ON SEQUENCES OF QUASI-EQUIVALENT EVENTS II

by P. RÉVÉSZ

Introduction

In [1] we have introduced the following:

Definition. The events A_n defined on a probability space $\{\Omega, \mathcal{S}, \mathbf{P}\}$ are called quasi-equivalent if the value of the ratio

$$\frac{\mathbf{P}(A_{i_1} \, A_{i_2} \, \dots \, A_{i_k})}{\mathbf{P}(A_{i_1}) \, \mathbf{P}(A_{i_2}) \, \dots \, \mathbf{P}(A_{i_k})} = a_k \quad (i_j \neq i_l \ \text{if} \ j \neq l) \ \left(\mathbf{P}(A_i) > 0\right)$$

depends only on k and it does not depend on the indices i_1, i_2, \ldots, i_k ($k = 1, 2, \ldots$). The numbers $\sigma_1, \sigma_2, \ldots$ are called the moments of the quasi-equivalent events A_1, A_2, \ldots

The paper [1] contains the characterization of infinite sequences of quasi-equivalent events under the restriction

$$\lim_{n\to\infty}\inf \mathbf{P}(A_n)>0.$$

The main result of [1] can be summarized as follows:

Theorem A. Let A_1, A_2, \ldots be a sequence of quasi-equivalent events defined on the probability space $\{\Omega, \mathcal{S}, \mathbf{P}\}$ such that

$$\lim_{n\to\infty}\inf \mathbf{P}(A_n)>0.$$

Then there exists a random variable $\lambda(\omega)$ defined on $\{\Omega, \mathcal{S}, \mathbf{P}\}$ with the following properties:

(1)
$$\mathbf{P}\left\{0 \le \lambda(\omega) \le \inf_{k} \frac{1}{\mathbf{P}(A_{k})}\right\} = 1$$

(2)
$$\mathbf{M}(\lambda^k) = a_k$$
 $(k=1,2,\ldots)$

where $\alpha_1, \alpha_2, \ldots$ are the moments of the events A_1, A_2, \ldots

(3)
$$\mathbf{P}(A_{i_1} A_{i_2} \dots A_{i_k} | \lambda) = \mathbf{P}(A_{i_1} | \lambda) \mathbf{P}(A_{i_2} | \lambda) \dots \mathbf{P}(A_{i_k} | \lambda) =$$

$$= \lambda^k \mathbf{P}(A_{i_1}) \mathbf{P}(A_{i_2}) \dots \mathbf{P}(A_{i_k}) \qquad \text{(with probability 1)}$$

$$(i_i \neq i_l \text{ if } j \neq l)$$

(4)
$$\mathbf{P}\left\{\frac{1}{n}\sum_{k=1}^{n}\frac{a_{k}(\omega)}{\mathbf{P}(A_{k})}\to\lambda(\omega)\right\}=1$$

where $a_k(\omega)$ is the indicator function of A_k ,

(5)
$$\prod_{n=1}^{\infty} \mathscr{L}(A_n, A_{n+1}, \ldots) = \mathscr{L}(\lambda)$$

where $\mathcal{F}(A_n, A_{n+1}, \ldots)$ is the smallest σ -algebra which contains the events A_n, A_{n+1}, \ldots and $\mathcal{F}(\lambda)$ is the smallest σ -algebra with respect to which $\lambda(\omega)$ is measurable. We say that two σ -algebras \mathcal{F} and \mathcal{G} are equal to each other if for every $F \in \mathcal{F}$ there exists a $G \in \mathcal{G}$ such that $\mathbf{P}(F \circ G) = 0$ and conversely for every $G \in \mathcal{G}$ there exists an $F \in \mathcal{F}$ such that $\mathbf{P}(F \circ G) = 0$.

The aim of the present paper is to obtain the characterization of the infinite sequences of quasi equivalent events substituting the condition

 $\lim \inf \mathbf{P}(A_n) > 0$ by weaker conditions.

§ 1. The formulation of Theorems 1 and 2

In the present paper we will study the properties of an infinite sequence of quasi-equivalent events A_1, A_2, \ldots under the following conditions:

Condition a:

Condition b:
$$\frac{\sum\limits_{k=1}^{\infty}\frac{1}{k^2\operatorname{P}(A_k)}<+\infty.}{\frac{1}{n^2}\sum\limits_{k=1}^{n}\frac{1}{\operatorname{P}(A_k)}\to0} \qquad (n\to\infty)\,.$$
 Condition c:
$$\frac{1}{n^2}\sum\limits_{k=1}^{n}\frac{1}{\operatorname{P}(A_k)}\leqq K$$

where K is a positive constant which does not depend on n.

Condition d:

$$\sum_{k=1}^{\infty} \mathbf{P}(A_k) = +\infty.$$

It is easy to see that the Condition a implies the Condition b, the Condition b implies the Condition c and the Condition c implies the Condition d.

We ask: do these conditions imply the statements of Theorem A. More exactly we will prove that if A_1, A_2, \ldots is a sequence of quasi-equivalent events defined on a probability space $\{\Omega, \mathscr{S}, \mathbf{P}\}$ then there exists a random variable $\lambda(\omega)$ defined on $\{\Omega, \mathscr{S}, \mathbf{P}\}$ having some of the following properties:

Property 1.

Property 2.

$$\mathbf{P}\left\{0 \le \lambda(\omega) \le \inf_{k} rac{1}{\mathbf{P}(A_k)}
ight\} = 1$$
 , $\mathbf{M}(\lambda^k) = a_k$ $(k = 1, 2, \ldots)$

where $\sigma_1, \, \sigma_2, \, \ldots$ are the moments of the events $A_1, \, A_2, \, \ldots$

Property 3.

$$\begin{aligned} \mathbf{P}(A_{i_1} A_{i_2} \dots A_{i_k} | \lambda) &= \mathbf{P}(A_{i_1} | \lambda) \, \mathbf{P}(A_{i_2} | \lambda) \dots \, \mathbf{P}(A_{i_k} | \lambda) = \\ &= \lambda^k \, \mathbf{P}(A_{i_1}) \, \mathbf{P}(A_{i_2}) \dots \, \mathbf{P}(A_{i_k}) \qquad \text{(with probability 1)} \\ &\qquad \qquad (i_i \neq i_i \quad \text{if} \quad j \neq l) \end{aligned}$$

Property 4.

$$\mathbf{P}\{\psi_n \to \lambda\} = 1$$

where $\psi_n = \frac{1}{n} \sum_{k=1}^n \frac{a_k}{P(A_k)}$ (n = 1, 2, ...) and $a_k(\omega)$ is the indicator function of A_k

Property 4*.

$$\mathbf{M}[(\psi_n - \lambda)^2] \to 0 \tag{n \to \infty}$$

Property 4**.

$$\mathbf{M}(\psi_n \, \varphi) \to \mathbf{M}(\lambda \, \varphi)$$
 $(n \to \infty)$

for every random variable φ having finite variance.

Property 5.

$$\prod_{n=1}^{\infty} \mathscr{L}(A_n, A_{n+1}, \ldots) = \mathscr{L}(\lambda)$$

where $\mathcal{B}(A_n, A_{n+1}, \ldots)$ is the smallest σ -algebra which contains the events A_n, A_{n+1}, \ldots and $\mathcal{B}(\lambda)$ is the smallest σ -algebra with respect to which $\lambda(\omega)$ is measurable. (The equality of two σ -algebras was defined in the introduction).

Now our main result is the following:

Theorem 1.

	1	2	3	4	4*	4**	5
a	-			-	->	→	>
	->			1	1		→
c	-	-	>	-/>	-/>	->	->

The $sign \rightarrow resp. \not\rightarrow in$ the i-th row of the k-th column of the table means that the i-th condition implies (resp. does not imply) the k-th property.

Our next theorem is the generalization of Theorem 2b of [1].

Theorem 2. Let A_1, A_2, \ldots be a sequence of quasi-equivalent events for which the Condition c is valid and let $K = \inf_k \frac{1}{\mathbf{P}(A_k)}$. Then we can construct a sequence A_1^*, A_2^*, \ldots from the measurable subsets of the rectangle $[0, K] \times [0, 1]$ of the plane such that

$$\mathbf{P}(A_{i_1}A_{i_2}\ldots A_{i_k}) = \mu(A_{i_1}^*A_{i_2}^*\ldots A_{i_k}^*)$$

230 RÉVÉSZ

 $\mu = \nu \times \lambda$ where ν is a Lebesgue-Stieltjes measure on the interval [0, K] and λ is the ordinary Lebesgue measure on [0, 1] and if B_i is the common part of A_i^* and the line $x = x_0$ $(0 \le x_0 \le K)$ then

$$\lambda(B_{i_1} B_{i_2} \ldots B_{i_k}) = \lambda(B_{i_1}) \lambda(B_{i_2}) \ldots \lambda(B_{i_k}) = \left(\frac{x_0}{K}\right)^k.$$

§ 2. The proof of Theorems 1 and 2

In the proof we will apply many times the following

Lemma (see [2]) If H is a H ilbert space and f_n is a sequence of elements of H such that

 $\lim_{n \to \infty} (f_n, f_k) = \lambda_k \qquad (k = 1, 2, \ldots)$

and

$$||f_n|| \leq C$$

where C is a positive constant and λ_k is a sequence of real numbers. Then f_n converges weakly to an element f of the Hilbert space H i.e.

 $(f_n, g) \to (f, g)$ $(n \to \infty)$

for every element g of H.

First of all we will prove that the Condition c implies the Property 4^{**} . To prove this fact it is enough to check that the conditions of the above mentioned Lemma hold it we substitute f_n by

$$\psi_n = \frac{1}{n} \sum_{k=1}^n \frac{a_k(\omega)}{\mathbf{P}(A_k)},$$

I.e. we have to prove that

(6)
$$\mathbf{M}(\psi_n^2) \leq C \qquad (n = 1, 2, \ldots)$$

and

(7)
$$\lim_{n\to\infty} \mathbf{M}(\psi_n\,\psi_k)$$

exists for every k. (6) follows from the following formula

$$egin{aligned} \mathsf{M}(\psi_n^2) &= rac{1}{n^2} \sum_{k=1}^n rac{1}{\mathsf{P}(A_k)} + rac{2}{n^2} \sum_{k < j} rac{\mathsf{P}(A_k \, A_j)}{\mathsf{P}(A_k) \, \mathsf{P}(A_j)} = \ &= rac{1}{n^2} \sum_{k=1}^n rac{1}{\mathsf{P}(A_k)} + rac{2}{n^2} inom{n}{2} lpha_2 \, . \end{aligned}$$

Similarly we have

$$\begin{split} \lim_{n \to \infty} \mathbf{M}(\psi_n \, \psi_k) &= \lim_{n \to \infty} \frac{1}{nk} \, \mathbf{M} \left[\, \sum_{j=1}^n \frac{a_j(\omega)}{\mathbf{P}(A_j)} \, \sum_{l=1}^k \, \frac{a_l(\omega)}{\mathbf{P}(A_l)} \right] = \\ &= \lim_{n \to \infty} \frac{1}{nk} \, a_2(n-k) \, k = a_2 \end{split}$$

which implies (7). So we have already proved that Condition c implies Property 4.** (Let the weak limit of the sequence ψ_n be $\lambda(\omega)$.)

Our next step is to prove that Condition c implies the Property 2, more exactly we prove that Property 4^{**} implies Property 2. The Property 2 for k=1 is trivial because

$$1 = \mathbf{M}(\psi_n) = \mathbf{M}(\lambda)$$
.

The proof for k=2 is the following:

$$a_2 = \lim_{k \to \infty} \lim_{n \to \infty} \mathbf{M}(\psi_n \, \psi_k) = \lim_{k \to \infty} \mathbf{M}(\lambda \psi_k) = \mathbf{M}(\lambda^2) \, .$$

Similarly for k = 3 we have

$$\begin{split} \boldsymbol{\alpha}_3 &= \lim_{l \to \infty} \lim_{k \to \infty} \lim_{n \to \infty} \mathbf{M}(\boldsymbol{\psi}_n \, \boldsymbol{\psi}_k \, \boldsymbol{\psi}_l) = \lim_{l \to \infty} \lim_{k \to \infty} \mathbf{M}(\boldsymbol{\lambda} \, \boldsymbol{\psi}_k \, \boldsymbol{\psi}_l) = \\ &= \lim_{l \to \infty} \mathbf{M}(\boldsymbol{\lambda}^2 \, \boldsymbol{\psi}_l) = \mathbf{M}(\boldsymbol{\lambda}^3) \,. \end{split}$$

The proof for any k is completely the same.

Now we prove that

(8)
$$a_k \le \left(\frac{1}{\mathbf{P}(A_l)}\right)^k$$
 $(l = 1, 2, ..., k = 1, 2, ...)$

(8) is trivial for k=1. The proof for k=2 is the following

$$a_2 = \frac{\operatorname{P}(A_l \, A_{l+1})}{\operatorname{P}(A_l) \operatorname{P}(A_{l+1})} \leqq \frac{\operatorname{P}(A_{l+1})}{\operatorname{P}(A_l) \operatorname{P}(A_{l+1})} = \frac{1}{\operatorname{P}(A_l)} \leqq \frac{1}{\operatorname{P}^2(A_l)} \, .$$

For k = 3 similarly we have

$$a_3 = \frac{\mathsf{P}(A_l\,A_{l+1}\,A_{l+2})}{\mathsf{P}(A_l)\,\mathsf{P}(A_{l+1})\,\mathsf{P}(A_{l+2})} \leq \frac{\mathsf{P}(A_{l+1}\,A_{l+2})}{\mathsf{P}(A_l)\,\mathsf{P}(A_{l+1})\,\mathsf{P}(A_{l+2})} = \frac{a_2}{\mathsf{P}(A_l)} \leq \frac{1}{\mathsf{P}^3(A_l)} \cdot \frac{$$

By induction we can obtain (8) for any k.

Now we prove that Condition c implies Property 1. More exactly we prove that Property 2. and (8) imply Property 1. In fact if

$$\mathbf{M}(\lambda^k) = a_k \leq \left(rac{1}{\mathbf{P}(A_l)}
ight)^k \quad (k=1,2,\ldots;\ l=1,2,\ldots)$$

then

$$\mathbf{P}\left[0 \le \lambda \le \frac{1}{\mathbf{P}(A_l)}\right] = 1 \qquad (l = 1, 2, \ldots)$$

and this relation implies the Property 1.

Now we can already prove Property 3 by exactly the same method which was used in the proof of Theorem 3 in [1], therefore we do not give in detail this part of our proof. Similarly we do not give in detail the proof of our Theorem 2 because its proof is exactly the same as the proof of Theorem 2b in [1].

Using Theorem 2 and the well known zero-one law we obtain that

Condition c implies Property 5.

The fact that Condition b implies Property 4* can be proven by a simple calculation. Property 4 follows from Condition a using Theorem 2 and the well known Kolmogorov's strong law of large numbers.

RÉVÉSZ 232

Our last step is to prove that Condition c does not imply Property 4* and Condition b does not imply Property 4. We also do not detail these statements because these statements are well known for independent random variables (Cf [2] pp. 204).

So the proof of our Theorems 1 and 2 are complete.

Remark. It is easy to see that if Condition d does not hold then in general there does not exist a random variable $\lambda(\omega)$ having any of the mentioned Properties. This fact is shown by the following example: Let A_1, A_2, \ldots be a sequence of events defined in the interval [0, 1] such that

$$\mathbf{P}(A_i) = \frac{1}{2^i}$$

$$\mathbf{P}(A_i A_j) = \mathbf{P}(A_i) \mathbf{P}(A_j) \quad \text{if } i \neq j$$

$$\mathbf{P}(A_i A_j A_k) = 0 \quad \text{if } i \neq j \ i \neq k \ \text{and } j \neq k.$$

It is easy to see that this sequence of events can be constructed.

We do not know what happens if Condition d holds but Condition does not hold.

(Received January 7, 1964)

REFERENCES

- [1] Révész, P.: "On sequences of quasi-equivalent events I." MTA Mat. Kut. Int. Közl. 8 (1963) 73-78.
- [2] RÉNYI, A.: "On stable sequences of events". Sankhya. Ser. A. 25 (1963) 293—302. [3] HALMOS, P.: Measure theory. Van Nostrand 1950.

о квазиэквивалентных последовательностях событий II.

P. RÉVÉSZ

Резюме

Последовательность событий A_1, A_2, \ldots называется квазиэквивалентной, если значение дроби

$$a_k = rac{\mathbf{P}(A_{i_1}, A_{i_2}, \dots A_{i_k})}{\mathbf{P}(A_{i_1}) \, \mathbf{P}(A_{i_2}) \, \dots \, \mathbf{P}(A_{i_k})} \qquad (i_j
eq i_l, \, \operatorname{если} \, j = l)$$

зависит лишь от k и не зависит от индекхов i_1, i_2, \ldots, i_k .

В настоящей работе изучаются свойства последовательности квазиэквивалентных событий A_1 , A_2 , ... при следующих условиях:

a)
$$\sum_{k=1}^{\infty} \frac{1}{k^2 \mathbf{P}(A_k)} < +\infty,$$
b)
$$\frac{1}{n^2} \sum_{k=1}^{n} \frac{1}{\mathbf{P}(A_k)} \to 0 \qquad (n \to \infty),$$

c) $\frac{1}{n^2}\sum_{k=1}^n\frac{1}{\mathbf{P}(A_k)} \le K$, где K положительная постоянная, независящая от n,

d)
$$\sum_{k=1}^{\infty} \mathbf{P}(A_k) = +\infty$$
.

Доказывается, что если выполняются некоторые из этих условий, то существует случайная величина λ со следующими свойствами:

1)
$$\mathbf{P}\left\{0 \leq \lambda(\omega) \leq \inf_{k} \frac{1}{\mathbf{P}(A_{k})}\right\} = 1$$
,

2)
$$\mathbf{M}(\lambda^k) = a_k$$
 $(k = 1, 2, \ldots),$

3)
$$\mathbf{P}(A_{i_1} A_{i_2} \dots A_{i_k} | \lambda) = \mathbf{P}(A_{i_1} | \lambda) P(A_{i_2} | \lambda) \dots \mathbf{P}(A_{i_k} | \lambda) =$$

$$= \lambda^k \cdot \mathbf{P}(A_{i_1}) \mathbf{P}(A_{i_2}) \dots \mathbf{P}(A_{i_k}) \text{ с вероятностью 1 } (i_1 < i_2 < \dots < i_k)$$

4)
$$\mathbf{P}\{\psi_n \to \lambda\} = 1$$
, где $\psi_n = \frac{1}{n} \sum_{k=1}^n \frac{a_k}{\mathbf{P}(A_k)}$ $(n = 1, 2, ...),$

и $a_k(\omega)$ — индикаторная функция события A_k .

4*)
$$\mathbf{M}[(\psi_n - \lambda)^2] \to 0$$
 $(n \to \infty)$

4**) для любой интегрируемой с квадратом случайной величины φ

$$\mathbf{M}(\psi_n \, \varphi) \to \mathbf{M}(\lambda \, \varphi) \tag{n \to \infty}$$

5)
$$\prod_{n=1}^{\infty} \mathcal{L}(A_n, A_{n+1}, \ldots) = \mathcal{L}(\lambda),$$

где $\mathscr{L}(A_n,A_{n+1},\ldots)$ обозначает σ - алгебру, порожденную событиями A_n,A_{n+1},\ldots , а $\mathscr{L}(\lambda)$ обозначает σ - алгебру, порожденную случайной величиной $\lambda(\omega)$. Две σ - алгебры считаются равными, если любой элемент одной из них отличается от некоторого элемента другой лишь на множестве меры нуль и наоборот.

Точную связь между нашими условиями и упомянутыми свойствами

случайной величины λ выражает теорема 1.

Легко видеть, что если не выполняется условие d), то, вообще говоря, не существует случайной величины λ , соответствующей любому из свойств 2), 3), 4), 4*, 4**).

Еще не решена проблема относительно того, что произойдет, если

условие d) выполнено, а условие c) нет.