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Self-testing refers to the fact that, in some quantum devices, both states and measurements can
be assessed in a black-box scenario, on the sole basis of the observed statistics, i.e. without reference
to any prior device calibration. Only a few examples of self-testing are known, and they just provide
non-trivial assessment for devices performing unrealistically close to the ideal case. We overcome
these difficulties by approaching self-testing with the semi-definite programming hierarchy for the
characterization of quantum correlations. This allows us to improve dramatically the robustness
of previous self-testing schemes -e.g.: we show that a CHSH violation larger than 2.57 certifies a
singlet fidelity of more than 70%. In addition, the versatility of the tool brings about self-testing of
hitherto impossible cases, such as robust self-testing of non-maximally entangled two-qutrit states
in the CGLMP scenario.

Introduction - The validation and certification of
sources and measurement apparatuses constitutes a
fundamental step of science and technology. One does
not buy the elements to set up an experiment with-
out first assessing their quality; and one should not
make claims about the final results of an experiment
without several checks. Usually, a variety of assump-
tions go into these procedures. For instance, the cer-
tification of a device often depends on the fact that
other devices are properly calibrated [1]. In the last few
years, it has been noticed that tasks like quantum key
distribution [2] and random number generation [3, 4]
can be validated based only on minimal assumptions
and on the statistics observed a posteriori. The idea
consists in looking for statistics that violate Bell in-
equalities; the minimal assumptions that go into this
so-called device-independent assessment are essentially
no-signaling (which could in principle be guaranteed by
putting a sufficient distance between the devices) and
measurement independence (i.e. the possibility of per-
forming different measurements on the same setup, a
cornerstone of the scientific method) [5, 6].

Rather than certifying that some device can accom-
plish a task, one may want to certify the device itself,
which in turn would provide certification for any possi-
ble further task one may want to perform with it. For
instance, if the device is a source, this would amount to
performing a “blind tomography” where measurement
devices are treated as black boxes. It has long been
known that this is possible in some specific and ideal
cases. Famously, if the CHSH inequality [7] is violated

at its maximal value 2
√

2, the devices are certified to
be performing complementary measurements on two
effective qubits in the maximally entangled state [8–
10]. Another criterion that certifies the same state and
measurements was put forward by Mayers and Yao,
who called the whole task self-testing of quantum ap-

paratuses [11].
In addition to being tailored for two-qubit singlet,

these pioneering works are unapplicable to real-world
devices because they only discuss the statistics of the
ideal case. A first step towards the resolution of this
issue was taken when several self-testing schemes were
shown to be “robust” (or “rigid”) [12–15]; the most
advanced of these results applies to a multiple-copy
scenario and certifies the state as a resource for uni-
versal quantum computation [16]. Despite the name,
however, these results tolerate only tiny deviations
from the ideal case. Take again the certification of
the two-qubit singlet based on the CHSH inequality:
even for the largest reported experimental violation,
which is 2.827 ± 0.0017 [17] i.e. only 0.1% away from
the ideal value, none of the “robust” self-testing ap-
proaches quoted above provide a nontrivial bound on
the singlet fidelity.

One may surmise that this could be an intrinsic lim-
itation on the ambitious task of self-testing. Here, we
show that this is not the case: we demonstrate that
a CHSH violation of 2.827 is only compatible with a
singlet fidelity larger than 99.83%. This real-life ro-
bustness is only one of the benefits of the method that
we introduce. Indeed, our approach formalizes the
idea of swapping black boxes with trusted systems [11]
with the semidefinite characterization of quantum cor-
relations [18], which makes it especially versatile. We
demonstrate this explicitely with several examples, all
of which are robust. Notably, we describe self-testing
of qutrit states with ternary outcome measurements,
which would not be possible with previous techniques.

In most self-testing works, the assumption is made
that the tested devices behave independently and in an
identical way (i.i.d.) over the runs. This assumption
may sound problematic, as it may fail in real situations
(e.g. if a source is drifting). Fortunately, tools have
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FIG. 1: The swap concept: Characteristics of black boxes
are assessed by considering the effect of swap operations
between these black boxes and trusted systems (initialized
in the state |0〉 here).

been developed to deal with the general case of Bell-
based tests where each realization of the box can be
different from the previous one and may even depend
on all previous operations effected on the system [19–
21]. With these tools, the results obtained with i.i.d.
hold true in the general case, in the asymptotic limit
of infinitely many runs. In this paper, we work only in
that limit, so we take i.i.d. for granted in the rest of
the paper.

For clarity of presentation, we now introduce our
method with the basic example of two-qubit singlet
state certification via the CHSH inequality. A few
other applications are discussed in the remainder of
the paper, and many more are left for future work.

Bound on the singlet fidelity from CHSH - Let
us consider a bipartite experiment with binary in-
puts x, y ∈ {0, 1} and binary outputs a, b ∈
{0, 1}. After querying the boxes a large number of
times, one can reconstruct the measurement statistics
P (ab|xy); the CHSH inequality is violated if BCHSH =∑

abxy(−1)a+b+xyP (ab|xy) > 2 [22]. If a violation is
observed, the measured state must be entangled, and
it must even be a maximally-entangled singlet state
|ψ−〉 = (|01〉 − |10〉)/

√
2 if the violation is maximal.

Our goal is to quantify how far from the singlet the
state can be, in terms of fidelity, when the violation is
not maximal. Since nothing guarantees that the state
in the boxes is a two-qubit state, one must clarify what
the fidelity with the singlet means at all. The idea of
self-testing consists in swapping part of the content of
the black boxes into a trusted system (in this case two
qubits) initially prepared in a suitable dummy state.
The singlet fidelity of the final two-qubit state is then
well-defined.

Specifically, let the trusted auxiliary qubits A′ and
B′ be prepared in the state |0〉. Then some local uni-
taries SAA′ and SBB′ are applied between these trusted
systems and their respective boxes, as shown in fig-
ure 1. Such hypothetical operations leave the trusted
systems in the state

ρswap = trAB

[
SρAB ⊗ |00〉〈00|A′B′S†

]
, (1)

where S = SAA′⊗SBB′ . This operation is a local isom-
etry from the black box to the trusted space, as usually
considered in self-testing. One wants to choose S such
that F = 〈ψ−| ρswap |ψ−〉 is large, possibly maximal.

It is crucial to stress that this isometry is the virtual
procedure that allows one to define a figure of merit,
not a procedure that must be implemented in the lab
for the certification to be possible. All that needs to be
done in the lab is to collect the data that lead to recon-
structing P (ab|xy). Therefore, the alleged swap opera-
tion S itself must be defined, and its performance eval-
uated, from the observed statistics and the belief that
whatever happens can be described within the frame-
work of quantum theory. The latter tells us that, to
any input x of Alice, there correspond in the box one
hermitian operators Πx

a for each outcome a, which can
be taken as a projector since the dimension of the sys-
tem being measured is not restricted. The same holds
for Bob. Based on these existing projectors, it is con-
venient to define the hermitian and unitary operators
Ax = Πx

0 − Πx
1 and By = Πy

0 − Πy
1. Also, we describe

the ideal state as∣∣ψ〉 = cos
(π

8

) ∣∣φ+〉+ sin
(π

8

) ∣∣ψ+
〉
, (2)

which is maximally entangled and therefore equiva-
lent to |ψ−〉 up to local unitaries. This is chosen
for convenience of notation since this states achieves
BCHSH = 2

√
2 for the operators

A0 = B0 = σz, A1 = B1 = σx . (3)

All the framework is set. In order to guess a good
construction for S, we get inspiration from the ideal
case. If the system in each box were indeed a qubit,
the swap operations could be realized by combining
three CNOT gates [23]. Further, using (3), the CNOT
that has A as target and A′ as control can be written
as UAA′ = 11 ⊗ |0〉〈0| + A1 ⊗ |1〉〈1|; the CNOT with

reversed roles can be written as V AA′ = 11+A0

2 ⊗ 11 +
11−A0

2 ⊗σx. Having noticed this, for the untrusted case
we can tentatively define

SAA′ = UAA′VAA′UAA′ (4)

with

UAA′ = 11⊗ |0〉〈0|+A1 ⊗ |1〉〈1|

VAA′ =
11 +A0

2
⊗ 11 +

11−A0

2
⊗ σx,

(5)

and similarly for Bob. These operations are unitary
for all A0 and A1 unitary and hermitian. Obviously,
their actual action may differ from perfect swaps. For
instance, suppose that the states and measurements
in the boxes are equivalent to (2) and (3) up to lo-
cal unitaries: the swapped state is always found to
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FIG. 2: Minimal singlet fidelity as a function of CHSH
violation. The solid line denotes a lower bound on the fi-
delity for generic boxes; the dashed one a lower bound for
isotropic boxes. Improved bounds are presented in [25] us-
ing optimized swap operators.

be ρswap = |ψ〉〈ψ| rather than its unitary equivalent.
In other words, on maximally entangled two-qubit
states and complementary measurements, this S act
as “clever swap” that compensates for local unitaries
to produce always the desired output state.

Now that S is given explicitly in terms of A0, A1,
B0 and B1, the partial trace (1) can be formally
computed [24]: the entries of ρswap are given by lin-
ear combinations of correlation terms from the set
c = {c11 = tr(ρAB11), cA0

= tr(ρABA0), . . . , cA0A1B0
=

tr(ρABA0A1B0), . . .}. The fidelity F =
〈
ψ
∣∣ ρswap

∣∣ψ〉
is thence a linear combination of these moments, and
so is the CHSH expression. This allows one to relate
the observed CHSH violation to the overlap. Since any
such moments that proceed from a quantum realization
satisfy some semidefinite constraints [18, 26], a lower
bound on the fidelity of the swapped state is obtained
by solving the following semi-definite program (SDP):

f = min 〈ψ|ρswap|ψ〉
such that c ∈ Qn

cA0B0 + cA1B0 + cA0B1 − cA1B1 = BCHSH,
(6)

where Qn is a relaxation of the quantum set. We run
the SDP for various values of BCHSH. The result is the
lowest curve of figure 2. It is now simple to add con-
straints: for instance, the actual statistics may corre-
spond to isotropic boxes, i.e. cA0B0

= cA1B0
= cA0B1

=
−cA1B1

and cAx
= cBy

= 0, and these conditions can
be added to the SDP.

Remarks on the method - The crucial element of our
method is the swap operator S. Once expressed from

the expected behavior of the boxes, and guaranteed to
be unitary, the fidelity becomes a linear combination of
moments c, which allow its optimization by SDP. The
observed statistics enter this SDP as constraints. The
outcome of the SDP is a lower bound on the desired
value for two reasons: first, because one finds the mini-
mum fidelity withinQn, so the fidelity within the quan-
tum set can only be larger; second, because the choice
of S may not be optimal. For a given choice of S, one
may be able to prove that the SDP bound is tight by
exhibiting an explicit quantum strategy which reaches
the bound. At the moment of writing, we do not know
how to estimate how far from optimal can a choice of S
be, but the examples shown in this paper demonstrate
that intuitive constructions of the swap based on the
expected realization of the boxes lead already to much
better bounds than the previously reported ones.

The versatility of the method is therefore evident.
Having shown that it provides very robust bounds on
the most studied example of self-testing, we move to
apply it to a case for which no method was previously
known: the self-testing of a partially-entangled qutrit
state through ternary-outcomes statistics. Later, we
shall present also an example of self-testing of measure-
ments; several other examples are presented in [25].

Partially-entangled qutrits - Self-testing of qutrits
with ternary measurements, and more generally of box
scenarios with more than two outputs per box, was not
possible to analyze with Jordan’s Lemma [27] as used
in [15, 16]. With our method, we can achieve it by sim-
ply transposing the analysis of the CHSH inequality to
the CGLMP inequality BCGLMP ≥ 1 [28].

The maximum quantum violation of this inequality
in the case of three outcomes was conjectured to be
BCGLMP(p) = (12 −

√
33)/9 ≈ 0.6950 [29]; this was

later verified with SDP, up to numerical precision [18].
Moreover, it is believed that the maximal quantum vi-
olation can only be achieved with the non-maximally
entangled state∣∣ψ〉 =

1√
2 + γ2

(|00〉+ γ |11〉+ |22〉), (7)

where γ = (
√

11 −
√

3)/2. This conjecture will be
proved as a corollary of our self-testing.

The only technical step consists in finding a suitable
S for this situation. CNOT operators for qutrit states
take a different form than (5). However, they can still
be expressed in terms of the measurement operators
(E

x

a, F
y

b ) that yield the maximal CGLMP violation fol-
lowing the technique presented in Appendix A (more
details in [25]). Once this is done, again we obtain
the formal expression of the two qutrit swapped state
ρswap, then we run the SDP to obtain a lower bound on

its fidelity with the reference state
∣∣ψ〉 as a function of

the CGLMP violation. The result is shown in Fig. 3.
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In particular, the fact that
〈
ψ
∣∣ ρswap

∣∣ψ〉 = 1 when the
violation is maximal shows that any quantum system
violating the CGLMP inequality maximally is indeed
unitarily equivalent to

∣∣ψ〉.
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FIG. 3: Minimum fidelity of the swapped state with the
reference state (7) as a function of the 3-outcome Bell in-
equality BCGLMP.

Measurement estimation - As the last application of
our method in this paper, we consider certifying mea-
surements rather than states. Suppose that, rather
than verifying that |ψ〉 is close to

∣∣ψ〉, we are interested
in learning to which degree the actual measurements
{F y

b } that Bob’s box is performing are well described

by some matrices {F y

b}. The virtual procedure is again
based on the intuition of the swap, and thus demon-
strates another use of the swap operator S introduced
earlier: this time consider the task of swapping into the
box an arbitrary trusted state, then probe the box with
different measurements y. The figure of merit should
quantify how close to the ideal case the boxes perform.

For definiteness, let us practice this intuition in the
CHSH case (Fig. 4, left). We conjecture that Bob’s
observables are close to B0 = σz, B1 = σx. To quantify
this hypothesis, we define the figure of merit

τ ≡ 1

2
{P (0|0, 0)+P (1|0, 1)+P (0|1,+)+P (1|1,−)}−1,

(8)
where P (b|y, ϕ) denotes the probability of obtaining
result b when the trusted qubit was prepared in state
|ϕ〉 and one presses button y after applying the full
swap (4) to Bob’s box. τ is a number ranging from -1
to +1, and τ = 1 is achievable only in the ideal case.
As before, each P (b|y, ϕ) (and thence τ) is a linear
expression in the moments c; so a lower bound can
be found with the SDP. The result is shown in Fig. 4,
right, for the case of isotropic boxes. This confirms

that Bob’s measurement are essentially σz and σx when
CHSH takes a value close to 2

√
2.

FIG. 4: Estimation of Bob’s measurements. The protocol
works in two steps: 1) We implement a full SWAP of Bob’s
box and his trusted qubit, that we prepare in state |ϕ〉.
2) We implement measurement By and study the resulting
statistics.

Conclusion We have described an approach to self-
testing that provides much more robust bounds than
previously reported and is at the same time very versa-
tile: once the swap operator is constructed, the details
of the scenario (ideal cases, figure of merit to be used)
enter as parameters. The construction of unitaries S
that provide optimal bounds remains a challenge, but
one that can be met with an intuitive understanding
of the problem at hand. We have illustrated the power
of the method with a few paradigmatic results: the
first bound on the singlet fidelity based on CHSH that
is robust for real experiments (Fig. 2), the first re-
port of self-testing of qutrits using ternary measure-
ments (which also solves a standing conjecture about
the kind of states required to violate the CGLMP in-
equality maximally), and an example of certification of
measurements.
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Appendix A: The SWAP method for CGLMP

We present here a more detailed description of the
SWAP method for the CGLMP scenario, which was
only briefly discussed in the main document. In a
forthcoming publication [25], we will prove that the
idea of transferring quantum information from and to
the black boxes can be carried even further and gener-
alized to any Bell non-locality scenario with arbitrary
number of measurement settings and outcomes.

Here we focus on the CGLMP inequality [28], which
requires two measurement settings on each side, with
three possible measurement outcomes. The inequality
reads:

BCGLMP(p) =

p(a < b|x = 1, y = 1) + p(a > b|x = 0, y = 1)

+p(a ≥ b|x = 1, y = 0) + p(a < b|x = 0, y = 0) ≥ 1.
(A1)

The maximum quantum violation of the above
CGLMP inequality is conjectured [29] and verified nu-

merically [18] to be BCGLMP(p) = (12 −
√

33)/9 ≈
0.6950. Moreover, it is believed that the maximal
quantum violation can only be achieved with the (non-
maximally entangled) state described in [28, 29]. Here
we will also prove this conjecture true.

Firstly we give a strategy which is unitarily equiv-
alent to the measurement scheme presented in refer-
ences [28, 29] and achieves the maximal violation of
CGLMP. The strategy is as follows: Alice’s and Bob’s
first measurements x, y = 0 correspond to the projec-

tors {|0〉〈0| , |1〉〈1| , |2〉〈2|}, namely E
0

a = |a〉〈a| , F 0

b =
|b〉〈b|. The projectors corresponding to the other mea-

surements x, y,= 1 are given by E
1

a = |ωa〉〈ωa| , F
1

b =
|ωb〉〈ωb|, where |ωi〉 and the state to be measured

∣∣ψ〉

http://arxiv.org/abs/1303.2849
http://arxiv.org/abs/quant-ph/0512111
http://arxiv.org/abs/quant-ph/0512111
http://arxiv.org/abs/1207.1819
http://arxiv.org/abs/quant-ph/0301059
http://arxiv.org/abs/1307.7053
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are as follows

|ωk〉 =
1

3
(2 |k〉+ 2 |k + 1〉 − |k + 2〉) ,∣∣ψ〉 =

1

3
√

2 + γ2

(
(γ +

√
3)(|00〉+ |11〉+ |22〉)+

γ(|01〉+ |12〉+ |20〉)+

(γ −
√

3)(|02〉+ |10〉+ |21〉)
)
,

(A2)

where all addition above performed inside the kets are
modulo 3 and γ = (

√
11−

√
3)/2. This strategy up to

local unitaries is equivalent to the measurement scheme
presented in [28, 29], which involves complex coeffi-
cients.

The above measurements and states of Eq. (A2) shall
then be our reference system. Following the method
presented in the main document, Alice and Bob will
each attach a trusted qutrit initialized in state |0〉 to
the entangled pair in order to certify the state. The
next step is to construct the unitary operators which
appear in the decomposition of the two-qutrit SWAP
operator S = TUV U , with U =

∑2
k=0 P

k ⊗ |k〉〈k|,
V =

∑2
k=0 |k〉〈k| ⊗ P−k, T = I ⊗

∑
k |−k〉 〈k| and

P =
∑2

k=0 |k + 1〉 〈k|. Clearly, we can take {E0
k}2k=0,

{F 0
k }2k=0 to play the role of the projectors {|k〉〈k|}2k=0

in the first subsystem of the expressions above. A more
challenging issue, though, is how to build the transla-
tion operator P from the measurement projectors de-
fined in Eq. (A2).

There are many choices to do so; we chose the sim-
plest combination:

P = E0
0 + 2E0

2 +
1

2
E0

1 −
3

2
E0

0(2E1
1 + E1

2)

− 3

2
E0

1(E1
1 − E1

2)− 3

2
E0

2(E1
1 + 2E1

2), (A3)

which indeed is a translation operator mapping |0〉 →
|1〉 → |2〉 → |0〉 whenever the measurement operators
are Ex

a = Ēx
a . Since Alice and Bob’s optimal operators

are identical, the above formula also applies to Bob’s
settings if we replace E’s by F ’s.

Note that the choice above in (A3), contrary to the
CHSH scenario [7], defines a valid unitary operator
only for the optimal strategy of Ref. (A2). However,
in the device independent scenario, when the viola-
tion is not optimal, measurement operators can differ
from (A2) so that P is not unitary anymore. We ad-
dress this problem by introducing an extra auxiliary
operator, P̂A, which is unitary by construction, and
satisfied the constraint that

P̂ †AP (Ex
a ) ≥ 0. (A4)

We then use this operator P̂ in the construction of the
SWAP instead of P , thus ensuring that S is always
unitary.

For Bob’s side, the swap operators are defined ex-
actly the same way as above for Alice. Thus, we re-
quire also another auxiliary operator P̂B . In the SDP,
the conditions (A4) for Alice and Bob are relaxed by
requiring the positivity of two semidefinite, so-called

localizing matrices Γ(P̂ †AP (Ex
a )), Γ(P̂ †BP (F y

b )), where
Γ refers to the moment matrix of [18] that proceeds
from a quantum realization.

Putting all together, the estimation of the fidelity of
the state inside the box |ψ〉 with respect to the refer-
ence state

∣∣ψ〉 in Eq. (A2) can be relaxed to the fol-
lowing SDP program:

f = min 〈ψ|ρswap|ψ〉
such that c ∈ Qn∑

a,b,x,y

Bx,y
a,b cEx

aF
y
b

= BCGLMP

ρswap ≥ 0, Tr(ρswap) = 1

Γ(P̂ †AP (Ex
a )) ≥ 0, Γ(P̂ †BP (F y

b )) ≥ 0,
(A5)

where Qn is a relaxation of the quantum set defined by
the positivity of the moment matrix Γ ≥ 0 in a certain
level of the NPA hierarchy [18], and Bx,y

a,b defines the

Bell coefficients of the CGLMP inequality in Eq. (A1).
Notice that here all three semidefinite matri-

ces can be taken real, since, for any feasible

point Γ,Γ(P̂ †AP (Ex
a )),Γ(P̂ †BP (F x

a )) of the cor-
responding complex SDP, the real matrices

<{Γ},<{Γ(P̂ †AP (Ex
a ))},<{Γ(P̂ †BP (F x

a ))} are also
positive semidefinite, satisfy the appropriate linear
constraints and return the same state fidelity. This
is the case because both the figure of merit and the
localizing matrices can be expressed as real linear
combinations of the momenta c.

We ran the SDP for various values of BCGLMP for
the lowest possible level of the NPA hierarchy which
defines all moments appearing in the objective func-
tion. The result is shown in Figure 3 of the main doc-
ument. In particular, the fact that up to numerical pre-
cision

〈
ψ
∣∣ ρswap

∣∣ψ〉 = 1 when the violation is maximal
shows that any quantum system violating the CGLMP
inequality maximally is indeed unitarily equivalent to∣∣ψ〉 proving the conjecture of Acin et al. [29] true.
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