2¥) be an enumeration of all
subsets of S,. There are 2% different combinations of values for a,, ..., a,.

For each such combination we define a,, by (6.4) and arrange the numbers
(—1)2» in the order defined by M,, M,, ..., M, in a column of the matrix

Define the 7-dimensional row-vector DY for each N ¢ 8, with | N | = 2.
DY shall have ,,1” in the i-th position if M, c N and ,,0” if M; ¢ N.
We now find by (6.5) and (6.6) respectively

(6.9) DNB,=(0,...,0) (mod 2!V,
(6.10) (det B,)z = 2k2* .

Structure of Cf. Suppose L c S, and | L | = 2. We can find a,, for M c L
such that a, = 0 and

(6.11) > (—1)mr =27, v=1,2,...,(|L]|—1).
McCL

By the aid of (6.7) we then define a,, for M ¢ L. The numbers (—1)ax

are arranged in a column in the order determined by M,, M,, ..., M,. For

each » we get such a column and the |L | — 1 columns form the matrix CF

when they are put in the order of increasing ».
By Lemma 7 and (6.11) we find that

(6.12) Dl OF =40, s ivinns ,0) if NgL
=(21,2%, ...,2WN1-1) 4f N=L.

Proof of Theorem 5. Take an enumeration of the sets L — §, with
| L | = 2. Form the matrix 4,. The previous proof that A, is detecting holds
with only small changes. 4, isan m X n matrix, with m = 2¥and n = k2¥ 14 1.
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Proof of Theorem 4. First I prove that
(6.13) B(n, + n,) < B(n;) + B(n,), Nigisitiai—=1220 s

Let B; (i = 1, 2) be m; X n; detecting matrices. We may assume that
the first row in B, contains merely 1’ s, for in other case we can multiply by
—1 in a column without altering the property of being a detecting matrix.
Introduce E, as the m, X m; matrix of merely 1’s and E, as the m, x n,
matrix of 1’ s, and let F; (¢ = 1, 2) be the n;-dimensional row-vector of 17 s.

We shall prove that the matrix

'R, B
B:(EJl B,
£y neslly

is a detecting matrix. Let & (¢ = 1, 2) be n;-dimensional column-vectors and
suppose that

Then we get the equations
By &+ Ey 6, =0
(6.14) B, & 1 Bafa=0
F 38 —Hgey=10
F. &+ F,&=0.

The last one follows since the first row in B contains merely 1’ s. By
(6.14) we now find that B, = 0 and B,&, = 0. But B, and B, are detecting,
and so § = 0 and &, = 0, if & and &, have all components equal to —1, 0 or
+1. Thus we have proved that B is detecting.

Now we note that the (m; -+ 1)-st row in B is identical with the 1-st.
When it is removed we get an (m; +m,) X (n; +n,) detecting matrix.

If we take m; = B(n;) for i =1, 2 (6.13) follows.

From Theorem 5 we find B(k2¥ 1) < 2% since B(n) is non-decreasing.
Now we can take over the proof of Theorem 2 with 2" instead of 2" — 1 in (4.2).

(Received December 28, 1963)
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06 0JHOW KOMBMUHATOPHOW NMPOBJIEME JETEKTUPOBAHHU A

B. LINDSTROM
Pe3iome

ABTOp peuaer jBe KOMOMHATOpHBIE NpoOsemMbl, H3yuyaemble P. ERDOS u
A. RExvyr [1]. [IpoGeMbl B TepMHHAX TeOPUHM MaTpULl GOPMYJIMPYIOTCS CJiely-
oM obpasom. Iycrs (C) — Kiace matpull ¢ 3j1emenTamu, paBHbima O u 1 (cay-
vaif (1)) mim —1 u +1 (cayuvait (2)). MaTpuupl, /Ui KOTOPBIX U3 paBEHCTBa
A&=0 cnenyer, uto & = 0, ecsit & — BeKTOp ¢ KOMMOHeHTamu —1, O u 1,
Ha3bIBAKOTCS 0emeKmupo8aHHbIMIL Mampuyamu.

[lyctb f(n) — MMHMMaJIbHOE UMCJIO CTPOK JIeTeKTHPOBAHHBIX MATpHL ¢
n cronduamu. [Ipobiema 3aKiioyaeTcsi B ONpejiesieHHd acCMMIITOTHUeCKOr o I0Be-
JeHust GyHKUMK f(n) npu n— oo .

P. ErDpGs n A. RENYT jiokazam juist 06oux KiaccoB (C), uto

lim inf JR) g > log4.
n—>co n

ﬂocpencmom KOHCTPYHUPOBAHUSA JIETEKTUPOBAHHBIX MaTpULl aBTOp J10-
Ka3pIBaeT cJieyrouye COOTHOLEHM !

J(k-2%1) < 2k 1 k=2,3,... (B ciyuae (1))

fll- 281 1) < 9k k=2,8,...(s ciyuae (2))
M U3 HUX, MCNOJAb3Ys cOOTHoweHUue f(ng + ny+ ...+ n;) < f(ny) + f(ny) +
+ ...+ f(n;), BBIBOAUT, UTO rllim sup Jln)nl&? < log 4 (B 060MX cilyyasix).

dTum jokazaHa runoresa P. ErRp6s u A. RENYI o cymiecTBoBaHHM Mpe-
Jena.
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