ON THE ,,PARKING” PROBLEM

by

A. DVORETZKY! and H. ROBBINS?

1. Introduction. Consider the following random process in which cars
of length 1 are parked on a street [0, x] of length @ > 1. The first car is parked
so that the position of its center is a random variable which is uniformly distri-

buted on [—;—-, x — é—] If there remains space to park another car then a second

car is parked so that its center is a random variable which is uniformly distrib-

uted over the set of points in

%, x — %] whose distance from the first car

&

is = 1— If there remains an empty interval of length > 1 on the street then

a third car is parked, its center being uniformly distributed over the set of points
whose distance from the cars already parked and the ends of the street is

= % The process continues until there remains no empty interval of length

= 1. We denote by N, the total number of cars parked and extend the defi-
nition of N, to all z = 0 by putting N, = 0 for 0 < z < 1.

The ,,parking problem” is the study of the distribution of the integer-
valued random variable NV, as @ — . This problem was called to our attention
by C. DErMAN and M. KLEIN in 1957. In 1958 A. RENvYI [1] proved that the
expectation u(x) = E(N,) satisfies the relation

(1.1) uzx) =i+ i —1+0@™ (n=1)
(O and o refer throughout to the argument increasing to infinity); the constant
A, is given by
t "
e —ZI 1_% du
(1.2) ) g J e d

0

2,220.748

To prove (1.1) RENYI employs the Laplace transform of a certain integral equati-
on satisfied by u(x); using similar methods P. NEY [2] has studied the higher
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moments of N,. In the present paper we show by a direct analysis of the integ-
ral equation that (1.1) can be strengthened to
(26 x—3/2
I

and that the variance o*(x) = E(N, — u(x))* satisfies

4e )4

ele]

where 4, is some positive constant. We show moreover that the standardized
random variable Z, = (N, — u(x))/o(x) has the limiting normal (0,1) distrib-
ution as ¥ — oo; this is done in two ways, the first by showing that all the
moments of Z, converge to the normal moments, and the second by a direct
argument using the central limit theorem for sums of independent random
variables.

In Section 2 we derive the integral equations satisfied by u(z) and quan-
tities related to the higher moments of N.; these equations form the basis
of our study as well as those of RENy1 and NEY. Section 3 deals with the asym-
ptotic behaviour of the solutions of these equations; our work here is somewhat
similar to that of N. G. pE BrRuwN [3]. The results of Section 3 are applied
in Section 4 to the parking problem. The second proof of the asymptotic
normality of Z, is given in Section 5. Various remarks will be found in Section 6.

(1.3) ur)=rizxz+i —14+0

(1.4) T R 0‘

2. Derivation of the integral equations. For x > 0 let [f,¢# + 1] be the
random interval occupied by the first car parked on a street [0, 2 + 1] of
length  + 1. The parking process described in Section 1 is such that the number
of cars which will eventually be parked to the left of the first car is independent
of the number which will be parked to the right of it; moreover, the number
of cars eventually parked to the left of the first car, i.e. on [0, ¢], has the same
distribution as N,, while the number parked to the right of the first car, i.e.
on [t + 1,2 + 1], has the same distribution as N, ,. Hence the conditional
distribution of N, ., given that the first car occupies [t,t + 1] is the same as the
distribution of N,+ N,_,+ 1 with N,, N,_, independent. Denoting by |¢ condi-
tioning on the event that the first car is parked at [¢,¢ + 1] we therefore have

(2.1) (N4, |t) = E(V) + E(V,_) + 1 (0<t<a)

(here we do not use the independence of N, and N,_,). Since by hypothesis
¢t is uniformly distributed on [0, z] it follows that, setting

(2.2) p(x) = E(N,),
we have
(2.3) ,u(x—}—l):—i— [y(t)dt—{-l (@ > 0).

Defining the function

(2.4) F@) = p@) +1



ON THE ,,PARKING” PROBLEM 211

we see that f satisfies the somewhat simpler equation

(2.5) fle+1)= EJ f@)de (@ = 0)L
&z
0
Together with the initial conditions
(2.6) f@)=1 (0=<z<1), f(1)=2

this determines f(z) consecutively over theintervalsl1 <z < 2,2 <2 < 3, .. ..
Thus we find

(2.7) f@) =2 1l<z<2),

(2.8) foy=a4— —2 (2<z<3),
x—1

(2.9) fl)=8 — L. H. - log (x — 2) B<z=4),

rx—1 x—1

at which the integration of (2.5) becomes difficult.
Using the independence of N, and N,_, we have for the function

(2.10) o*(x) = DA(N,) = E(V, — p(x))?
the relation
(2.11) DN, ;| ) = 0*(t) 4 o*(x — 1) O<t<a)
Since
(2'12) Dz(Nx—H) = E(D2(Nx+1 l t)) ’
it follows from (2.11) that
X
(2.13) oX(x 4+ 1) > —z—j a?(t) dt (2 =10)):
[ 0

Let
(2.14) Lx)=Az+ 4 —1,
where 7, is a constant to be determined later, and define for £ =0, 1, ...
(2.15) i) = E((V, — L(x))").
Since _
(2.16) Lz +1)= L)+ L(x —¢t) +1,
we have
(2.17) E[(Nx+1 — L(z + 1)) |¢] =

= E[{(¥, — L®) + (Ve — Lz — 1)) }1],

14%
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and on integrating we find that
Y Xik
(218) pie+1=—3] ] [ 70 9iix — (x> 0).

3. The integral equations. Our results on the behaviour as  — oo of
functions satisfying certain integral equations are summarized in the following

two theorems.
Theorem 1. Let f(x) be defined for x = 0 and satisfy

(3.1) Pk s % [f(t)dt+p<x+1) (z > 0)

0

where p(x) is continuous for x > 1 and is such that, setting

(3.2) py= sup |p(t)] (& > 1y,
xst<x+1
we have
: S Pi
(3.3) 2 — < oo.
e

Then there exists a constant A such that, setting

2+ 104N & 8
3.4 Ry= R =025 o )
(3.4) j ; Pi+1 ; ; z+1 (7 )
we have
(3.5) sup If(x)—ix—lléi sup |f(z) — Az — 4| +
n+1<x<n+2 n! 1=5x<2
2r n. gl
n_%2_ : =12, i ..)s

Corollary. If o > 2e¢ and f(x) satisfies (3.1) with

(3.6) p(z) =0 i)”ﬁ),
x
then
x+B—1
(3.7) e AT 0[ (i) v ]
x

The second theorem is much less precise but easier to prove.
Theorem 2. Let g(x) be defined for x = 0 and satisfy

x

(3.8) oz +1) == [ g dt + 0w) (@ > 0)

0
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with y > 1. Then
(3.9) g(@) = O(z") .
Corollary. Let g(z) be defined for x = 0 and satisfy

(3.10) gl Ay = f g(t) dt + Aaf + O(z”) (x > 0)
x
0

with >y > 1. Then
(3.11) 9(x) = g——+ i Axf + O(gmex6-17))

Proof of Theorem 1. The proof is less involved and leads to a somewhat
sharper error estimate if, as in the case of u(x), the term p(x) vanishes identic-
ally. For the sake of brevity, however, we shall treat the general case directly.

From (3.1) we have for positive  and v,

x

Y
fly+1)= ﬁmM+§W}MM+My+U=

9

&
y

—{d +1—<wu+ny+yJﬂOM+pw+n

x
or

»
mm)f@+n=34w+n+fj}mM+pw+n—ﬁpu+n-
Y Y . Y

Define

(3.13) i Ri0) 8,= sup S (x=0).
x<t=x+1 ¢ + i xstsx+1 ¢ 41

Notice that f(x) = x + 1 satisfies (3.1) with p = 0, and hence-that
B y
(3.14) y+2=i(x+2)+—J(t+1)dt.
Y Yy
X

Subtracting (3.14) multiplied by I, from (3.12) we have

ﬂ%+U—A%y+%=§{ﬂm+n—hwx+%}k
(3.15) : ‘
+3JMH—A%H4HM+pW+U—£wW+U-
Yy Y
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Hence for x < y < x +1, in view of (3.13) and (3.2),

(3.16) fly+1)—IL,-y+2)=0+0— pyy; — Px+1= —2Px41-
It follows that

2
(3.17) L. 2% (@ > 0).
Applying (3.17) successively with z replaced by = +1,2 + 2, ... we obtain
(3.18) Iy =1 —d., (g =2=>0)-
where by definition
O Px+i

(3.19) Z s Z++ , (x> 0).

In exactly the same manner we obtain the inequality
(3.20) 8,£8,+4, (g=2z = 0).

From (3.18) we have
(3.21) liminf I, > I, — A, (@ > 0)s

Y>oo

Since 4, = o(1) by (3.3) it follows that
(3.22) liminf7, = limsup 7, .

y—>oo X—>o0

From this and (3.18) with z = 1 we find that

(3.23) I.=1limI, exists, and /. > —oco.
X—>oo

Similarly,

(3.24) S8.=1m S, exists, and .. < co.
X—>oo

Since I, < §, it follows that
(3.25) s £ l. 28 < ss,

From (3.12) we have for z, y >0

JW+1 =fE+1)=

Tyf(x+1)+

(3.26) ,

+3jf<t)dt+p(y+1>—ip<x+1>.
Yy Yy

X

By (3.13) and (3.25), f(x) = O(x), and hence by (3.26)

(3.27) sup |f(y +1) — flz+1)| = 0Q1) 4 2p,.
x=sysx+1
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But this implies by (3.3) that

(3.28) 8, —I,=o(1)
and therefore that
(3.29) I.=8.53 4+ .
We now define 2 as the common value in (3.29),
) A= lim £, =i 8, = tim T

By (3.18) and (3.20),
(3.31) I=A2Z2i28 44, (x > 0).
Next we observe that for every x > 1 there exists a number 2’ satisfying
(3.32) zr=x<z+1, ‘g
| @ + o +1 |

Indeed, since by (3.1) f(x) is continuous for x > 1 the non-existence of such
an @’ would imply that either

(3.33) I.>A+4, or S, <i—4,

contradicting (3. 31) We denote by z, a value 2’ satlsfymg (3.32) for z = n;
thus for n = 2, 3, .

(3.34) 1f(xn) — Mz, +1) | = (n+2)4, (r=z,<n-+1)
Now set
(3.35) f*=) — Mz 1-1).

Then f* again satisfies (3.1), and applylng (3.12) with n<y<mn +1 and
& = Z,4; — 1 we obtain from (3.34) for n =1,2, ...

AN S 04 A+ sup 0]+
(3.36)
B e e
Putting
(3.37) T,= ey |F*(@) | (x > 0),
we obtain from (3.36)
Tn+1— T +2n+lpn4—1+(_ﬂn—+—3)4]n+1:

(3.38) ¢

L n=1,2,...)

n
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where R, is defined by (3.4). Successive application of this inequality for n =
=1,2,3, ... yields the inequality

2" 2n 1! 2! n!
(3.39) Tn+1§;;!"T1+ ;“![;RlT —2—232 +"'+§Rn]'

In view of (3.37) thisis precisely (3.5), and this completes the proof of Theorem1.
Proof of Corollary. If (3.6) holds, then by (3.4)

a j+ﬂ+1}

/

R,=0

and hence (3.5), since o > 2e,

Thus by (3,5)
sup |f(x)flx—l\:0[ :

n+1<x<n+2

)

from which (3.7) follows.
Proof of Theorem 2. We have
x

oz + 1)=%fg(t)dz+n(x) (x> 0),

0
where
n(z) = O(z?) , -1l B

Choose x, > 1 and H > 0 such that
lhle)| < He* for 2= a,—1,
(3.40) s Sej

[!g(mdté H (xo—l)'/‘l:”/ilyj' ¢ dt .
0

Then for z, — 1 < @ < &, we have

Xo
~

g+ <2 [ 1oty de+ e <
x
.
(3.41) g B (¥ — 1)7+1 - Ho? <
z(y — 1)
R L I k)

y—1 y—1
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Hence
X1 Xo+1
jlg 0| dt = j o) |di+ [ lot)|dr <
Xo+1 i
o Tkl [(t—l/dt—{»J ”+1 H(t— 1) dt —
y—1
1
:&_IHI tydt,
p=T

so that (3.40) holds with @ replaced by x, + 1. Hence by (3.41), for 2, < z <
<z, +1 we have
3 b §

(3.42) lglx +1| = e -
y —1

By induction, (3.42) holds for all ® > x, — 1, which proves (3.9).
Proof of Corollary. Set
p+1
g*(x) = —— Adaf .
f—1
Then

dus

g*¥x+1)= Ax + 1) = ‘g—j% Axf 4 O(xP1) =

) J g*(t)dt + Ax? + O(xf-2) .
21

Hence, setting

g(x) = g(x) — g*(x)
we have for = >0,

de+1) =gl +1) —gfe+1) == J git) dt -+ O@m=6-1.9)

Hence by Theorem 2,
() = Ofgmaxts=1)
which proves (3.11).
Remarks.
1. If G is the lim sup as x — o of g(x) in (3.8) divided by a7, then by
taking z, sufficiently large we have

Ig(x'sG for all @ =2

o
Then for = = z;,

gz +1)| < aflg "”*—f (G + ) t7 dt + (),

where 7(z) denotes the error term in (3.8).
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Hence
G = limsupwéo+w+]imsupﬂ_
x>e o (x4 1) y+1 X (x4 1)

Suppose now that (3.8) holds with O replaced by o. Since ¢ > 0 was
arbitrary it follows that

¢ < 2G ’
il
and since y > 1 it follows that G = 0. Hence Theorem 2 holds if O is replaced

by o in both (3.8) and (3.9).
2. Theorem 1 continues to hold if (3.1) is replaced by

(3.1 = | fwde+ LA (@ > 0)
X x
0

where C is any constant; this follows from the fact that the fundamental rela-
tion (3.12) follows from (3.1)". Thus e.g. if p(x + 1) in (3.1) is of the form

1% + 0{(ﬁ)x+ﬁ (a > 2e)
x x

then (3.7) still holds.

4. Application to the parking problem. Since f(z) = u(x) + 1 satisfies,
by (2.5), the equation (3.1) with p = 0, we have by Theorem 1 that

(4.1) Yo 2. . 3

X—>e T

1

exists, and by (3.31) for every x >0,

(4.2) Sl széléé'x: wp MO +1

xst<x+1 ¢4 1 x<st<x+1 ¢t 4+ 1

=
-

Taking * = 2 we obtain easily from (2.8) that

(4.3) T L

3

Do
lIA
o

28 —=1E=0506...

and (2.9) yields much narrower bounds. Since I, and S, approach 4, very
rapidly it is easy to obtain extremely good approximations from (4.2) (cf.
(1.2)).Since u(x) = 1for1 < x < 2, even the crude approximation 1/2 < 4, <
< 1 yields

sup |u@)+1—Ax—Ai|=max |2 —Lz—4|=
(4.4) 1<x=2 1=x<2

=max (|2 —24,|,|2 —34,]) <1.

Hence from Theorem 1 with p = 0 we have
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1
Theorem 3. T'here exists a constant 1, S <A< 1] such that the expectation

w(x) of N, satisfies the relation
(4.5) sup |,u(a:)—+-]—llx—lll<2— (=00 oy
n+15xsn+2 n'

By Stirling’s formula it follows that

(4.6) iy sl Lo T =0 %Hp] .

x

We now define L(x) and ¢,(z) by (2.14) and (2.15) with 4, given by (4.1)
Then by (2.18) with k¥ = 2 we have

b X

2 2.

() et 0=" [ g0+ [ g pile — 0 (> 0)
0 0
But ¢,(z) is precisely the left hand member of (4.6), and therefore
: 4e\*—3
(4.8) sup |@,(¢) g(x—2)| =0 ( ‘—) ]
o<t<x x

Thus f(z) = ¢@,(z) satisfies (3.1) with p(z) estimated by (4.8). From this we
deduce
Theorem 4. There exists a constant A, > 0 such that the variance o*(x)
of N, satisfies the relation
x—4)

(4.9) o} x) = Ay + Ay, + 0( i
Proof. ¢,(z) satisfies (4.9) by the Corollary to Theorem 1, and

x

o%(x) — @y(a) = —(¢1(2)),

which, by (4.6), is absorbed into the error term. It remains to show that 4, > 0.
This may be done numerically from estimates obtained in the course of the
proof of Theorem 1, but it is much simpler to deduce it as follows. Since ¢*(z) 5=

£ 0 for 2 < x < 3 it follows from (2.13) that o*(z) > L for some 6 > 0. But
x

this contradicts (4.9) unless 4, > 0.
We now prove a result on the central moments of V.
Theorem 5. For every k = 1,2, ... and ¢ > 0,

k k
(4.10) E((V, — p(@))) = cal 2] 4 0lal2] ]
([x] denotes the greatest integer < x), where the ¢, are constants and

1

(4.11) czk—m s
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Proof. Since by (2.15) for k = 1
N, — p(@) = N, — L(z) — (u(x) — L(x))
o Nx = L(“) — ¢y(2),
it follows from (4.6) that (4.10) is equivalent to

(4.12) Pulx) = ckx[ﬂ + O(x[gl_we) .

By (4.6) and (4.9), (4.10) holds for k¥ = 1,2 and (4.11) holds for & — 1.
By (2.18)

b d

~ 6 *
WNE ., | ety + ~j 1(t) palz — 1) dt,
@ {9 14

0

2 with a suitable C. Hence
x

@, satisfies (3.1) with p estimated as in (3.6). It follows from (3.7) that Ta(d) =
= ¢z + O (1) and thus (4.12) holds for k < 3.
Now let m > 3 and assume that (4.12) holds for & < m. Then by (2.18),

and by (4.6) and (4.9) the second integrand is O

(413)  gu+1) = —[wm dz+2[] j ) @iz —)dt (x> 0).

By the induction assumption

U14) 0ft) 9notle — ) = cyomitlT) @ — il T ) 4 0@l T 117,

Since
& [i]![m"]z —
wie L[l olFla A2 L L
L [31+ [+
2 2
and since
max [iJ—}—lm_zn:[ﬂ] for m > 3,
1<i<m-1|| 2 2 . 2

the sum on the right hand side of (4.13) is

+é&

(4.16) Const. x[m] + O(II ] L

Since —721 = 2 for m > 3, (4.12) for k = m follows from (4.13) by the Corollary
of Theorem 2. Thus (4.12) holds for all k =1,2, ...,
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By (4.13), (4.14), and (4.15) the constant in (4.16) for m = 2k is

(4.17) S‘ oo 4
' = 27J TR T ek
Assume that (4.11) holds for ¢,, ¢4, ..., cy_». By (4.17) the coefficient of

2¥ in the equation
X

Parlx + 1) = EJ Pailt) dt + ca* 4- O(xk-1+¢)
x

0

(k—1)(2K)! ,,
(k+ 1) 2k %

so that by the Corollary of Theorem 2
k41 (k=1 @Ek!

rar(T) = kxk_}_oxk‘l—'re),
Par(x) F—1 (k+1)!2" 2 (
and hence
(2k)!
Cox = ! 2 i
so that (4.11) holds for all k = 1, 2, ... . This completes the proof of Theorem 5.

Theorem 6. The random variable

7. = Nx— p(@)

o o(x)

is asymptotically mormal (0,1) as @ — <o.
Proof. By (4.10), (4.11) and (4.9) for ¢ = 1/2,

o) acalt]

E(Zy = %
(22 + o(x))?
where 4, > 0 and
(2 k) M
zk_2kk|/1k (k=1,2,...).
Hence
17 (k even),
lim E(Z¥) — ) 22 ‘E’!
(£ odd).

Sihce these are the moments of the normal (0,1) distribution which is uniquely
determined by its moments, the theorem follows from the moment converg-
ence theorem.
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5. Another proof of the asymptotic normality. This proof will use very
much less information about the moments of N, than that of the preceding
section. In fact it will be based entirely on the relation

(5.1) o%(x) = A, x + o(x), (45> 0).

We shall need two simple lemmas.
Lemma 1. Let y(x) be a non-negative function defined for x = 0, bounded
over finite intervals and satisfying y(x) = o(x). Then n = o(x) implies

n
(5.2) sup >'y(x;) = o(x),
i=1
the sup being taken over all sets of non-negative x,, ..., x,withax, + ... + 2, =
— &

Indeed, yp(x) < H + Hx for all ¥ > 0 with a suitable H. Let 0 > 0 be
given and choose a = a(d) so that y(z) < é x for x > a. Divide the sum in
(5.2) into two parts, one over the ¢ with x; < a, the other over the remaining
7. Then the first sum is < n(H + H a) while the second is < dx. Hence the
left side of (5.2) is bounded by 26z for large  and the lemma is established.

Lemma 2. Given ¢ > 0, there exists 6 = (&) > 0 such that if Y ,, Y, ..
Y, are independent random wvariables satisfying

-

(5.3) E(T)| <9,
| =0 l
(5.4) Spyy) —l\ga,
i=0
(5.5) 1Y, — E(Y)| <8, B, . ),

n
then the distribution function of > Y ; approximates uniformly to within e the
i=0

normal distribution with zero mean and unit variance.

It is clearly sufficient to establish the lemma with (5.3) replaced by
E(Y)=0(i=0,1,...,7) and 6 replaced by 0 in (5.4). But then the lemma
follows at once from the ’triangular’ version of Liapounov’s theorem.

We now proceed to the proof of the asymptotic normality of

(5.6) Z.= Ny — piz) .

Let n = n, be a fixed non-negative integer-valued function of x defined
for x > 2 and satisfying
(5.7) O=m. =2, m,=w0x).
(Eventually it will be specified further.) Consider the first » — 1 > 1 cars
parked on [0, z]. Denote by ¥, the distance between 0 and the leftmost car,
by y, that between this car and the one parked second from the left, etc.,
by y, the distance between the car parked to the extreme right and . Then
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(see the derivation of the italicized statement in Section 2) the conditional
distribution of N, given y = (¥, 9, .., ¥n) is the same as the distribution
of n—-1+Ny, +N,,+... +N,, with N,,N,, .., N, independent.
Therefore, the conditional distribution of Z, given y is equal to the distribution

of 3 Y, with the Y ; independent and defined by
=0

(5.8) AL, WV O i Ncd . .. §
a(x) a(x)

Applying Lemma 1 with y(z) = | 6*(x) — A2 | we deduce from (5.1)
and (5.7) that

é‘ |o%(y;) — A yi| = o(x), or ::2; o%(y;) = Ay + o(x)

for every y. Hence we obtain

n

(5.9) DXZ,|y) =. ODZ(Yflg) =1 ek

for the conditional variance of Z,. Thus (5.4) holds for Y'; = Y /(y) for all suffici-
ently large z and all random vectors y. N
From =

1= E(Z3) = E{D*(Z, |y) + EXZ:|y)}
and (5.9) we see that
(5.10) E(E*(Z:|y)) = o(1)
Let A4, be the event: y is such that | E(Z, | y) | < 0; then it follows from
(5.10) that for any fixed 0 > 0,
(5.11) lim P(4,) =1,

i
and y € A, implies that Y ; = Y,-(g) satisfy (5.3).
We now specify the function n = n, by putting
(5.12) n = [x'/*log?x]
and let B, = B, (7) denote the event
(5.13) IIII&X y; < natl2, (n > 0)
n

i=1,.0e5

"91/2
Take k = % + 1 and divide [0, ] into k equi-long intervals I,, ..., I,.

n
Then if (5.13) were false it would imply that at least one of the intervals
I, (j=1, ..., k) is disjoint from the first n — 1 cars parked. The probability
of this is smaller than

n—1 1/2
lc[l—L il +1)
k i a2

x1/*log®x—2
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and, thus, tends to zero as x— oo. Hence

(5.14) limP(B,) =1.

X—>o0
But Y (y) is a constant and, taking 7 <§2;’1, (5.13) implies | Y (y)|<d

(¢=1, ...,n) for large x and hence that Y; = Y ,(y) satisfy (5.5).

From the above and Lemma 2 we conclude that the conditional distri-
bution of Z, given 4, N B, is asymptotically normal with zero mean and
unit variance. It then follows from (5.11) and (5.14) that the same holds for
the distribution of Z, itself, and the proof is complete.

6. Remarks. 1. The parking process described in Section 1 may also
be described as the process of taking independent observations on a rectangular
random variable, but rejecting all those observations which differ by less
than unity from any previously observed and not rejected observation.
The retained observations form a finite dependent stochastic sequence and we
have studied the asymptotic behaviour of the length of this sequence. It
would be interesting to extend the results to other kinds of dependence, and
the preceding section indicates such possibilities; however, one would have
to prove some relations like (5.1) and (5.2) and we do not know how to do
this under reasonably general assumptions (see, however, the next
remark).

2. Returning to the parking problem, we may equivalently consider a
street of unit length and cars of length 1/z with @ tending to infinity. This
suggests at once generalizing the problem by replacing the rectangular density
by other probability densities. Assume e.g. that the position of the center
of each parked car is a random variable whose density is constant on each
half of the street but that the constants in the two halves are different.
Even in this simple case it is not quite trivial to prove rigorously that the
expected total number of cars parked will be approximately A, z, of those
parked in the left half approximately A, z/2 etc. However, the technique of
the end of Section 5 can be used here. This makes it possible to treat den-
sities which are step functions etc.; we expect to study in a future paper
the case of continuous densities.

3. In the uniform density case the distribution of the lengths of the
empty spaces between the parked cars has been considered by G. BANKOVT [4].

4. It is natural to consider the parking problem in more dimensions.
No functional equation similar to the one derived here is available, and a
rigorous treatment becomes extremely difficult. In the plane one would
consider, say, placing unit squares, with sides parallel to the axes, uniformly
in a convex region. Such curiosities occur as lowering the expected total of
squares placed while increasing the region (consider, in the (u, ») plane the
regions

—5/4<u=<b5M4,0=<v=land v=0,u}+v=<9/4 v—ux<9/4).
In the one-dimensional case it is clear from the functional equation (trans-

formed as in (3.12)) that u(x) is monotone, but the analogous result for homo-
thetic regions in the plane is not evident, even if we confine ourselves to
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regions which are squares. Some numerical studies of the problem of pla-
cing squares in the plane have been carried out by Mrs. I. PALAsTI, [5].

5. Differentiating (2.3) we have xu” (x +1) + u(x +1) = 2u(x) + 1.
In view of (4.6) u’(z) is approximated extremely closely by 4,(x + 1)/(x — 1).
Higher derivatives may be treated similarly (u(x) is, of course, » times differ-
entiable for & > n). The same remarks apply to o%x) ete.

6. The estimates of the error involved in Theorem 1 can be somewhat
sharpened, but this necessitates much work and we seem to have reached
the point of diminishing returns. It may be more interesting to study other
functional equations by the same method.

(Received January 3, 1964)
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0 3AJJAYE »ITAPKHUPOBAHUSA«
A. DVORETZKY u H. ROBBINS
Pe3iome

B paGore [1] A. RENYI ncceaoBas OHOMpeHYI0 3ajayy 0 CiaydaiHOM.
3anoJIHEHUMM TPOCTpaHCTBA (MOJe/b «IapKupoBaHus»). Tlpoueaypa cocTouT B
MocJieloBaTe IbHOM PacoyioyKeHuH Ha oTpe3ke (0, ) ciyvaifHbIM 00pa3om Herle-
peceKaUMXca eAMHUYHBIX OTPe3KOB. YUMCI0 pacnono)KuMbiX 0Tpe3koB N, —
ciyyaiiHasi BeJIMUMHA.

ABTOpBI  HMCCIIEYIOT ACHMINTOTHYECKOE I10Be/leHHe MOMEHTOB BeJIMUMHbI
N, ((4.6), (4.9), (4.10)). lokasbiBaeTcsi JAByMsi CIOCOGAaMH, UTO BeJMuMHa Z,
(HopmupoOBaHHasi BenMuuMHa N,) MMeeT ACMMOTOTHMUECKH HOpPMajbHOe pachpe-
nesnenne ¢ napamerpamu (C,1) npu o — oco.

15 A Matematikai Kutato Intézet Kozlemeényei 1X. A/1—2.
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