ON SEQUENCES OF QUASI-EQUIVALENT EVENTS II

by
P. REVESZ

Introduction

In [1] we have introduced the following:
Definition. The events A, defined on a probability space {Q2,.%, P}
are called quasi-equivalent if the value of the ratio '

P(Aix Aiz SR Aik)
P(Ail) P(Aiz) ~ P(Al'k)
depends only on k and it does not depend on the indices ¢, 4y, ..., 7, (k =

=1,2,...). The numbers ¢,, 0,, ... are called the moments of the quasi-
equivalent events 4, 4,, . ...

The paper [1] contains the characterization of infinite sequences of
quasi-equivalent events under the restriction

lim inf P(4,) > 0.

n—o

=a, (4 if £ (P(4) > 0)

The main result of [1] can be summarized as follows:
Theorem A. Let Ay, A,, ... be a sequence of quasi-equivalent events defined
on the probability space {£2, ., P} such that

lim inf P(4,) > 0.

n—oco

Then there exists a random variable A(w) defined on {Q, .7, P} with the following
properties :

(1) P [0 < Mw) < inf }‘z
k P(4y))]
(2) MAi=1u, (B=1152, )
where ay, a,, ... are the moments of the events A,, 4,, ....
(3) P(4, 4, ... A, |2) =P(4,,|A)P(4,|2) ... P(4;,]| ) =

= A*P(4,)P(4,,) ... P(4y) (with probability 1)

(s, FD
1 Sade) 5
) P{némk) Mw)} :
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where a, () is the indicator function of A,

(5) I B( Ay Ay ) = B

N
where $(An, Ay, -..) @8 the smallest o-algebra which contains the events
Ap, Apyys - .. and BH(A) is the smallest o-algebra with respect to which A(w) s

measurable. We say that two o-algebras F and & are equal to each other if for
every F € F there exists a G € & such that P(F o G) = 0 and conversely for
every G € & there exists an F € F such that P(F o G) = 0.

The aim of the present paper is to obtain the characterization of the
infinite sequences of quasi equivalent events substituting the condition
liminf P(4,) > 0 by weaker conditions.

N—>o0

§ 1. The formulation of Theorems 1 and 2

In the present paper we will study the properties of an infinite sequence
of quasi-equivalent events 4,, 4,, ... under the following conditions:

Condition a:

oo

2ieray <t

k=1

Condition b:
.. —0 (n— o0).

i = Py

Condition c:

1.2 1
— Y < K
”21% P(4,)

where K is a positive constant which does not depend on .

Condition d:

SP(4) = + o=
k=1

It is easy to see that the Condition a implies the Condition b, the Con-
dition b implies the Condition ¢ and the Condition ¢ implies the Condition d.
We ask: do these conditions imply the statements of Theorem A. More
exactly we will prove that if 4,, 4,, ... is a sequence of quasi-equivalent
events defined on a probability space {Q2,.7, P} then there exists a random
variable A(w) defined on {2, .7, P} having some of the following properties:

Property 1.
PlOo < i(w) £ inf—l—r— =
k P(AI.)

Property 2.
B )

I

M(}*k) = Qg (k

where ¢, 7,, ... are the moments of the events 4,, 4,, .. ..



ON SEQUENCES OF QUASI-EQUIVALENT EVENTS 229

Property 3.
P4, 4, ... Au| ) =P(A4, | )P(4,|2) ... P(4,]|2) =
= APlA) P(4,) ... Pldg) (with probability 1)

G0 if D)
Property 4.

P{y,—> 1} =1
where y, = £y (n=1,2,...) and a,(w) is the indicator function
N k=1 P(Ak)
of 4,
Property 4*.
M[(y, — 4] —>0 (n— o)
Property 4%*,
M(y, ) > M(1 ¢) (n—o0)

for every random variable ¢ having finite variance.
Property 5.
1 l%;(Anv Au+1’ Slis ) = ,@(1)
n=1

where %(4,, An4,, ...) is the smallest o-algebra which contains the event=
A, A4,.,, ... and SB(4) is the smallest o-algebra with respect to which
Mw) is measurable. (The equality of two o-algebras was defined in the
introduction).

Now our main result is the following:

Theorem 1.

1| 2| 3 | 4| ax|am]| 5
AR R R
1b —-—»I—»—» —+>’——>—>—>
EAEIE AT eI 6

The sign — resp. —» inthe i-th row of the k-th column of the table means
that the i-th condition implies (resp. does not imply) the k-th property.

Our next theorem is the generalization of Theorem 2b of [1].

Theorem 2. Let A, A,, ... be a sequence of quasi-equivalent events for

which the Condition ¢ is valid and let K = inf
k

k
sequence A¥, A%, . .. from the measurable subsets of the rectangle [0, K]%[0, 1]
of the plane such that

P(4,4,, ... 4y) =p(At A} ... 4})

. Then we can construct a



230 REVESZ

w =v X A wherevis a Lebesgue—Stieltjes measure on the interval [0, K] and A
18 the ordinary Lebesgue measure on [0,1] and if B; is the common part of
A¥ and the line x = x, (0 < 2, < K) then

M(Byy By, .- By) = MBy) A(By) ... MBy) = (%]k'

§ 2. The proof of Theorems 1 and 2

In the proof we will apply many times the following
Lemma (see [2]) If H isa Hilbert space and f, is a sequence of elements

of H such that
im (fo, fi) = % (k=1,2,...)

N—»>oco

Ifll=C

where C is a positive constant and 2, is a sequence of real numbers. Then f,
converges weakly to an element [ of the Hilbert space H i.e.

(for 9) = (f,9) (n— o)
for every element g of H.
First of all we will prove that the Condition ¢ implies the Property 4**.
To prove this fact it is enough to check that the conditions of the above
mentioned Lemma hold it we substitute f, by

and

1 2o
%Iigdﬁ’
I.e. we have to prove that
(6) M@yp2) < C n=1,2,.:.)
and
(7 lim M(y, )

exists for every k. (6) follows from the following formula

M= X Ly B o Bl
n? k=1 P(4y) n? i< P(Ak)P(Aj)

Similarly we have

lim M(y,y,) =lim — M [ 2n

N—oo n—e N

s Ml i = B =
N—>ec N,

which implies (7). So we have already proved that Condition ¢ implies Pro-
perty 4.** (Let the weak limit of the sequence v, be A(w).)
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Our next step is to prove that Condition c¢ implies the Property 2, more
exactly we prove that Property 4** implies Property 2. The Property 2 for
k =1 is trivial because

1=M(y,) =M().
The proof for k = 2 is the following:
a, = lim lim M(y,y,) = hm M(}upk) = M(42).

Kk—>e0 N—>c
Similarly for ¥ = 3 we have

ay = lim lim lim M(y, vy, v,) = lim lim M(Ay,y) =

>0 k>0 N—>oo [—>o0 Koo

= lim M(22y,) = M(43).

I>o

The proof for any k is completely the same.
Now we prove that

k
(8) g 5 —1~) (=12, ..,k=1,2,...)
P(4)),
(8) is trivial for k = 1. The proof for k£ = 2 is the following
gy PliAL) Py 1 1

P(4)P(4,,) ~ P(4)P(4,,) P(4)~ PA4)
For k = 3 similarly we have
= P(4,4,,, 4,4,) < P(4;,,4,,,) St Ve 1

Oyii— < = = :
P OP(A) P4 P(Ary) T P(A) P(A) P(dy)  P(4) T PY4)
By induction we can obtain (8) for any .
Now we prove that Condition ¢ implies Property 1. More exactly we
prove that Property 2. and (8) imply Property 1. In fact if

1 k
M(3) = « g( J ST TS L L I
; P4, )

then

Pkgzg LB PR U,
P(4,)

and this relation implies the Property 1.

Now we can already prove Property 3 by exactly the same method
which was used in the proof of Theorem 3 in [1], therefore we do not give in
detail this part of our proof. Similarly we do not give in detail the proof of
our Theorem 2 because its proof is exactly the same as the proof of Theorem
2b in [1].

Using Theorem 2 and the well known zero-one law we obtain that
Condition ¢ implies Property 5.

The fact that Condition b implies Property 4* can be proven by a simple
calculation. Property 4 follows from Condition a using Theorem 2 and the
well known KoLmMogorOV’s strong law of large numbers.
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Our last step is to prove that Condition ¢ does not imply Property 4%*
and Condition b does not imply Property 4. We also do not detail these state-
ments because these statements are well known for independent random
variables (Cf [2] pp. 204).

So the proof of our Theorems 1 and 2 are complete.

Remark. It is easy to see that if Condition d does not hold then in
general there does not exist a random variable A(w) having any of the mentio-
ned Properties. This fact is shown by the following example: Let 4,, 4,, . ..
be a sequence of events defined in the interval [0, 1] such that

1
P(4,) = —
(4) =
P(4; 4) =P(4)P(4,) if i%]
P(4,4;4;) =0 if i£j ik and jok .

It is easy to see that this sequence of events can be constructed.
We do not know what happens if Condition d holds but Condition
does not hold.
(Received January 7. 1964)
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0 KBA3SUIKBHUBAJIEHTHBIX MOCJIEJOBATEJIbHOCTSAX COBbITUNA
IL

P. REVESZ

Pe3iome

[TocsieioBaTeNIbHOCTL COOBITHIT 4, A, ... Ha3biBaeTcsi KBAa3UIKBMBAJIEHT-
HOH, ecnu 3HayeHHe JApoOU :
Pl A o v dy)

137

T P(4,)P(4y) ... P(4,)

3aBUCHUT JIMLIb OT K M He 3aBUCUT OT MHJEKXOB iy, %y, ..., i
B Hacrosimeit pa6oie n3ydarTcs CBOWCTBA I10Cje/10BaTeJIbHOCTH KBa3M-
3KBUBAJEHTHBIX cOObITHIl 4, A,, ... IpU CJIeAYIOIMX YCIOBUSAX:

a, (151, ecnu j=1)

2 1

' + oo,
kzzl k2P(4,)

b) -1— S i —0 (m—>o0),
11.2 k=1 P(Ak)
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c) < K,rne K n0yioyKuTeIbHAsA MOCTOSIHHAS, He3aBHCsILAs

d) 3 P(4) = + co.

k=1

J10Ka3biBaeTCsl, YTO €CJIH BBIOJIHSIIOTCS HEKOTOpPBble M3 3TUX YCJIOBHil, TO
cyliecTBYeT ciyyaifHast BeJMuMHA A CO CIIeJYIOUMMH CBOMCTBAMHU:

1) PIO§1((»)_§ inf~—l——}=],
K P(4y)

2) M{iY)=aq, (=152 o =)
3) P(4; Aiz oAy | A) = P(4;|2) P(“liz |2) ... P(dy|4) =
= Ak-P(4,) P(4,,) ... P(4;) c BepoATHOCTEIO 1 (4, < iy < ... < &)

L B @
4) Ply,>A}=1, me yp,=— > (=125 ...0l)
n Ifl P(4,)
1 a;(w) — MHAMKATOpHAast GyHKuUs cobbiTust A,.
4% M(y, — 4’1 >0 (n— o)

4*¥%) nnsi moboN MHTerpupyemoit ¢ KBapaTom CJjiydyaitHOil BeJMUMHBI ¢
M(y, ¢) - M(Z ¢) (n— o)

5) Il S An Anir, ) = ).

rae (4, 4,4, ...) o0003HayYaeT o - anredpy, TMOPOXN/IEHHYIO COGBITHSIMII
A, Apyy - .., a %(A) 0603HaYaeT o - anredpy, NOPOXKIEHHYIO Ci1yyaifHOl Besyl-
Holt A(w). [lBe o - anre6Gpbl CYMTAIOTCSI PABHBIMM, eCJIM JII0GOI dJ1eMeHT 0IHO# 113
HUX OTJIMYaeTCsl OT HEKOTOPOro 3JieMeHTa JAPYroil JMIb HAa MHO)KeCTBe Mepbl
HYJIb M Ha060poT.

TouHylo CBA3b MeX/ly HAIUMMM YCJIOBUSIMM M YIOMSIHYTBHIMH CBOHCTBAMM
cJlyyaHOW BeJMYMHBI A BbIpakaeT Teopema 1.

Jlerko BuseTb, UTO eCJIM He BBINOJIHSETCS ycoBue d), TO, BOOGLIE IOBOPS,
He CYIIeCTBYeT CJIy4YalHOIl BeJMUMHBI A, COOTBETCTBYIOLIEi JII0OOMY M3 CBONCTB
2), 3), 4), 4%), 4*¥).

Ewme He pemeHa mnpobsiema OTHOCHTeNbHO TOr0, YTO NPOM30MHeT, eciu
ycyioBie d) BBHIOJIHEHO, @ YCJIOBHE C) HeT.
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