A GENERALIZATION OF A THEOREM OF E. VINCZE

by

R. G. LAHA¹, E. LUKACS¹ and A. RÉNYI

The functional equation $\varphi(x) = \varphi(ax) \varphi(bx)$ $(a, b > 0, a^2 + b^2 = 1)$ was solved by E. Vincze [1] under the assumption that $\varphi(x)$ is a complex valued function of the real variable x which can be differentiated twice at the origin. This equation occurs in certain problems in probability theory and was therefore studied by a number of authors under the restriction that $\varphi(x)$ is a positive definite function.

In the present note we prove the following generalization of Vincze's result:

Theorem. Let $\varphi(x)$ be a complex valued function of the real variable x and let $\{a_j\}$ be a sequence of nonnegative real numbers such that $\sum_{j=1}^{\infty} a_j^2 = 1$ and $0 < a_1 < 1$. Suppose that there exist complex constants A and B such that

(1)
$$\lim_{x \to 0} \frac{\varphi(x) - \varphi(0) - Ax}{x^2} = B.$$

Assume further that $\varphi(x)$ satisfies for all real x the functional equation

(2)
$$\varphi(x) = \prod_{j=1}^{\infty} \varphi(a_j x)$$

where the infinite product converges.² Then A = 0 and $\varphi(x) = e^{Bx^2}$.

Proof. It follows from (1) that $\varphi(x)$ is continuous at x = 0. It follows further from the convergence of the infinite product (2) that $\lim_{j \to \infty} \varphi(a_j x) = 1$, and as clearly $\lim_{j \to \infty} a_j = 0$ we obtain $\varphi(0) = 1$. Thus it follows from (1) that (3) $\varphi(x) = 1 + Ax + O(x^2) \qquad \text{for } x \to 0.$

Thus we have

$$\prod_{i=1}^N \varphi(a_j x) = e^{A(\sum_{j=1}^N a_j)x + O(x^2)}.$$

¹ The Catholic University of America. The research of these authors was supported by the National Science Foundation through grant NSF-GP-96.

² As usually the convergence of an infinite product $\tilde{H} z_n$ is understood in the sense that only a finite number of factors may be equal to 0 and if $z_n \neq 0$ for $n \geq n_0$ then $\lim_{N \to \infty} \sum_{n=n_0}^{N} z_n$ exists and is different from 0.

As the product (2) is convergent, it follows that the series $\sum_{j=1}^{\infty} a_j$ is convergent too. Let us put

$$\sum_{j=1}^{\infty} a_j = C.$$

We have evidently C > 1. It follows that $\varphi(x) = e^{ACx + O(x^2)}$ and thus

(5)
$$\frac{\varphi(x) - 1 - Ax}{x^2} = \frac{A(C - 1)}{x} + O(1) \quad \text{for } x \to 0.$$

Clearly (5) is compatible with (1) only if A=0. Condition (1) now reduces to

$$\lim_{x \to 0} \frac{\varphi(x) - 1}{x^2} = B$$

which yields

(7)
$$\lim_{x\to 0} \frac{\log \varphi(x)}{x^2} = B.$$

Clearly (6) implies that there exist positive numbers d and D such that

(8)
$$|\varphi(x)-1| < Dx^2$$
 for $|x| \leq d$.

As for $|z-1| \le \frac{1}{2}$ we have $|\arg z| \le \frac{\pi}{3} |z-1|$, it follows that for $|x| \le \triangle = \min\left(d, \frac{1}{\sqrt{2\,D}}\right)$ we have

$$\sum_{j=1}^{\infty} |\arg \varphi(a_j x)| < \pi.$$

Thus we obtain from (2)

(9)
$$\log \varphi(x) = \sum_{j=1}^{\infty} \log \varphi(a_j x) \qquad \text{for } |x| \leq D.$$

We obtain from (9) by iteration for any natural number k

(10)
$$\log \varphi(x) = \sum_{j_1=1}^{\infty} \dots \sum_{j_k=1}^{\infty} \log \varphi(a_{j_1} \dots a_{j_k} x).$$

Since $\max a_j = \alpha < 1$ we see that

(11)
$$\max a_{j_1} \dots a_{j_k} \leq \alpha^k.$$

In view of (11) and (7) for any $\varepsilon > 0$ we can choose the value of k so large that

(12)
$$|\log \varphi(a_{j_1} \ldots a_{j_k} x) - Bx^2 a_{j_1}^2 \ldots a_{j_k}^2| \leq \varepsilon a_{j_1}^2 \ldots a_{j_k}^2$$

for all $|x| \leq \triangle$. It follows from (10) and (12) that

As ε can be chosen arbitrarily small we obtain that $\varphi(x) = e^{Bx^2}$ for $|x| \leq \triangle$.

Let us put $\psi(x) = \varphi(x) e^{-Bx^a}$. Then clearly $\psi(x)$ satisfies for all x the equation

(14)
$$\psi(x) = \prod_{j=1}^{\infty} \psi(a_j x)$$

further $\psi(x)=1$ for $|x|\leq \triangle$. Let x_0 denote the upper bound of those positive numbers β for which $\psi(x)=1$ for $|x|\leq \beta$. We have already shown that $x_0\geq \Delta>0$. Suppose that x_0 is finite; we shall prove that this leads to a contradiction. Clearly $\psi(\pm x_0)=1$ because $\max a_j=\alpha<1$. Let now η be an arbitrary real number such that $1>\eta>\alpha$; then $\frac{a_j}{\eta}<\frac{a_j}{\alpha}\leq 1$ so that

 $\psi\left(\pm \frac{a_j}{\eta}x_0\right) = 1$. It follows that $\psi\left(\pm \frac{x_0}{\eta}\right) = 1$. This however contradicts the definition of x_0 . Thus $x_0 = +\infty$ and $\varphi(x) = e^{Bx^2}$ for all x.

We are indebted to P. Bártfai for a valuable remark, which we utilzed

in preparing the final version of this paper.

(Received August 28, 1963; in revised form March 9, 1964)

REFERENCE

[1] VINCZE, E.: »Bemerkung zur charakterisierung des Gausschen Fehlergesetzes.«

*Publications of the Mathematical Institute of the Hungarian Academy of Sciences
7 (1962) 357—361.

ОБОБЩЕНИЕ ОДНОЙ ТЕОРЕМЫ E. VINCZE

R. G. LAHA, E. LUKACS u A. RÉNYI

Резюме

Доказывается следующее обобщение теоремы Е. VINCZE [1]:

Теорема. Пусть $\varphi(x)$ — функция вещественной переменной x с комплексными значениями и $\{a_j\}$ — последовательность неотрицательных чисел, для которых $\sum\limits_{j=1}^{\infty}a_j^2=1$ и $0< a_1<1$. Предполагаем, что существуют комплексные константы A и B такие, что

$$\lim_{x\to 0}\frac{\varphi(x)-\varphi(0)-Ax}{x^2}=B\,,$$

и что $\varphi(x)$ удовлетворяет функциональному уравнению

$$\varphi(x) = \prod_{j=1}^{\infty} \varphi(a_j x),$$

где бесконечное произведение сходится. В этом случае A=0 и $q(x)=e^{Bx^2}$.